
1

Resource-Aware Session Types for Digital Contracts

ANKUSH DAS, Carnegie Mellon University

STEPHANIE BALZER, Carnegie Mellon University

JAN HOFFMANN, Carnegie Mellon University

FRANK PFENNING, Carnegie Mellon University

ISHANI SANTURKAR, Carnegie Mellon University

Programming digital contracts comes with unique challenges, which include (i) expressing and enforcing

protocols of interaction, (ii) controlling resource usage, and (iii) preventing the duplication or deletion of a

contract’s assets. This article presents the design and type-theoretic foundation of Nomos, a programming

language for digital contracts that addresses these challenges. To express and enforce protocols, Nomos

is based on shared binary session types. To control resource usage, Nomos employs automatic amortized
resource analysis. To prevent the duplication or deletion of assets, Nomos uses a linear type system. A monad

integrates the effectful session-typed language with a general-purpose functional language. Nomos’ prototype
implementation features linear-time type checking and efficient type reconstruction that includes automatic

inference of resource bounds via off-the-shelf linear optimization. The effectiveness of the language is evaluated

with case studies about implementing common smart contracts such as auctions, elections, and currencies.

Nomos is completely formalized, including the type system, a cost semantics, and a transactional semantics to

instantiate Nomos contracts on a blockchain. The type soundness proof ensures that protocols are followed at

run-time and that types establish sound upper bounds on the resource consumption, ruling out re-entrancy

attacks and out-of-gas vulnerabilities.

1 INTRODUCTION
Digital contracts are programs that implement the execution of a contract. With the rise of

blockchains and cryptocurrencies such as Bitcoin [Nakamoto 2008], Ethereum [Wood 2014], and

Tezos [Goodman 2014], digital contracts have become popular in the form of smart contracts, which

provide potentially distrusting parties with programmable money and a distributed consensus mech-

anism. Smart contracts are used to implement auctions [Auc 2016], investment instruments [Siegel

2016], insurance agreements [Initiative 2008], supply chain management [Law 2017], and mortgage

loans [Morabito 2017]. They hold the promise to lower cost, increase fairness, and expand access to

the financial infrastructure.

Many of today’s prominent smart contract languages suffer from security vulnerabilities, which

have severe financial consequences. A well-known example is the attack on The DAO [Siegel 2016],

resulting in a $60 million theft by exploiting a contract re-entrancy vulnerability. Smart contract

languages have been typically derived from existing general-purpose languages [Auc 2016; Liq 2018;

Cachin 2016] and fail to accommodate the domain-specific requirements of digital contracts. These

requirements are: (i) expressing and enforcing protocols of interaction, (ii) controlling resource (or

gas) usage, and (iii) preventing duplication or deletion of a contract’s assets.

This article presents the design, type-theoretic foundation, and implementation of Nomos, a language
for digital contracts accommodating these requirements by construction.
To express and enforce the protocols underlying a contract, Nomos is based on session types

[Caires and Pfenning 2010; Honda 1993; Honda et al. 1998, 2008; Pfenning and Griffith 2015; Toninho

et al. 2013; Wadler 2012]. Session types capture the protocols of interactions in the type, rather

Authors’ addresses: Ankush Das, Carnegie Mellon University, ankushd@cs.cmu.edu; Stephanie Balzer, Carnegie Mellon

University, balzers@cs.cmu.edu; Jan Hoffmann, Carnegie Mellon University, jhoffmann@cmu.edu; Frank Pfenning, Carnegie

Mellon University, fp@cs.cmu.edu; Ishani Santurkar, Carnegie Mellon University, ivs@andrew.cmu.edu.

2018. 2475-1421/2018/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/

1:2 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

than the implementation code, and type-checking statically guarantees protocol adherence at

run-time. Delimiting the sequences of actions that must be executed atomically, session types

also prevent re-entrance into a contract in an inconsistent state. To control resource usage, Nomos

employs automatic amortized resource analysis (AARA), a type-based technique for automatically

inferring symbolic resource bounds [Carbonneaux et al. 2017; Hoffmann et al. 2011, 2017; Hofmann

and Jost 2003; Jost et al. 2010]. AARA is parametric in the cost model, allowing instantiation to

track gas usage. As a result, Nomos contracts mitigate denial-of-service attacks without being

vulnerable to out-of-gas exceptions. Moreover, resource bounds are integrated with session-typed

protocols and enable precise path-sensitive descriptions of cost that avoid gaps between worst-

case and average-case cost. To prevent duplication or deletion of assets, Nomos uses a linear type
system [Girard 1987]. The effectful session-typed language, which implements contract interfaces

and contract-to-contract communication, is integrated with a strict, general-purpose functional

language using a contextual monad.

Integrating these seemingly disparate approaches (session types, resource analysis, linearity,

and functional programming) and combining them with the different roles that arise in a digital

contract (contract, asset, transaction) in a way that the result remains consistent, presents unique

challenges. For one, both the functional as well as session-typed language use potential annotations

to bound the resource consumption, which requires care when functional values are exchanged

as messages between processes. For another, prior work on integrating shared and linear session

types [Balzer and Pfenning 2017] preclude contracts from persisting their linear assets across

transactions, a feature essential to digital contract development; a restriction that we lift in this

work. Fundamental is the use of different forms of typing judgments for expressions and processes

along with judgmental modes to distinguish the different roles in a digital contract. The modes are

essential in ensuring type safety, as they allow the expression of mode-indexed invariants on the

typing contexts and their enforcement by the typing rules.

Nomos is completely formalized, including the type system, a cost semantics, and a transactional

semantics to instantiate Nomos contracts on a blockchain. A type soundness proof ensures that

protocols are followed at run-time and that types establish sound upper bounds on the resource

consumption. Type checking is linear in the size of the program and resource bounds can be

efficiently inferred with an off-the-shelf LP solver. Efficient type checking is particularly important

if type-checking is part of contract validation and can be used for denial-of-service attacks.

To evaluate Nomos, we implemented a publicly available open-source prototype [Nom 2019] and

conducted 8 case studies implementing common smart contracts such as auctions, elections, and

currencies. Our experiments show that type-checking overhead is less than 0.7 ms for each contract

and bound inference (needed once at deployment) takes less than 10 ms. Moreover, gas bounds are

tight for most contracts. To the best of our knowledge, this is the first implementation to integrate

shared binary session types into a functional language with support for resource analysis.

To simplify programming and make Nomos accessible to digital contract developers, we incor-

porated the following design decisions: (i) we developed an intuitive surface syntax particularly

related to the contextual monad integrating session types into a functional core; (ii) we used a

bi-directional type checker with a particular focus on improving the quality of error messages

whenever a Nomos program fails to typecheck to guide the programmer to locate the source of the

error; (iii) we used an off-the-shelf LP solver to automatically infer channel modes and potential

annotations so that the burden of inference does not fall on the programmer.

Our main technical contributions are:

• design of Nomos, a language that addresses the domain-specific requirements of digital

contracts by construction;

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:3

• a fine-tuned system of typing judgments (Section 4) that uses modes to orchestrate the sound

integration of session types (Section 3), functions (Section 5), and resource analysis (Section 6);

• extension of shared session types to store linear assets;

• resource cost amortization by allowing gas storage in internal data structures (Section 6);

• type safety proof of Nomos using a novel asynchronous cost semantics (Section 7);

• an implementation and case study of prominent blockchain applications (Section 8);

• a transactional semantics to deploy and execute Nomos contracts and transactions on a

blockchain (Section 9).

In addition, the supplementary material details the technical development, provides additional

explanations and provides the full implementation of the blockchain applications.

2 NOMOS BY EXAMPLE
This section provides an overview of the main features of Nomos based on a simple auction contract.

Explicit Protocols of Interaction. Digital contracts, like traditional contracts, follow a prede-
fined protocol. For instance, an auction contract distinguishes a bidding phase, where bidders submit

their bids, possibly multiple times, from a subsequent collection phase, where the highest bidder

receives the lot while all other bidders receive their bids back. In Solidity [Auc 2016], the bidding

phase of an auction is typically implemented as the bid function below. This function receives a bid

(msg.value) from a bidder (msg.sender) and adds it to the bidder’s total previous bids (bidValue).
function bid() public payable {

require (status == running);

bidder = msg.sender; bid = msg.value;

bidValue[bidder] = bidValue[bidder] + bid; }

To guarantee that a bid can only be placed in the bidding phase, the contract uses the state variable

status to track the different phases of a contract. The require statement tests whether the auction

is still running and thus accepts bids. It is checked at run-time and aborts the execution if the

condition is not met. It is the responsibility of the programmer to define state variables, update

them, and introduce corresponding guards.

Rather than burying the contract’s interaction protocol in implementation code by means of

state variables and run-time checks, Nomos allows the explicit expression and static enforcement

of protocols with session types. The auction’s protocol amounts to the below session type:

auction = ↑SL◁
22 ⊕ {running : N{bid : id→ money ⊸ ↓SLauction, % recv bid from client

cancel : ▷21↓SLauction}, % client canceled

ended : N{collect : id→ ⊕{won : lot ⊗ ↓SLauction, % client won

lost : money ⊗ ▷7↓SLauction}, % client lost

cancel : ▷21↓SLauction}} % client canceled

We first focus on how the session type defines the main interactions of a contract with a bidder

and ignore the operators ↑SL, ↓
S
L, ◁, and ▷ for now. To distinguish the two main phases an auction

can be in, the session type uses an internal choice (⊕), leading the contract to either send the label

running or ended, depending on whether the auction still accepts bids or not, respectively. Dual to

an internal choice is an external choice (N), which leaves the choice to the client (i.e., bidder) rather

than the provider (i.e., contract). For example, in case the auction is running, the client can choose

between placing a bid (label bid) or backing out (cancel). In the former case, the client indicates

their identifier (type id), followed by a payment (type money). Nomos session types allow transfer

of both non-linear (e.g., id) and linear assets (e.g., money), using the operators arrow (→) and (⊸),

respectively. Should the auction have ended, the client can choose to check their outcome (label

collect) or back out (cancel). In the case of collect, the auction will answer with either won or lost.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:4 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

In the former case, the auction will send the lot, in the latter case, it will return the client’s bid. The

linear product (⊗) is dual to⊸ and denotes the transfer of a linear value from the contract to the

client. The auction type guarantees that a client cannot collect during the running phase, while
they cannot bid during the ended phase.

Nomos uses shared session types [Balzer and Pfenning 2017] to guarantee that bidders interact

with the auction in mutual exclusion from each other and that the sequences of actions are executed

atomically. To demarcate the parts of the protocol that become a critical section, the above session
type uses the ↑SL and ↓

S
L modalities. The ↑SL modality denotes the beginning of a critical section, the

↓SL modality denotes its end. Programmatically, ↑SL translates into an acquire of the auction session

and ↓SL into its release, which is only sound if the protocol behaves like an auction afterwards

(equi-synchronizing type).

Contracts are implemented by processes, revealing the concurrent, message-passing nature of

session-typed languages. The process run below implements the auction’s running phase. Line 2

gives the process’ signature, indicating that it offers a shared session of type auction along the

channel sa and uses a linear hash map b : hashmapid,bid of bids indexed by id and a linear lot l . The
bid session type (line 1) can be queried for the stored identifier and bid value, and is offered by a

process (not shown) that internally stores this identifier and money. Line 4 onward list the process

body. Line 1 defines session types bid and bids, respectively.

1: stype bid = N{addr : id ∧ bid, val : money}, stype bids = hashmapid,bid
2: (b : bids), (l : lot) ⊢ run :: (sa : auction) % syntax for process declaration

3: sa ← run← b l = % syntax for process definition

4: la ← accept sa ; % accept a client acquire request

5: la.running ; % auction is running

6: case la (bid⇒ r ← recv la ; % receive identifier r : id
7: m ← recv la ; % receive bidm : money
8: sa ← detach la ; % detach from client

9: b ′← addbid r ← b m ; % store bid internally

10: sa ← check← b ′ l % check if threshold reached

11: | cancel⇒ sa ← detach la ; % detach from client

12: sa ← run← b l) % recurse

The contract process first accepts an acquire request by a bidder (line 4) and then sends the message

running (line 5), indicating the auction status and waiting for the bidder’s choice. Should the bidder

choose to make a bid, the process waits to receive the bidder’s identifier (line 6) followed by money

equivalent to the bidder’s bid (line 7). After this linear exchange, the process leaves the critical

section by issuing a detach (line 8), matching the bidder’s release request. Internally, the process

stores the pair of the bidder’s identifier and bid in the data structure bids (line 9). The ended
protocol of the contract is governed by a different process (not shown), responsible for distributing

the bids back to the clients. The contract transitions to the ended state when the number of bidders

reaches a threshold (stored in auction). This is achieved by the check process (line 10) which checks

if the threshold has been reached and makes this transition, or calls run otherwise. Should the

bidder choose to cancel, the contract simply detaches and recurses (lines 11,12).

Re-Entrancy Vulnerabilities. A contract function is re-entrant if, once called by a user, it can

potentially be called again before the previous call has completed. As an illustration, consider the

following collect function of the auction contract in Solidity where the funds are transferred to the

bidder before the hash map is updated to reflect this change.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:5

function collect() public payable {

require (status == ended);

bidder = msg.sender; bid = bidValue[bidder];

bidder.send(bid); bidValue[bidder] = 0; }

function () payable {

// 'auction' variable stores the

// address to auction contract

auction.collect(); }

A bidder can now cause re-entrancy by creating a dummy contract with an unnamed fallback
function (on the right) that calls the auction’s collect function. This call is triggered when collect
calls send (last line on the left), leading to an infinite recursive call to collect, depleting all funds
from the auction. The message-passing framework of session types eliminates this vulnerability.

While session types provide multiple clients access to a contract, the acquire-release discipline

ensures that clients interact with the contract in mutual exclusion. To attempt re-entrancy, a bidder

will need to acquire the auction contract twice without releasing it.

Linear Assets. Nomos integrates a linear type system that tracks the assets stored in a process.

The type system enforces that assets are never duplicated, but only exchanged between processes.

Moreover, the type system prevents a process from terminating while it holds linear assets. For

example, the auction contract treats money and lot as linear assets, which is witnessed by the use

of the linear operators ⊸ and ⊗ for their exchange. In contrast, no provisions to handle assets

linearly exist in Solidity, allowing such assets to be created out of thin air, duplicated, or discarded.

In the above bid function, for instance, the language does not prevent the programmer from writing

bidValue[bidder] = bid instead, losing the bidder’s previous bid.

Resource Cost. Another important aspect of digital contracts is their resource usage. On a

blockchain, executing a contract function, or transaction, requires new blocks to be added to the

blockchain. In existing blockchains like Ethereum, this is done byminers who charge a fee based on
the gas usage of the transaction, indicating the cost of its execution. Precisely computing this cost

statically is important because the sender of a transaction must pay this fee to the miners along

with sending the transaction. If the sender does not pay a sufficient amount, the transaction will be

rejected by the miners and the sender’s fee is lost!

Nomos uses resource-aware session types [Das et al. 2018b] to statically analyze the resource

cost of a transaction. They operate by assigning an initial potential to each process. This potential

is consumed by each operation that the process executes or can be transferred between processes

to share and amortize cost. The cost of each operation is defined by a cost model. If the cost model

assigns a cost to each operation as equivalent to their gas cost during execution, the potential

consumed during a transaction reflects upper bound on the gas usage.

Resource-aware session types express the potential as part of the session type using the operators

◁ and ▷. The ◁ operator prescribes that the client must send potential to the contract, with the

amount of potential indicated as a superscript. Dually, ▷ prescribes that the contract must send

potential to the client. In case of the auction contract, we require the client to pay potential for the

operations that the contract must execute, both while placing and collecting their bids. If the cost

model assigns a cost of 1 to each contract operation, then the maximum cost of an auction session

is 22 (taking the max number of operations in all branches). Thus, we require the client to send

22 units of potential at the start of a session using ◁22. In the lost branch of the auction type, on

the other hand, the contract returns 7 units of potential to the client using ▷7. This simulates gas

usage in smart contracts, where the sender initiates a transaction with some initial gas, and the

leftover gas at the end of the transaction is returned to the sender. In contrast to existing smart

contract languages like Solidity, which provide no support for analyzing the cost of a transaction,

Nomos’ type checker has automatically inferred these potential annotations and guarantees that

well-typed transactions cannot run out of gas.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:6 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

Bringing It All Together. Combining all these features soundly in one language is challenging.

In Nomos, we achieve this by using different typing judgments andmodes, identifying the role of the
process offered along that channel. The mode R denotes purely linear processes for linear assets or
private data structures, such as b and l in the auction. The modes S and L denote sharable processes,
i.e., contracts, that are either in their shared or linear phase such as sa and la, respectively. The
mode T denotes a transaction process that can refer to shared and linear processes and is issued by

a user, such as bidder in the auction. The mode assignment carries over into the process typing

judgments imposing invariants (Definition 1) that are key to type safety. The mode annotations are

automatically inferred by the type checker relieving programmers from this burden.

3 BASE SYSTEM OF SESSION TYPES
Nomos builds on linear session types for message-passing concurrency [Caires and Pfenning

2010; Honda 1993; Honda et al. 1998, 2008; Wadler 2012] and, in particular, on the line of works

that have a logical foundation due to the existence of a Curry-Howard correspondence between

linear logic and the session-typed π -calculus [Caires and Pfenning 2010; Wadler 2012]. Linear

logic [Girard 1987] is a substructural logic that exhibits exchange as the only structural property,

with no contraction or weakening. As a result, linear propositions can be viewed as resources that

must be used exactly once in a proof. Under the Curry-Howard correspondence, an intuitionistic

linear sequent A1,A2, . . . ,An ⊢ C can be interpreted as the offer of a sessionC by a process P using

the sessions A1,A2, . . . ,An

(x1 : A1), (x2 : A2), . . . , (xn : An) ⊢ P :: (z : C)

We label each antecedent as well as the conclusion with the name of the channel along which the

session is provided. The xi ’s correspond to channels used by P , and z is the channel provided by P .
As is standard, we use the linear context ∆ to combine multiple assumptions.

For the typing of processes in Nomos, we extend the above judgment with two additional contexts

(Ψ and Γ), a resource annotation q, and a modem of the offered channel:

Ψ ; Γ ; ∆ ⊢q P :: (xm : A)

We will gradually introduce each concept in the remainder of this article. For future reference,

we show the complete typing rules, with additional contexts, resource annotations, and modes

henceforth, but highlight the parts that will be discussed in later sections in blue.

The Curry-Howard correspondence gives each connective of linear logic an interpretation as a

session type, as demonstrated by the grammar:

A,B ::= ⊕{ℓ : A}ℓ∈K | N{ℓ : A}ℓ∈K | A ⊸m B | A ⊗m B | 1

Each type prescribes the kind of message that must be sent or received along a channel of that

type and at which type the session continues after the exchange. Following previous work on

session types [Pfenning and Griffith 2015; Toninho et al. 2013], the process expressions of Nomos

are defined as follows.

P ::= x .l ; P | case x (ℓ ⇒ P)ℓ∈K | close x | wait x ; P | send x w ; P | y ← recv x ; P | x ← y

Table 1 provides an overview of the types along with their operational meaning. Because we

adopt the intuitionistic version of linear logic, session types are expressed from the point of view of

the provider. Table 1 provides the viewpoint of the provider in the first line, and that of the client

in the second line for each connective. Columns 1 and 3 describe the session type and process term

before the interaction. Similarly, columns 2 and 4 describe the type and term after the interaction.

Finally, the last column describes the provider and client action. Figure 1 provides the corresponding

typing rules. As illustrations of the statics and semantics, we explain internal choice (⊕) and linear

implication (⊸) connectives. The complete formalization is presented in the supplement.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:7

Session Type Cont. Process Term Cont. Description

c : ⊕{ℓ : Aℓ}ℓ∈L c : Ak c .k ; P P provider sends label k along c
case c (ℓ ⇒ Qℓ)ℓ∈L Qk client receives label k along c

c : N{ℓ : Aℓ} c : Ak case c (ℓ ⇒ Pℓ)ℓ∈L Pk provider receives label k along c
c .k ; Q Q client sends label k along c

c : A ⊗ B c : B send c w ; P P provider sends channelw : A on c
y ← recv c ; Qy [w/y]Qy client receives channelw : A on c

c : A ⊸ B c : B y ← recv c ; Py [w/y]Py provider receives chan.w : A on c
send c w ; Q Q client sends channelw : A on c

c : 1 − close c − provider sends end along c
wait c ; Q Q client receives end along c

Table 1. Overview of binary session types with their operational description

Ψ ; Γ ; ∆ ⊢q P :: (xm : A) Process P uses linear channels in ∆ and offers type A on channel x

Ψ ; Γ ; ∆ ⊢q P :: (xm : Al) (l ∈ K)

Ψ ; Γ ; ∆ ⊢q xm .l ; P :: (xm : ⊕{ℓ : Aℓ}ℓ∈K)
⊕R

Ψ ; Γ ; ∆, (xm : Aℓ) ⊢
q Qℓ :: (zk : C) (∀ℓ ∈ K)

Ψ ; Γ ; ∆, (xm : ⊕{ℓ : Aℓ}ℓ∈K) ⊢
q case xm (ℓ ⇒ Qℓ)ℓ∈K :: (zk : C)

⊕L

Ψ ; Γ ; ∆, (yn : A) ⊢q P :: (xm : B)

Ψ ; Γ ; ∆ ⊢q yn ← recv xm ; P :: (xm : A ⊸n B)
⊸n R

Ψ ; Γ ; ∆, (xm : B) ⊢q Q :: (zk : C)

Ψ ; Γ ; ∆, (wn : A), (xm : A ⊸n B) ⊢q send xm wn ; Q :: (zk : C)
⊸n L

q = 0

Ψ ; Γ ; (ym : A) ⊢q xm ← ym :: (xm : A)
fwd

Fig. 1. Selected typing rules for process communication

Internal Choice. The linear logic connective A ⊕ B has been generalized to n-ary labeled sum

⊕{ℓ : Aℓ}ℓ∈K . A process that provides x : ⊕{ℓ : Aℓ}ℓ∈K can send any label l ∈ K along x and then

continues by providing x : Al . The corresponding process term is written as (x .l ; P), where P is the

continuation. A client branches on the label received along x using the term case x (ℓ ⇒ Qℓ)ℓ∈K .

The typing rules for the provider and client are ⊕R and ⊕L, respectively, in Figure 1.

The operational semantics is formalized as a system of multiset rewriting rules [Cervesato and

Scedrov 2009]. We introduce semantic objects proc(cm,w, P) andmsg(cm,w,N) denoting process P
and message N , respectively, being provided along channel c at modem. The resource annotationw
indicates the work performed so far, the discussion of which we defer to Section 6. Communication

is asynchronous, allowing the sender (cm .l ; P) to continue with P without waiting for l to be

received. As a technical device to ensure that consecutive messages arrive in the order they were

sent, the sender also creates a fresh continuation channel c+m so that the message l is actually
represented as (cm .l ; cm ← c+m) (read: send l along cm and continue as c+m):

(⊕S) : proc(cm,w, cm .l ; P) 7→ proc(c+m,w, [c
+
m/cm]P),msg(cm, 0, cm .l ; cm ← c+m)

Receiving the message l corresponds to selecting branch Ql and substituting continuation c+ for c :

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:8 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

(⊕C) : msg(cm,w, cm .l ; cm ← c+m), proc(dk ,w
′, case cm (ℓ ⇒ Qℓ)ℓ∈K) 7→

proc(dk ,w +w ′, [c+m/cm]Ql)

The message msg(cm,w, cm .l ; cm ← c+m) is just a particular form of process, where cm ← c+m is

forwarding, which is explained below. Therefore, no separate typing rules for messages are needed;

they can be typed as processes [Balzer and Pfenning 2017].

Channel Passing. Nomos allows the exchange of channels over channels, also referred to as

higher-order channels. A process providing A ⊸n B can receive a channel of type A at mode n
and then continue with providing B. The provider process term is (yn ← recv xm ; P), where P
is the continuation. The corresponding client sends this channel using (send xm wn ; Q). The
corresponding typing rules are presented in Figure 1. Operationally, the client creates a message

containing the channel:

(⊸n S) : proc(dk ,w, send cm en ; P) 7→ msg(c+m, 0, send cm en ; c+m ← cm), proc(dk ,w, [c+m/cm]P)

The provider receives this channel, and substitutes it appropriately.

(⊸n C) : proc(cm,w ′, xn ← recv cm ; Q),msg(c+m,w, send cm en ; c+m ← cm) 7→
proc(c+m,w +w

′, [c+m/cm][en/xn]Q)

An important distinction from standard session types is that the ⊸ and ⊗ types are decorated

with the modem of the channel exchanged. Since modes distinguish the status of the channels in

Nomos, this mode decoration is necessary to ensure type safety.

Forwarding. A forwarding process xm ← ym (which provides channel x) identifies channels
x and y (both at modem) so that any further communication along x or y occurs on the unified

channel. The typing rule fwd is given in Figure 1 and corresponds to the logical rule of identity.

(id+C) : msg(dm,w ′,N), proc(cm,w, cm ← dm) 7→ msg(cm,w +w ′, [cm/dm]N)
(id−C) : proc(cm,w, cm ← dm),msg(ek ,w ′,N (cm)) 7→ msg(ek ,w +w ′,N (dm))

Operationally, a process c ← d forwards any message N that arrives along d to c and vice versa.

Since linearity ensures that every process has a unique client, forwarding results in terminating

the forwarding process and corresponding renaming of the channel in the client process.

Process and Type Definitions. Process definitions have the form Ψ ; Γ ; ∆ ⊢q f = P :: (xm : A)
where f is the name of the process and P its definition. All definitions are collected in a fixed global

signature Σ. We require well-typedness, i.e., Ψ ; Γ ; ∆ ⊢q f = P :: (xm : A) for every definition,

which allows the definitions to be mutually recursive. For readability of the examples, we break

a definition into two declarations, one providing the type (on the left) and the other the process

definition (on the right) binding the variables xm and those in Ψ, Γ and ∆ (omitting their types):

Ψ ; Γ ; ∆ ⊢q f = P :: (xm : A) xm ← f Ψ← Γ ; ∆ = P

A new instance of a defined process f can be spawned with the expression xm ← f y1 ← y2 ; Q
where y1 is a sequence of functional variables matching the antecedents Ψ and y2 is a sequence of
channels matching the antecedents Γ ; ∆. The newly spawned process will use all variables in y1
and channels in y2 and provide xm to the continuation Q . The operational semantics is defined by

(defC) : proc(ck ,w, xm ← f d ← e ; Q) 7→

proc(am, 0, [am/xm,d/Ψ, e/Γ ∆]P), proc(ck ,w, [am/xm]Q)

where am is a fresh channel. Here we write [d/Ψ] and [e/Γ ∆] to denote substitution of the variables

in d and e for the corresponding variables in Ψ and Γ ; ∆ respectively in that order.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:9

Sometimes a process invocation is a tail call, written without a continuation as xm ← f y1 ← y2.
This is a short-hand for x ′m ← f y1 ← y2 ; xm ← x ′m for a fresh variable x ′m , that is, we create a
fresh channel and immediately identify it with xm (although it is implemented more efficiently).

Session types can be naturally extended to include recursive types. For this purpose we allow

(possibly mutually recursive) type definitions X = A in the signature, where we require A to be

contractive [Gay and Hole 2005]. This means here that A should not itself be a type name. Our

type definitions are equi-recursive so we can silently replace X by A during type checking, and no

explicit rules for recursive types are needed.

4 SHARING CONTRACTS
Multi-user support is fundamental to digital contract development. Linear session types, as defined

in Section 3, unfortunately preclude such sharing because they restrict processes to exactly one

client; only one bidder for the auction, for instance (who will always win!). To support multi-user

contracts, we base Nomos on shared session types [Balzer and Pfenning 2017]. Shared session

types impose an acquire-release discipline on shared processes to guarantee that multiple clients

interact with a contract in mutual exclusion of each other. When a client acquires a shared contract,

it obtains a private linear channel along which it can communicate with the contract undisturbed

by any other clients. Once the client releases the contract, it loses its private linear channel and

only retains a shared reference to the contract.

A key idea of shared session types is to lift the acquire-release discipline to the type level.

Generalizing the idea of type stratification [Benton 1994; Pfenning and Griffith 2015; Reed 2009],

session types are stratified into a linear and shared layer with two adjoint modalities going back
and forth between them:

AS ::= ↑SL AL shared session type

AL ::= . . . | ↓SL AS linear session types

The ↑SL type modality translates into an acquire, while the dual ↓SL type modality into a release.
Whereas mutual exclusion is one key ingredient to guarantee session fidelity (a.k.a. type preserva-

tion) for shared session types, the other key ingredient is the requirement that a session type is

equi-synchronizing. A session type is equi-synchronizing if it imposes the invariant on a process

to be released back to the same type at which the process was previously acquired. This is also

the key behind eliminating re-entrancy vulnerabilities since it prevents a user from interrupting an

ongoing session in the middle and initiating a new one.

Recall the process typing judgment in Nomos Ψ ; Γ ; ∆ ⊢q P :: (xm : A) denoting a process P
offering service of type A along channel x at modem. The contexts Γ and ∆ store the shared and

linear channels that P can refer to, respectively (Ψ and q are explained later and thus marked in

blue in Figure 3). The stratification of channels into layers arises from a difference in structural

properties that exist for types at a mode. Shared propositions exhibit weakening, contraction and

exchange, thus can be discarded or duplicated, while linear propositions only exhibit exchange.

Allowing Contracts to Rely on Linear Assets. As exemplified by the auction contract, a digital

contract typically amounts to a process that is shared at the outset, but oscillates between shared

and linear to interact with clients, one at a time. Crucial for this pattern is the ability of a contract to

maintain its linear assets (e.g., money or lot for the auction) regardless of its mode. Unfortunately,

current shared session types [Balzer and Pfenning 2017] do not allow a shared process to rely on

any linear channels, requiring any linear assets to be consumed before becoming shared. This

precaution was logically motivated [Pruiksma et al. 2018] and also crucial for type preservation.

A key novelty of our work is to lift this restriction while maintaining type preservation. The main

concern regarding preservation is to prevent a process from acquiring its client, which would result

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:10 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

AR ::= ⊕{ℓ : AR}ℓ∈L | N{ℓ : AR}ℓ∈L | 1 | Am ⊸m AR | Am ⊗m AR | τ → AR | τ ∧AR
AL ::= ⊕{ℓ : AL}ℓ∈L | N{ℓ : AL}ℓ∈L | 1 | Am ⊸m AL | Am ⊗m AL | τ → AL | τ ∧AL | ↓

S
L AS

AS ::= ↑SL AL
AT ::= AR

Fig. 2. Grammar for shared session types

in a cycle in the linear process tree. To this end, we factorize the process typing judgment according

to the three roles that arise in digital contract programs: contracts, transactions, and linear assets.
Since contracts are shared and thus can oscillate between shared and linear, we get 4 sub-judgments

for typing processes, each characterized by the mode of the channel being offered.

Definition 1 (Process Typing). The judgment Ψ ; Γ ; ∆ ⊢q P :: (xm : A) is categorized according
to modem. This factorization imposes certain invariants on the judgment outlined below. L(A) denotes
the language generated by the grammar of A.

(1) Ifm = R, then (i) Γ is empty, (ii) for all dk ∈ ∆ =⇒ k = R, and (iii) A ∈ L(AR).
(2) Ifm = S, then (i) for all dk ∈ ∆ =⇒ k = R, and (ii) A ∈ L(AS).
(3) Ifm = L, then (i) for all dk ∈ ∆ =⇒ k = R ∨ k = L, and (ii) A ∈ L(AL).
(4) Ifm = T, then A ∈ L(AT).

Figure 2 shows the session type grammar in Nomos. The first sub-judgment in Definition 1

is for typing linear assets. These type a purely linear process P using a purely linear context ∆
(types belonging to grammar AR in Figure 2) and offering a purely linear type A along channel xR.
The mode R of the channel indicates that a purely linear session is offered. The second and third

sub-judgments are for typing contracts. The second sub-judgment shows the type of a contract

process P using a shared context Γ and a purely linear channel context ∆ (judgment ∆ purelin) and
offering shared typeA on the shared channel xS. Once this shared channel is acquired by a user, the
shared process transitions to its linear phase, whose typing is governed by the third sub-judgment.

The offered channel transitions to linear mode L, while the linear context may now contain channels

at modes R or L. Finally, the fourth typing judgment types a linear process, corresponding to a

transaction holding access to shared channels Γ and linear channels ∆, and offering at mode T.
This novel factorization upholds preservation while allowing shared contract processes to rely

on linear resources. The modes impose the ordering R < S < L < T among the linear channels

in the configuration. A process (offering a channel) at a certain mode is allowed to rely only on

processes at the same or lower mode. These are exactly the conditions imposed by Definition 1.

This introduces an implicit ordering among the linear processes depending on their mode, thus

eliminating cycles in the process tree. Relatedly, shared processes can only refer to shared channels

(at mode S) or purely linear channels (at mode R) as exemplified by the judgment ∆ purelin in

Figure 3. Formally, ∆ purelin denotes that for all dk ∈ ∆ =⇒ k = R. This ensures that a shared
contract must release all processes it has acquired before itself being released. This further enforces

an ordering in which the channels are acquired and released, thus allowing contracts to interact
with other contracts without compromising type safety.

Shared session types introduce new typing rules into our system, concerning the acquire-release
constructs (see Figure 3). In rule ↑SL L, an acquire is applied to the shared channel xS :↑

S
L AL in Γ and

yields a linear channel xL added to ∆ when successful. A contract process can accept an acquire

request along its offering shared channel xS. After the accept is successful, the shared contract

process transitions to its linear phase, now offering along the linear channel xL (rule ↑
S
L R).

The synchronous dynamics of the acquire-accept pair is

(↑SL C) : proc(aS,w
′, xL ← accept aS ; PxL), proc(cm,w, xL ← acquire aS ; QxL) 7→

proc(aL,w ′, PaL), proc(cm,w,QaL)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:11

Ψ ; Γ ; ∆ ⊢q P :: (xm : A) Process P uses shared channels in Γ and offers A along x .

Ψ ; Γ ; ∆, (xL : AL) ⊢
q Q :: (zm : C)

Ψ ; Γ, (xS :↑
S
L AL) ; ∆ ⊢

q xL ← acquire xS ; Q :: (zm : C)
↑SL L

∆ purelin Ψ ; Γ ; ∆ ⊢q P :: (xL : AL)

Ψ ; Γ ; ∆ ⊢q xL ← accept xS ; P :: (xS :↑
S
L AL)

↑SL R

Ψ ; Γ, (xS : AS) ; ∆ ⊢
q Q :: (zm : C)

Ψ ; Γ ; ∆, (xL :↓
S
L AS) ⊢

q xS ← release xL ; Q :: (zm : C)
↓SL L

∆ purelin Ψ ; Γ ; ∆ ⊢q P :: (xS : AS)

Ψ ; Γ ; ∆ ⊢q xS ← detach xL ; P :: (xL :↓
S
L AS)

↓SL R

Fig. 3. Typing rules corresponding to the shared layer.

This rule exploits the invariant that a contract process’ providing channel a can come at two

different modes, a linear one aL, and a shared one aS. The linear channel aL is substituted for the

channel variable xL occurring in the process terms P and Q .
The dual to acquire-accept is release-detach. A client can release linear access to a contract process,

while the contract process detaches from the client. The corresponding typing rules are presented

in Figure 3. The effect of releasing the linear channel xL is that the continuation Q loses access to

xL, while a new reference to xS is made available in the shared context Γ. The contract, on the other

hand, detaches from the client by transitioning its offering channel from linear mode xL back to the

shared mode xS. Both right rules ↑SL R and ↓SL R require ∆ purelin ensuring that a shared process

releases all shared channels before themselves being released. Operationally, the release-detach

rule is inverse to the acquire-accept rule.

(↓SL C) : proc(aL,w
′, xS ← detach aL ; PxS), proc(cm,w, xS ← release aL ; QxS) 7→

proc(aS,w ′, PaS), proc(cm,w,QaS)

5 ADDING A FUNCTIONAL LAYER
To support general-purpose programming patterns, Nomos combines linear channels with conven-

tional data structures, such as integers, lists, or dictionaries. To reflect and track different classes of

data in the type system, we take inspiration from prior work [Pfenning and Griffith 2015; Toninho

et al. 2013] and incorporate processes into a functional core via a linear contextual monad that

isolates session-based concurrency. To this end, we introduce a separate functional context to the

typing of a process. The linear contextual monad encapsulates open concurrent computations,

which can be passed in functional computations but also transferred between processes in the form

of higher-order processes, providing a uniform integration of higher-order functions and processes.

The types are separated into a functional and concurrent part, mutually dependent on each other.

The functional types τ are given by the type grammar below.

τ ::= τ → τ | τ + τ | τ × τ | int | bool | Lq(τ)
| {AR ← AR}R | {AS ← AS ; AR}S | {AT ← AS ; A}T

The types are standard, except for the potential annotation q ∈ N in list type Lq(τ), which we

explain in Section 6, and the contextual monadic types in the last line, which are the topic of this

section. The expressivity of the types and terms in the functional layer are not important for the

development in this paper. Thus, we do not formally define functional termsM but assume that they

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:12 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

Ψ ; Γ ; ∆ ⊢q P :: (xm : A) Process P uses functional values in Ψ, and provides A along x .

r = p + q ∆ = dR : D Ψ . (Ψ1,Ψ2)

Ψ1 ⊩
p M : {A← D} Ψ2 ; · ; ∆

′, (xR : A) ⊢q Q :: (zR : C)

Ψ ; · ; ∆,∆′ ⊢r xR ← M ← dR ; Q :: (zR : C)
{}ERR

Ψ, (y : τ) ; Γ ; ∆ ⊢q P :: (xm : A)

Ψ ; Γ ; ∆ ⊢q y ← recv xm ; P :: (xm : τ → A)
→ R

r = p + q Ψ . (Ψ1,Ψ2) Ψ1 ⊩
p M : τ Ψ2 ; Γ ; ∆, (xm : A) ⊢q Q :: (zk : C)

Ψ ; Γ ; ∆, (xm : τ → A) ⊢r send xm M ; Q :: (zk : C)
→ L

Fig. 4. Typing rules corresponding to the functional layer.

have the expected term formers such as function abstraction and application, type constructors, and

pattern matching. We also define a standard type judgment for the functional part of the language.

Ψ ⊩p M : τ termM has type τ in functional context Ψ (potential p discussed later)

Contextual Monad. The main novelty in the functional types are the three type formers for

contextual monads, denoting the type of a process expression. The type {AR ← AR}R denotes a

process offering a purely linear session type AR and using the purely linear vector of types AR.

The corresponding introduction form in the functional language is the monadic value constructor

{cR ← P ← dR}, denoting a runnable process offering along channel cR that uses channels dR, all
at mode R. The corresponding typing rule for the monad is (ignore the blue portions)

∆ = dR : D Ψ ; · ; ∆ ⊢q P :: (xR : A)

Ψ ⊩q {xR ← P ← dR} : {A← D}R
{}IR

The monadic bind operation implements process composition and acts as the elimination form

for values of type {AR ← AR}R. The bind operation, written as cR ← M ← dR ; Qc , composes the

process underlying the monadic termM , which offers along channel cR and uses channels dR, with
Qc , which uses cR. The typing rule for the monadic bind is rule {}ERR in Figure 4. The linear context

is split between the monadM and continuation Q , enforcing linearity. Similarly, the potential in

the functional context is split using the sharing judgment (.), explained in Section 6. The shared

context Γ is empty in accordance with the invariants established in Definition 1 (i), since the mode

of offered channel x is R. The effect of executing a bind is the spawn of the purely linear process

corresponding to the monad M , and the parent process continuing with Q . The corresponding
operational semantics rule (named spawnRR) is given as follows:

proc(dR,w, xR ← {x ′R ← Px ′R,y ← y} ← a ; Q) 7→ proc(cR, 0, PcR,a), proc(dR,w, [cR/xR]Q)

The above rule spawns the process P offering along a globally fresh channel cR, and using channels
a. The continuation process Q acts as a client for this fresh channel cR. The other two monadic

types correspond to spawning a shared process {AS ← AS ; AR}S and a transaction process

{AT ← AS ; A}T at mode S and T, respectively. Their rules are analogous to {}IR and {}ERR.

Value Communication. Communicating a value of the functional language along a channel is

expressed at the type level by adding the following two session types.

A ::= . . . | τ → A | τ ∧A

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:13

The type τ → A prescribes receiving a value of type τ with continuation type A, while its dual
τ ∧A prescribes sending a value of type τ with continuation A. The corresponding typing rules
for arrow (→ R,→ L) are given in Figure 4 (rules for ∧ are inverse). Receiving a value adds it to

the functional context Ψ, while sending it requires proving that the value has type τ . Semantically,

sending a valueM : τ creates a message predicate along a fresh channel c+m containing the value:

(→ S) : proc(dk ,w, send cm M ; P) 7→ msg(c+m, 0, send cm M ; c+m ← cm), proc(dk ,w, [c+m/cm]P)

The recipient process substitutes M for x , and continues to offer along the fresh continuation

channel received by the message. This ensures that messages are received in the order they are

sent. The rule is formalized below.

(→ C) : proc(cm,w ′, x ← recv cm ; Q),msg(c+m,w, send cm M ; c+m ← cm) 7→
proc(c+m,w +w

′, [c+m/cm][M/x]Q)

Tracking Linear Assets. As an illustration, consider the type money introduced in the auction

example (Section 2). The type is an abstraction over funds stored in a process and is described as

money = N{value : int ∧money, % send value

add : money ⊸R money, % receive money and add it

subtract : int→ ⊕{sufficient : money ⊗R money, % receive int, send money

insufficient : money} % funds insufficient to subtract

coins : listcoin} % send list of coins

The type supports querying for value, and addition and subtraction. The type also expresses

insufficiency of funds in the case of subtraction. The provider process only supplies money to

the client if the requested amount is less than the current balance, as depicted in the sufficient
label. The type is implemented by a wallet process that internally stores a linear list of coins and

an integer representing its value. Since linearity is only enforced on the list of coins in the linear

context, we trust the programmer updates the integer in the functional context correctly during

transactions. The process is typed and implemented as (modes of channels l andm is R, skipped in

the definition for brevity)

1: (n : int) ; (lR : listcoin) ⊢ wallet :: (mR : money)
2: m ← wallet n ← l =
3: casem % case analyze on label received onm
4: (value⇒ sendm n ; % receive value, send n
5: m ← wallet n ← l
6: | add⇒m′← recvm ; % receivem′ : money to add

7: m′.value ; % query value ofm′

8: v ← recvm′ ;
9: m′.coins ; % extract list of coins stored inm′

10: k ← append ← l m′ ; % append list received to internal list

11: m ← wallet (n +v) ← k
12: | subtract⇒ n′← recvm ; % receive int to subtract

13: if (n′ > n) then
14: m.insufficient ; % funds insufficient

15: m ← wallet n ← l
16: else
17: m.sufficient ; % funds sufficient

18: l ′← remove n′← l ; % remove n′ coins from l
19: k ← recv l ′ ; % and create its own list

20: m′← wallet n′← k ; % new wallet process for subtracted funds

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:14 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

21: sendm m′ ; % send new money channel to client

22: m ← wallet (n − n′) ← l ′

23: | coins⇒m ← l)

If the wallet process receives the message value, it sends back the integer n, and recurses (lines 4

and 5). If it receives the message add followed by a channel of type money (line 6), it queries the
value of the received moneym′ (line 7), stores it in v (line 8), extracts the coins stored inm′ (line 9),
and appends them to its internal list of coins (line 10). Similarly, if the wallet process receives the
message subtract followed by an integer, it compares the requested amount against the stored

funds. If the balance is insufficient, it sends the corresponding label, and recurses (lines 14 and

15). Otherwise, it removes n′ coins using the remove process (line 18), creates a money abstraction

using the wallet process (line 20), sends it (line 21) and recurses. Finally, if the wallet receives the
message coins, it simply forwards its internal list along the offered channel.

6 TRACKING RESOURCE USAGE
Resource usage is particularly important in digital contracts: Since multiple parties need to agree

on the result of the execution of a contract, the computation is potentially performed multiple

times or by a trusted third party. This immediately introduces the need to prevent denial of service

attacks and to distribute the cost of the computation among the participating parties.

The predominant approach for smart contracts on blockchains like Ethereum is not to restrict

the computation model but to introduce a cost model that defines the gas consumption of low

level operations. Any transaction with a smart contract needs to be executed and validated before

adding it to the global distributed ledger, i.e., blockchain. This validation is performed by miners,
who charge fees based on the gas consumption of the transaction. This fee has to be estimated and

provided by the sender prior to the transaction. If the provided amount does not cover the gas cost,

the money falls to the miner, the transaction fails, and the state of the contract is reverted back.

Overestimates bear the risk of high losses if the contract has flaws or vulnerabilities.

It is not trivial to decide on the right amount for the fee since the gas cost of the contract does not

only depend on the requested transaction but also on the (a priori unknown) state of the blockchain.

Thus, precise and static estimation of gas cost facilitates transactions and reduces risks. We discuss

our approach of tracking resource usage, both at the functional and process layer.

Functional Layer. Numerous techniques have been proposed to statically derive resource

bounds for functional programs [Avanzini et al. 2015; Cicek et al. 2017; Danner et al. 2015; Lago and

Gaboardi 2011; Radiček et al. 2017]. In Nomos, we adapt the work on automatic amortized resource

analysis (AARA) [Hoffmann et al. 2011; Hofmann and Jost 2003] that has been implemented in

Resource Aware ML (RaML) [Hoffmann et al. 2017]. RaML can automatically derive worst-case

resource bounds for higher-order polymorphic programs with user-defined inductive types. The

derived bounds are multivariate resource polynomials of the size parameters of the arguments.

AARA is parametric in the resource metric and can deal with non-monotone resources like memory

that can become available during the evaluation.

As an illustration, consider the function applyInterest that iterates over a list of balances and
applies interest on each element, multiplying them by a constant c . We use tick annotations to

define the resource usage of an expression in this article. We have annotated the code to count the

number of multiplications. The resource usage of an evaluation of applyInterest b is |b |.

let applyInterest balances =

match balances with

| [] -> []

| hd::tl -> tick(1); (c*hd)::(applyInterest tl) (* consume unit potential for tick *)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:15

The idea of AARA is to decorate base types with potential annotations that define a potential

function as in amortized analysis. The typing rules ensure that the potential before evaluating an

expression is sufficient to cover the cost of the evaluation and the potential defined by the return

type. This posterior potential can then be used to pay for resource usage in the continuation of the

program. For example, we can derive the following resource-annotated type.

applyInterest : L1(int) −−−→0/0 L0(int)

The type L1(int) denotes a list of integers assigning a unit potential to each element in the list. The

return value, on the other hand, has no potential. The annotation on the function arrow indicates

that we do not need any potential to call the function and that no constant potential is left after the

function call has returned.

In a larger program, we might want to call the function applyInterest again on the result of a

call to the function. In this case, we would need to assign the type L1(int) to the resulting list

and require L2(int) for the argument. In general, the type for the function can be described with

symbolic annotations with linear constraints between them. To derive a worst-case bound for a

function the constraints can be solved by an off-the-shelf LP solver, even if the potential functions

are polynomial [Hoffmann et al. 2011, 2017].

In Nomos, we simply adopt the standard typing judgment of AARA for functional programs.

Ψ ⊩q M : τ

It states that under the resource-annotated functional context Ψ, with constant potential q, the
expressionM has the resource-aware type τ .

The operational cost semantics is defined by the judgment

M ⇓ V | µ

which states that the closed expressionM evaluates to the valueV with cost µ. The type soundness
theorem states that if · ⊩q M : τ andM ⇓ V | µ then q ≥ µ.
More details about AARA can be found in the literature [Hoffmann et al. 2017; Hofmann and

Jost 2003] and the supplementary material.

Process Layer. To bound the resource usage of a process, Nomos features resource-aware session

types [Das et al. 2018b] for work analysis. Resource-aware session types describe resource contracts

for inter-process communication. The type system supports amortized analysis by assigning

potential to both messages and processes. The derived resource bounds are functions of interactions

between processes. As an illustration, consider the following resource-aware list interface from

prior work [Das et al. 2018b].

listA = ⊕{nil0 : 10, cons1 : A
0

⊗ listA}
The type prescribes that the provider of a list must send one unit of potential with every cons
message that it sends. Dually, a client of this list will receive a unit potential with every consmessage.

All other type constructors aremarkedwith potential 0, and exchanging the correspondingmessages

does not lead to transfer of potential.

While resource-aware session types in Nomos are equivalent to the existing formulation [Das

et al. 2018b], our version is simpler and more streamlined. Instead of requiring every message to

carry a potential (and potentially tagging several messages with 0 potential), we introduce two

new type constructors for exchanging potential.

A ::= . . . | ▷rA | ◁rA

The type ▷rA requires the provider to pay r units of potential which are transferred to the client.

Dually, the type ◁rA requires the client to pay r units of potential that are received by the provider.

Thus, the reformulated list type becomes

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:16 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

Ψ ; Γ ; ∆ ⊢q P :: (xm : A) Process P has potential q and provides type A along channel x .

p = q + r Ψ ; Γ ; ∆ ⊢p P :: (xm : A)

Ψ ; Γ ; ∆ ⊢q get xm {r } ; P :: (xm : ◁rA)
◁R

q = p + r Ψ ; Γ ; ∆, (xm : A) ⊢p P :: (zk : C)

Ψ ; Γ ; ∆, (xm : ◁rA) ⊢q pay xm {r } ; P :: (zk : C)
◁L

q = p + r Ψ ; Γ ; ∆ ⊢p P :: (xm : A)

Ψ ; Γ ; ∆ ⊢q tick (r) ; P :: (xm : A)
tick

Fig. 5. Selected typing rules corresponding to potential.

listA = ⊕{nil : 1, cons : ▷1(A ⊗ listA)}

The reformulation is more compact since we need to account for potential in only the typing rules

corresponding to ▷rA and ◁rA.
With all aspects introduced, the process typing judgment

Ψ ; Γ ; ∆ ⊢q P :: (xm : A)

denotes a process P accessing functional variables in Ψ, shared channels in Γ, linear channels in ∆,
offers service of type A along channel x at modem and stores a non-negative constant potential q.
Similarly, the expressing typing judgment

Ψ ⊩p M : τ

denotes that expressionM has type τ in the presence of functional context Ψ and potential p.
Figure 5 shows the rules that interact with the potential annotations. In the rule ◁R, process P

storing potential q receives r units along the offered channel xm : ◁rA using the get construct and
the continuation executes with p = q + r units of potential. In the dual rule ◁L, a process storing
potential q = p + r sends r units along the channel xm : ◁rA in ∆ using the pay construct, and the

continuation remains with p units of potential. The typing rules for the dual constructor ▷rA are

the exact inverse. Finally, executing the tick (r) construct consumes r potential from the stored

process potential q, and the continuation remains with p = q − r units, as described in the tick rule.

The tick construct is used to simulate a cost model in Nomos. If an operation (e.g., sending a

message, calling a function, etc.) has a cost of r , this cost is simulated by inserting tick (r) just before
the operation. Then, the tick operations are the only ones that cost potential, thus simplifying

the type system. These tick operations are automatically inserted by the Nomos type checker,

using a predefined cost model that assigns a constant cost to each operation. In addition, our

implementation provides some standard cost models, for instance, that assign a unit cost to each

internal operation and sending a message.

Integration. Since both AARA for functional programs and resource-aware session types are

based on the integration of the potential method into their type systems, their combination is

natural. The two points of integration of the functional and process layer are (i) spawning a process,

and (ii) sending/receiving a value from the functional layer. Recall the spawn rule {}ERR from

Figure 4. A process storing potential r = p + q can spawn a process corresponding to the monadic

expressionM , ifM needs p units of potential to evaluate, while the continuation needs q units of

potential to execute. Moreover, the functional context Ψ is shared in the two premises as Ψ1 and

Ψ2 using the judgment Ψ . (Ψ1,Ψ2). This judgment, already explored in prior work [Hoffmann

et al. 2017] describes that the base types in Ψ are copied to both Ψ1 and Ψ2, but the potential is split

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:17

up. For instance, Lq1+q2 (τ) . (Lq1 (τ), Lq2 (τ)). The rule→ L in Figure 4 follows a similar pattern. A

process Q storing r = p + q potential sends a monadic expressionM needing p units of potential

to evaluate, and the continuation remains with q units of potential to execute. The p units of

potential are consumed to evaluateM to a value before sending since only values are exchanged at

runtime. Thus, the combination of the two type systems is smooth, assigning a uniform meaning to

potential, both for the functional and process layer. Remarkably, this technical device of exchanging

functional values can be used to exchange non-constant potential with messages. For instance,

exchanging a list l : Lq(τ) will exchange q · n units of potential where n is the size of the list l .

Operational Cost Semantics. The resource usage of a process (or message) is tracked in se-

mantic objects proc(c,w, P) and msg(c,w,N) using the local counters w . This signifies that the

process P (or message N) has performed work w so far. The rules of semantics that explicitly affect

the work counter are

M ⇓ V | µ

proc(cm,w, P[M]) 7→ proc(cm,w + µ, P[V])
internal

This rule describes that if an expression M evaluates to V with cost µ, then the process P[M]
depending on monadic expression M steps to P[V], while the work counter increments by µ,
denoting the total number of internal steps taken by the process. At the process layer, the work

increments on executing a tick operation.

proc(cm,w, tick (µ) ; P) 7→ proc(cm,w + µ, P)

A new process (or message) is spawned withw = 0, and a terminating process transfers its work to

the corresponding message it interacts with before termination, thus preserving the total work

performed by the system.

7 TYPE SOUNDNESS
The main theorems that exhibit the connections between our type system and the operational cost

semantics are the usual type preservation and progress. First, Definition 1 asserts certain invariants

on process typing judgment depending on the mode of the channel offered by a process. This

mode, remains invariant, as the process evolves. This is ensured by the process typing rules, which

remarkably preserve these invariants despite being parametric in the mode.

Lemma 1 (Invariants). The typing rules on the judgment Ψ ; Γ ; ∆ ⊢q (xm : A) preserve the
invariants outlined in Definition 1, i.e., if the conclusion satisfies the invariant, so do all the premises.

Configuration Typing. At run-time, a program evolves into a number of processes and mes-

sages, represented by proc and msg predicates. This multiset of predicates is referred to as a

configuration (abbreviated as Ω).

Ω ::= · | Ω, proc(c,w, P) | Ω,msg(c,w,N)

A key question is how to type these configurations because a configuration both uses and provides

a number of channels. The solution is to have the typing impose a partial order among the processes

and messages, requiring the provider of a channel to appear before its client. We stipulate that no

two distinct processes or messages in a well-formed configuration provide the same channel c .

The typing judgment for configurations has the form Σ ; Γ0
E
⊨ Ω :: (Γ ; ∆) defining a configura-

tion Ω providing shared channels in Γ and linear channels in ∆. Additionally, we need to track the

mapping between the shared channels and their linear counterparts offered by a contract process,

switching back and forth between them when the channel is acquired or released respectively. This

mapping, along with the type of the shared channels, is stored in Γ0. E is a natural number and

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:18 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

stores the sum of the total potential and work as recorded in each process and message. We call E
the energy of the configuration. The supplement details the configuration typing rules.

Finally, Σ denotes a signature storing the type and function definitions. A signature is well-

formed if (i) every type definitionV = AV is contractive [Gay and Hole 2005] and (ii) every function
definition f = M : τ is well-typed according to the expression typing judgment Σ ; · ⊩p M : τ .
The signature does not contain process definitions; every process is encapsulated inside a function

using the contextual monad.

Theorem 1 (Type Preservation).

• If a closed well-typed expression · ⊩q M : τ evaluates to a value, i.e., M ⇓ V | µ, then q ≥ µ and
· ⊩q−µ V : τ .

• Consider a closed well-formed and well-typed configuration Ω such that Σ ; Γ0
E
⊨ Ω :: (Γ ; ∆). If the

configuration takes a step, i.e. Ω 7→ Ω′, then there exist Γ′
0
, Γ′ such that Σ ; Γ′

0

E
⊨ Ω′ :: (Γ′ ; ∆), i.e.,

the resulting configuration is well-typed. Additionally, Γ0 ⊆ Γ′
0
and Γ ⊆ Γ′.

The preservation theorem is standard for expressions [Hoffmann et al. 2017]. For processes, we

proceed by induction on the operational cost semantics and inversion on the configuration and

process typing judgment.

To state progress, we need the notion of a poised process [Pfenning and Griffith 2015]. A process

proc(cm,w, P) is poised if it is trying to receive a message on cm . Dually, a message msg(cm,w,N)
is poised if it is sending along cm . A configuration is poised if every message or process in the

configuration is poised. Intuitively, this means that the configuration is trying to interact with

the outside world along a channel in Γ or ∆. Additionally, a process can be blocked [Balzer and

Pfenning 2017] if it is trying to acquire a contract process that has already been acquired by some

process. This can lead to the possibility of deadlocks.

Theorem 2 (Progress). Consider a closed well-formed and well-typed configuration Ω such that

Γ0
E
⊨ Ω :: (Γ ; ∆). Either Ω is poised, or it can take a step, i.e., Ω 7→ Ω′, or some process in Ω is blocked

along aS for some shared channel aS and there is a process proc(aL,w, P) ∈ Ω.

The progress theorem is weaker than that for binary linear session types, where progress

guarantees deadlock freedom due to absence of shared channels.

8 IMPLEMENTATION AND EVALUATION
We have developed an open-source prototype implementation [Nom 2019] of Nomos in OCaml.

This prototype contains a lexer and parser (929 lines of code), a type checker (2388 lines of code), a

pretty printer (451 lines of code), an LP solver interface (915 lines of code) and an interpreter (1286

lines of code) for implementing, type checking and executing Nomos programs. We also describe

our efforts to simplify programming and improve accessiblity of Nomos to developers.

Syntax. The lexer and parser for Nomos have been implemented in Menhir [Pottier and Régis-

Gianas 2019], an LR(1) parser generator for OCaml. A Nomos program is a list of mutually recursive

type and process definitions. To visually separate out functional variables from session-typed

channels, we require that shared channels are prefixed by #, while linear channels are prefixed by

$. This avoids confusion between the two, both for the programmer and the parser. We also require

the programmer to indicate the mode of the process being defined: asset, contract or transaction,
assigning the respective modes R, S and T to the offered channel. The modes for all other channels

are inferred automatically (explained later). The initial potential {q} of a process is marked on the

turnstile in the declaration. The syntax for definitions is

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:19

type v = A

proc <mode> f : (x1 : T), ($c2 : A), ... |{q}- ($c : A) = M

In the context, T is the functional type for variable x1, while A is the session type for channel

$c2 andM is a functional expression implementing the process. We add syntactic sugar, such as

the forms let x = M;P and if M then P1 else P2, to the process layer to ease programming. Finally,

a functional expression can enter the session type monad using {}, i.e., M = {P} where P is a

session-typed expression.

Type Checking. We implemented a bi-directional [Pierce and Turner 2000] type checker with a

specific focus on the quality of error messages, which include, for example, extent (source code
location) information for each definition and expression. The programmer provides the initial

type of each variable and channel in the declaration and the definition is checked against it, while

reconstructing the intermediate types. This helps localize the source of a type error as the point

where type reconstruction fails. Type equality is restricted to reflexivity (constant time), although

we have also implemented the standard co-inductive algorithm [Gay and Hole 2005] which is

quadratic in the size of type definitions. For all our examples, the reflexive notion of equality

was sufficient. Type checking is linear time in the size of the program, which is important in the

blockchain domain where type checking can be part of the attack surface.

Potential and Mode Inference. The potential and mode annotations are the most interesting

aspects of the Nomos type system. Since modes are associated with each channel, they are tedious

to write. Similarly, the exact potential annotations depend on the cost assigned to each operation

and is difficult to predict statically. Thus, we implemented an automatic inference algorithm for

both these annotations by relying on an off-the-shelf LP solver.

Using ideas from existing techniques for type inference for AARA [Hoffmann et al. 2017; Hofmann

and Jost 2003], we reduce the reconstruction of potential annotations to linear optimization. To this

end, Nomos’ inference engine uses the Coin-Or LP solver. In a Nomos program, the programmer

can indicate unknown potential using ∗. Thus, resource-aware session types can be marked with

▷∗ and ◁∗, list types can be marked as L∗(τ) and process definitions can be marked with |{∗}− on

the turnstile. The mode of all the channels is marked as ‘unknown’ while parsing.

The inference engine iterates over the program and substitutes the star annotations with po-

tential variables and ‘unknown’ with mode variables. Then, the bidirectional typing rules are

applied, approximately checking the program (modulo potential and mode annotations) while also

generating linear constraints for potential annotations (see Figure 4). and mode annotations (see

Definition 1 and Figure 3). Finally, these constraints are shipped to the LP solver, which minimizes

the value of the potential annotations to achieve tight bounds. The LP solver either returns that the

constraints are infeasible, or returns a satisfying assignment, which is then substituted into the

program. The final program is pretty printed for the programmer to view and verify the potential

and mode annotations.

8.1 Case Studies
We evaluate the design of Nomos by implementing several smart contract applications and dis-

cussing the typical issues that arise. All the contracts are implemented and type checked in the

prototype implementation and the potential and mode annotations are derived automatically by

the inference engine. The cost model used for these examples assigns 1 unit of cost to every atomic

internal computation and sending of a message. We show the contract types from the implementa-

tion with the following ASCII format: i) /\ for ↑SL, ii) \/ for ↓SL, iii) <{q}| for ◁q , iv) |{q}> for ▷q , v)
^ for ∧, vi) *[m] for ⊗m , vii) -o[m] for⊸m .

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:20 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

ERC-20 Token Standard. ERC-20 [ERC 2018] is a technical standard for smart contracts on the

Ethereum blockchain that defines a common list of standard functions that a token contract has to

implement. The majority of tokens on the Ethereum blockchain are ERC-20 compliant.

The ERC-20 token contract implements the following session type in Nomos:

type erc20token = /\ <{11}| &{

totalSupply : int ^ |{9}> \/ erc20token,

balanceOf : id -> int ^ |{8}> \/ erc20token,

transfer : id -> id -> int -> |{0}> \/ erc20token,

approve : id -> id -> int -> |{6}> \/ erc20token,

allowance : id -> id -> int ^ |{6}> \/ erc20token }

The type ensures that the token implements the protocol underlying the ERC-20 standard. To query

the total number of tokens in supply, a client sends the totalSupply label, and the contract sends

back an integer. If the contract receives the balanceOf label followed by the owner’s identifier, it

sends back an integer corresponding to the owner’s balance. A balance transfer can be initiated by

sending the transfer label to the contract followed by sender’s and receiver’s identifier, and the

amount to be transferred. If the contract receives approve, it receives the two identifiers and the

value, and updates the allowance internally. Finally, this allowance can be checked by issuing the

allowance label, and sending the owner’s and spender’s identifier.

A programmer can design their own implementation (contract) of the erc20token session type.

In our implementation, we store two hash maps, one for the balance of each account, and one for

the allowance between each pair of accounts. The contract relies on custom linear coins that are

used exclusively for exchanges among the private accounts. These coins can be minted by a special

transaction that can only be issued by the owner of the contract and that creates coins out of thin

air (consuming gas to create coins). We use a built-in type to represent a single coin, providing

custom functions to mint and burn a coin. The type for the two hash maps is described below.

type balance-map = &{ get-balance : id -> int ^ balance-map,

transfer : id -> id -> int -> balance-map}

type allowance-map = &{ get : id -> id -> int ^ allowance-map,

set : id -> id -> int -> allowance-map}

The type balance−map supports two functionalities: querying the balance value of an account by

receiving an id and responding with an int; and allowing a transfer by receiving the sender and

receiver ids and the transfer amount. In each case, the type recurses back to balance−map allowing

other users to interact with the hash map. The allowance−map type stores the allowances for each

pair of accounts, which can be queried and updated using the get and set functionalities. They have
a similar communication protocol as the balance−map.

Another implementation can use a different linear type with its own introduction and elimination

forms for minting and burning, respectively. Nomos’ linear type system enforces that the coins are

treated linearly modulo minting and burning.

Hacker Gold (HKG) Token. The HKG token is one particular implementation of the ERC-20

token specification. Recently, a vulnerability was discovered in the HKG token smart contract based

on a typographical error leading to a re-issuance of the entire token [HKG 2017]. When updating

the receiver’s balance during a transfer, instead of writing balance+=value, the programmer mis-

takenly wrote balance=+value (semantically meaning balance=value). Moreover, while testing

this error was missed, because the first transfer always succeeds (since the two statements are

semantically equivalent when balance=0. Nomos’ type system would have caught the linearity

violation in the latter statement that drops the existing balance in the recipient’s account.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:21

Puzzle Contract. This contract, taken from prior work [Luu et al. 2016] rewards users who

solve a computational puzzle and submit the solution. The contract allows two functions, one that

allows the owner to update the reward, and the other that allows a user to submit their solution

and collect the reward.

In Nomos, this contract is implemented to offer the type

type puzzle = /\ <{14}| &{

update : id -> money -o[R] |{0}> \/ puzzle,

submit : int ^ &{ success : int -> money *[R] |{5}> \/ puzzle,

failure : |{9}> \/ puzzle } }

The contract still supports the two transactions. To update the reward, it receives the update label
and an identifier, verifies that the sender is the owner, receives money from the sender, and acts

like a puzzle again. The transaction to submit a solution has a guard associated with it. First, the

contract sends an integer corresponding to the reward amount, the user then verifies that the

reward matches the expected reward (the guard condition). If this check succeeds, the user sends

the success label, followed by the solution, receives the winnings, and the session terminates. If

the guard fails, the user issues the failure label and immediately terminates the session. Thus,

acquire-release discipline along with the guarded session type guarantees that the user submitting

the solution receives their expected winnings.

Voting. The voting contract provides a ballot type in an election.

type ballot = /\ <{16}| +{

open : id -> +{ vote : id -> |{0}> \/ ballot,

novote : |{9}> \/ ballot },

closed : id ^ |{13}> \/ ballot }

This contract allows voting when the election is open by receiving the candidate’s id. To only

allow legitimate voters to cast a ballot and prevent double voting by the same voter, the contract

then checks if the voter is eligible to vote. It then replies with vote or novote depending on their

eligibility. Once the election closes (the closed label), the contract can be acquired to check the

winner of the election. We use two implementations for the contract: the first stores a counter for

each candidate that is updated after each vote is cast (voting in Table 2); the second does not use

a counter but stores potential inside the vote list that is consumed for counting the votes at the

end (voting-aa in Table 2). This stored potential is provided by the voter to amortize the cost of

counting. The type above shows the potential annotations corresponding to the latter.

Insurance. Nomos has been carefully designed to allow inter-contract communication without

compromising type safety. We illustrate this feature using an insurance contract that processes

flight delay insurance claims after verifying them with a trusted third party. The insurer and third

party verifier are implemented as separate contracts providing the following session types.

type insurer = /\ <{6}| &{

submit : claim -> +{ success : money *[R] |{0}> \/ insurer,

failure : |> \/ insurer } }

type verifier = /\ <{3}| &{

verify : claim -> +{ valid : |{0}> \/ verifier,

invalid : |{0}> \/ verifier } }

The insurer type provides the option to submit a claim by receiving it and responds with success
or failure depending upon verification of the claim. If the claim is successful, the insurer sends

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:22 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

Contract LOC Defs Procs T (ms) Vars Cons I (ms) Gap

auction 176 5 10 0.558 229 730 5.225 3

ERC 20 136 4 2 0.579 161 561 4.317 6

puzzle 108 3 7 0.410 126 389 8.994 8

voting 101 3 6 0.324 109 351 3.664 0

voting-aa 101 3 7 0.346 140 457 3.926 0

insurance 56 3 2 0.299 76 224 8.289 0

escrow 85 2 2 0.404 95 321 3.816 3

bank 147 4 5 0.663 173 561 4.549 0

wallet 30 3 2 0.231 32 102 3.224 0

Table 2. Evaluation of Nomos with Case Studies. LOC = lines of code; Defs = #type definitions; Procs =
#process definitions; T (ms) = type checking time in ms; Vars = #potential and mode variables generated
during type checking; Cons = #constraints generated during type checking; I (ms) = potential and mode
inference time in ms; Gap = maximal gas bound gap.

over the reimbursement in the form of money. The verifier type provides the option to verify a

claim by receiving it and responding with valid or invalid depending on the validity of the claim.

The insurer, upon receiving a claim, acquires the verifier and sends it the claim details. If the

claim is valid, then it responds with success, sends the money and detaches from its client. If the

claim is invalid, it responds with failure and immediately detaches from its client.

8.2 Experimental Evaluation
We implemented 8 case studies in Nomos. We have already discussed the auction (Section 2), ERC

20, puzzle, voting and insurance contracts. The other case studies are:

• An escrow to exchange bonds between two parties.

• A bank account that allows users to create accounts, make deposits and withdrawals and

check their balance relying on custom linear coins.

• A wallet allowing users to store money on the blockchain.

Table 2 contains a compilation of our experiments with the case studies and the prototype imple-

mentation. The experiments were run on an Intel Core i5 2.7 GHz processor with 16 GB 1867 MHz

DDR3 memory. It presents the contract name, its lines of code (LOC), the number of type (Defs)

and process definitions (Procs), the type checking time (T (ms)), number of potential and mode

variables introduced (Vars), number of potential and mode constraints that were generated while

type checking (Cons) and the time the LP solver took to infer their values (I (ms)). The last column

describes the maximal gap between the static gas bound inferred and the actual runtime gas cost. It

accounts for the difference in the gas cost in different program paths. However, this waste is clearly

marked in the program by explicit tick instructions so the programmer is aware of this runtime

gap, based on the program path executed.

The evaluation shows that the type-checking overhead is less than a millisecond for case studies.

This indicates that Nomos is applicable to settings like distributed blockchains in which type

checking could add significant overhead and could be part of the attack surface. Type inference

is also efficient but an order of magnitude slower than type checking. This is acceptable since

inference is only performed once during deployment of the contract. Gas bounds are tight in most

cases. Loose gas bounds are caused by conditional branches with different gas cost. In practice, this

is not a major concern since the Nomos semantics tracks the exact gas cost, and a user will not be

overcharged for their transaction. Moreover, Nomos’ type system can be easily modified to only

allow contracts with tight bounds.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:23

Our implementation experience revealed that describing the session type of a contract crystallizes

the important aspects of its protocol. Often, subtle aspects of a contract are revealed while defining

the protocol as a session type. Once the type is defined, the implementation simply follows the type
protocol. The error messages from the type checker were helpful in ensuring linearity of assets and

adherence to the protocol. Using ∗ for potential annotations meant we could remain unaware of the

exact gas cost of operations. The syntactic sugar constructs reduced the programming overhead

and the size of the contract implementations.

9 BLOCKCHAIN INTEGRATION
To integrate Nomos with a blockchain, we need a mechanism to (i) represent the contracts and
their addresses in the current blockchain state, (ii) create and send transactions to the appropriate

addresses, and most importantly, (iii) construct the global distributed ledger, which stores the

history of all transactions.

Nomos on a Blockchain. We assume a blockchain like Ethereum that contains a set of Nomos

contracts C1, . . . ,Cn together with their type information · ; Γi ; ∆i
R ⊢

qi Ci :: (x
i
S : A

i
S). The shared

context Γi types the shared contracts thatCi refers to, and the linear context ∆
i
R types the contract’s

linear assets. The channel name x iS of a contract is its address and has to be globally unique. We

allow contracts to carry potential given by the annotation qi and the potential defined by the

annotations in ∆i
R but the type system could easily be altered to suppress the stored potential.

These contracts form a stuck configuration (a valid virtual blockchain state) typed as

Σ ; Γ
E
⊨ proc(x1S,w1,C1) . . . proc(xnS ,wn,Cn) :: (Γ ; ·)

where Γ = (x1S : A
1

S), . . . , (x
n
S : An

S) and E = Σni=1qi +wi is the total energy, that is, the sum of the

stored potential and previously performed work. To perform a transaction with a contract, a user

submits a transaction script Q (a process) that is well-typed with respect to the existing contracts:

· ; Γ ; · ⊢
q Q :: (xT : 1)

We mandate that the transaction offers along a channel of type 1 and terminates by sending a close
message on its offered channel. This approach enables dynamic deadlock detection (explained later)

and allows abortion of a transaction if a deadlock is detected. This script process is added to the set

of contracts and the new (closed) configuration is typed as

Σ ; Γ
E+q
⊨ proc(x1S,w1,C1) . . . proc(xT, 0,Q) :: (Γ ; (xT : 1))

This configuration then steps according to the Nomos semantics, ending with the termination of

the script Q , leaving the configuration in a stuck state again to start a new transaction. If type

checking were too costly here, that can lead to yet another source of denial-of-service attacks. In

Nomos however, type checking is linear time in the size of the script.

A transaction script is connected to the blockchain state using a server process. This process,

named bc−server stores the entire transaction history and offers along channel bc : tx_interface
where the transaction code is received and relayed to the blockchain state. It is defined as follows.

1: type tx_code = {1} type tx_queue = list tx_code
2: stype tx_interface = tx_code→ tx_interface
3: (txns : tx_queue) ; · ; · ⊢0 bc−server :: (bc : tx_interface)
4: bc ← bc−server txns =
5: tx ← recv bc ; xT ← tx ; wait xT ;

6: bc ← bc−server (tx :: txns)

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:24 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

The transaction script is packaged as a value of the contextual monadic type introduced in Section 5.

For instance, the transactionQ is packaged as {xT ← Q} : {1} = tx_code. The bc−server process re-
ceives this code, spawns a process corresponding to it and waits for the transaction to terminate (line

5). Note that the transaction is required to terminate with a (close xT)message which matches with

the (wait xT) being executed by the server, ensuring the execution order of the transactions. Finally,

the latest transaction is added to the queue of transactions txns : type tx_queue = list tx_code,
and the bc−server process recurses.

A transaction can either create new contracts or update the state of existing ones. In the former

case, new contracts are added to the blockchain state, making them visible in the type of the

configuration for subsequent transactions to access. In the latter case, it acquires the contracts it
wishes to interact with, followed by an update in the contracts’ internal state and releases them.

Since the contract types are equi-synchronizing, they remain unchanged at the end of transaction

execution. This ensures that the subsequent transactions can access the same contracts at the same

type. In the future we plan to allow sub-synchronizing types that enable a client to release a contract
channel not at the same type, but a subtype. The subtype can then describe the phase of the contract.

For instance, the ended phase of auction contract will be a subtype of the running phase.

Deterministic Execution. Since blockchains rely on consensus among the miners, it is impor-

tant to ensure deterministic execution of transactions. However, Nomos semantics has one source of

non-determinism: the acquire-accept rule where an accepting contract latches on to any acquiring

transaction. One simple approach to resolve this non-determinism is to determinize the resource

scheduler based on some heuristics. Another promising approach is record-and-replay [Lidbury

and Donaldson 2019; Ronsse and De Bosschere 1999]. The miner records the order in which the

contracts are acquired in the ledger, which is then replayed by others to compute the current

blockchain state.

Deadlocks. The only language specific reason a transaction can fail is a deadlock in the transac-

tion code. Our progress theorem accounts for this possibility of deadlocks. Since a valid blockchain

state represents a stuck configuration of a particular form (only shared contracts in the configura-

tion), we verify at the end of the transaction execution if the new configuration has this form. If

not, we conclude that a deadlock occurred during the execution, and we simply abort the whole

transaction. We maintain snapshots of the configuration after every transaction execution, so we

simply revert to the previous valid blockchain state. It is the user’s responsibility to issue a new

transaction that does not deadlock. In the future, we also plan to employ deadlock prevention

techniques [Balzer et al. 2019] to statically rule out deadlocks.

10 OTHER RELATEDWORK
We classify the related work into 3 categories - i) new programming languages for smart contracts, ii)

static analysis techniques for existing languages and bytecode, and iii) session-typed and type-based

resource analysis systems technically related to Nomos.

Smart Contract Languages. Existing smart contracts on Ethereum are predominantly imple-

mented in Solidity [Auc 2016], a statically typed object-oriented language influenced by Python and

Javascript. Languages like Vyper [Vyp 2018] address resource usage by disallowing recursion and

infinite-length loops, thus making estimation of gas usage decidable. However, both languages still

suffer from re-entrancy vulnerabilities. Bamboo [Bam 2018], on the other hand, makes state transi-

tions explicit and avoids re-entrance by design. In contrast to our work, none of these languages

use linear type systems to track assets stored in a contract.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

Resource-Aware Session Types 1:25

Domain specific languages have also been designed for other blockchains apart from Ethereum.

Typecoin [Crary and Sullivan 2015] uses affine logic to solve the peer-to-peer affine commitment

problem using a generalization of Bitcoin where transactions deal in types rather than numbers.

Although Typecoin does not provide a mechanism for expressing protocols, it also uses a linear type

system to prevent resources from being discarded or duplicated. Rholang [Rho 2018] is formally

modeled by the ρ-calculus, a reflective higher-order extension of the π -calculus. Michelson [Mic

2018] is a purely functional stack-based language that has no side effects. However, none of these

languages describe and enforce communication protocols statically. Scilla [Sergey et al. 2019] is an

intermediate-level language where contracts are structured as communicating automata providing

a continuation-passing style computational model to the language semantics. Scilla does not use

session types or linearity but features static gas bounds. A difference is that Nomos’ bounds are

not asymptotic and are proved sound with respect to a cost semantics. The Move programming

language from Facebook [Blackshear et al. 2019] is a flexible language based on Rust [Klabnik and

Nichols 2018] to implement contracts on the Libra blockchain. Similar to Nomos, it provides the

ability to define custom linear types to represent assets. However, it does not provide support to

express contract protocols or gas usage.

Static Analysis. Analysis of smart contracts has received substantial attention [Grishchenko

et al. 2018; Tikhomirov et al. 2018] recently due to their security vulnerabilities [Atzei et al.

2017; Tsankov et al. 2018]. KEVM [Hildenbrandt et al. 2018] creates a program verifier based on

reachability logic that given an EVM program and specification, tries to automatically prove the

corresponding reachability theorems. However, the verifier requires significant manual intervention,

both in specification and proof construction. Oyente [Luu et al. 2016] is a symbolic execution tool

that checks for 4 kinds of security bugs in smart contracts: transaction-order dependence, timestamp

dependence, mishandled exceptions and re-entrancy vulnerabilities. MadMax [Grech et al. 2018]

automatically detects gas-focused vulnerabilities with high confidence. The analysis is based on a

decompiler that extracts control and data flow information from EVM bytecode, and a logic-based

analysis specification that produces a high-level program model. Bhargavan et al. [2016] translate

Ethereum contracts to F* to prove runtime safety and functional correctness, although they do not

support all syntactic features. VeriSol [Lahiri et al. 2018] is a highly-automated formal verifier for

Solidity that can produce proofs as well as counterexamples and proves semantic conformance of

smart contracts against a state machine model with access-control policy. However, in contrast

to Nomos, where guarantees are proved by a soundness proof of the type system, static analysis

techniques often do not explore all program paths, can report false positives that need to be

manually filtered, and miss bugs due to timeouts and other sources of incompleteness.

Session types andResource analysis. Session types were introduced byHonda [Honda 1993] as
a typed formalism for inter-process dyadic interaction. They have been integrated into a functional

language in prior work [Toninho et al. 2013]. However, this integration does not account for

resource usage or sharing. Sharing in session types has also been explored in prior work [Balzer

and Pfenning 2017], but with the strong restriction that shared processes cannot rely on linear

resources that we lift in Nomos. Shared session types were also never integrated with a functional

layer or tracked for resource usage. While we consider binary session types that express local

interactions, global protocols can be expressed using multi-party session types [Honda et al. 2008;

Scalas and Yoshida 2019]. Automatic amortized resource analysis (AARA) has been introduced as

a type system to derive linear [Hofmann and Jost 2003] and polynomial bounds [Hoffmann et al.

2017] for functional programming languages. Resource usage has also previously been explored

separately for the purely linear process layer [Das et al. 2018a,b], but was never combined with

shared session types or integrated with the functional layer.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

1:26 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

11 CONCLUSION
We have described the programming language Nomos, its type-theoretic foundation, a prototype

implementation and evaluated its feasibility on several real world smart contract applications.

Nomos builds on linear logic, shared session types, and automatic amortized resource analysis to

address the challenges that programmers are faced with when implementing digital contracts. Our

main contributions are the design and implementation of Nomos’ multi-layered resource-aware

type system and its type soundness proof.

In future work, we plan to explore refinement session types [Das and Pfenning 2020] for ex-

pressing and verifying functional correctness of contracts against their specifications. We also plan

to target open questions regarding a blockchain integration. These include the exact cost model,

fluctuation of gas prices, and potential compilation to a lower-level language. Since Nomos has a

concurrent semantics, we also plan to support parallel execution of transactions using speculation

techniques [Saraph and Herlihy 2019] and evaluate the corresponding speed-up.

REFERENCES
2016. Solidity by Example. https://solidity.readthedocs.io/en/v0.3.2/solidity-by-example.html. Accessed: 2018-11-04.

2017. Ether.Camp’s HKG Token Has A Bug And Needs To Be Reissued. https://www.ethnews.com/

ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued. Accessed: 2019-02-25.

2018. Bamboo. https://github.com/cornellblockchain/bamboo. Accessed: 2018-11-04.

2018. ERC20 Token Standard. https://theethereum.wiki/w/index.php/ERC20_Token_Standard. Accessed: 2018-02-027.

2018. The Michelson Language. https://www.michelson-lang.com/. Accessed: 2018-11-04.

2018. Rholang. https://github.com/rchain/Rholang. Accessed: 2018-11-04.

2018. Vyper. https://vyper.readthedocs.io/en/latest/index.html. Accessed: 2018-11-04.

2018. Welcome to Liquidity’s documentation! http://www.liquidity-lang.org/doc/index.html. Accessed: 2018-11-04.

2019. Nomos Implementation. link to repository removed for double blind review. Accessed: 2019-11-11.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks on Ethereum Smart Contracts (SoK). In Princi-
ples of Security and Trust - 6th International Conference, POST 2017. 164–186. https://doi.org/10.1007/978-3-662-54455-6_8

Martin Avanzini, Ugo Dal Lago, and Georg Moser. 2015. Analysing the Complexity of Functional Programs: Higher-order

Meets First-order. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP
2015). ACM, New York, NY, USA, 152–164. https://doi.org/10.1145/2784731.2784753

Stephanie Balzer and Frank Pfenning. 2017. Manifest Sharing with Session Types. Proceedings of the ACM on Programming
Languages (PACMPL) 1, ICFP (2017), 37:1–37:29.

Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest Deadlock-Freedom for Shared Session Types.

(2019). 28th European Symposium on Programming (to appear).

P. N. Benton. 1994. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models. In 8th International Workshop on
Computer Science Logic (CSL) (Lecture Notes in Computer Science), Vol. 933. Springer, 121–135. An extended version

appeared as Technical Report UCAM-CL-TR-352, University of Cambridge.

Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi,

Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. Formal

Verification of Smart Contracts: Short Paper. In Proceedings of the 2016 ACM Workshop on Programming Languages and
Analysis for Security (PLAS ’16). ACM, New York, NY, USA, 91–96. https://doi.org/10.1145/2993600.2993611

Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Dario Russi

Rain, Stephane Sezer, et al. 2019. Move: A language with programmable resources.

Christian Cachin. 2016. Architecture of the hyperledger blockchain fabric. In Workshop on Distributed Cryptocurrencies and
Consensus Ledgers, Vol. 310.

Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In 21st International Conference
on Concurrency Theory (CONCUR). Springer, 222–236.

Quentin Carbonneaux, Jan Hoffmann, Thomas Reps, and Zhong Shao. 2017. Automated Resource Analysis with Coq Proof

Objects. In 29th International Conference on Computer-Aided Verification (CAV’17).
Iliano Cervesato and Andre Scedrov. 2009. Relating state-based and process-based concurrency through linear logic

(full-version). Information and Computation 207, 10 (2009), 1044 – 1077. https://doi.org/10.1016/j.ic.2008.11.006 Special

issue: 13th Workshop on Logic, Language, Information and Computation (WoLLIC 2006).

Ezgi Cicek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017. Relational Cost Analysis. In 44th
Symposium on Principles of Programming Languages (POPL’17).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://solidity.readthedocs.io/en/v0.3.2/solidity-by-example.html
https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued
https://www.ethnews.com/ethercamps-hkg-token-has-a-bug-and-needs-to-be-reissued
https://github.com/cornellblockchain/bamboo
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://www.michelson-lang.com/
https://github.com/rchain/Rholang
https://vyper.readthedocs.io/en/latest/index.html
http://www.liquidity-lang.org/doc/index.html
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1016/j.ic.2008.11.006

Resource-Aware Session Types 1:27

Karl Crary and Michael J. Sullivan. 2015. Peer-to-peer Affine Commitment Using Bitcoin. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15). ACM, New York, NY, USA, 479–488.

https://doi.org/10.1145/2737924.2737997

Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. 2015. Denotational Cost Semantics for Functional Languages with

Inductive Types. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP
2015). ACM, New York, NY, USA, 140–151. https://doi.org/10.1145/2784731.2784749

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018a. Parallel Complexity Analysis with Temporal Session Types. In 23rd
International Conference on Functional Programming (ICFP’18).

Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018b. Work Analysis with Resource-Aware Session Types. In 33rd
ACM/IEEE Symposium on Logic in Computer Science (LICS’18).

Ankush Das and Frank Pfenning. 2020. Session Types with Arithmetic Refinements and Their Application to Work Analysis.

arXiv:cs.PL/2001.04439

Simon Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus. Acta Informatica 42, 2 (01 Nov 2005),
191–225. https://doi.org/10.1007/s00236-005-0177-z

Jean-Yves Girard. 1987. Linear Logic. Theoretical Computer Science 50 (1987), 1–102.
L.M Goodman. 2014. Tezos — a self-amending crypto-ledger. https://tezos.com/static/papers/white_paper.pdf.

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. MadMax:

Surviving Out-of-gas Conditions in Ethereum Smart Contracts. Proc. ACM Program. Lang. 2, OOPSLA, Article 116 (Oct.
2018), 27 pages. https://doi.org/10.1145/3276486

Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. Foundations and Tools for the Static Analysis of Ethereum

Smart Contracts. In Computer Aided Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer International

Publishing, Cham, 51–78.

Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian, Dwight Guth, Brandon Moore, Yi

Zhang, Daejun Park, Andrei Stefănescu, and Grigore Rosu. 2018. KEVM: A Complete Semantics of the Ethereum Virtual

Machine. In 2018 IEEE 31st Computer Security Foundations Symposium. IEEE, 204–217.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2011. Multivariate Amortized Resource Analysis. In 38th Symposium on
Principles of Programming Languages (POPL’11).

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In 44th
Symposium on Principles of Programming Languages (POPL’17).

Martin Hofmann and Steffen Jost. 2003. Static Prediction of Heap Space Usage for First-Order Functional Programs. In 30th
ACM Symp. on Principles of Prog. Langs. (POPL’03).

Kohei Honda. 1993. Types for Dyadic Interaction. In 4th International Conference on Concurrency Theory (CONCUR). Springer,
509–523.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for Structured

Communication-Based Programming. In 7th European Symposium on Programming (ESOP). Springer, 122–138.
Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchronous Session Types. In 35th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL). ACM, 273–284.

Blockchain Insurance Industry Initiative. 2008. B3i. (2008).

Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. 2010. Static Determination of Quantitative

Resource Usage for Higher-Order Programs. In 37th ACM Symp. on Principles of Prog. Langs. (POPL’10).
Steve Klabnik and Carol Nichols. 2018. The Rust Programming Language. No Starch Press, USA.

Ugo Dal Lago and Marco Gaboardi. 2011. Linear Dependent Types and Relative Completeness. In 26th IEEE Symp. on Logic
in Computer Science (LICS’11).

Shuvendu K. Lahiri, Shuo Chen, Yuepeng Wang, and Isil Dillig. 2018. Formal Specification and Verification of Smart

Contracts for Azure Blockchain. CoRR abs/1812.08829 (2018). arXiv:1812.08829 http://arxiv.org/abs/1812.08829

Angwei Law. 2017. Smart contracts and their application in supply chain management. Ph.D. Dissertation. Massachusetts

Institute of Technology.

Christopher Lidbury and Alastair F. Donaldson. 2019. Sparse Record and Replay with Controlled Scheduling. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2019). ACM, New

York, NY, USA, 576–593. https://doi.org/10.1145/3314221.3314635

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM, New York,

NY, USA, 254–269. https://doi.org/10.1145/2976749.2978309

Vincenzo Morabito. 2017. Smart contracts and licensing. In Business Innovation Through Blockchain. Springer, 101–124.
Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. http://bitcoin.org/bitcoin.pdf.

Frank Pfenning and Dennis Griffith. 2015. Polarized Substructural Session Types. In 18th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS). Springer, 3–22.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/2737924.2737997
https://doi.org/10.1145/2784731.2784749
http://arxiv.org/abs/cs.PL/2001.04439
https://doi.org/10.1007/s00236-005-0177-z
https://tezos.com/static/papers/white_paper.pdf
https://doi.org/10.1145/3276486
http://arxiv.org/abs/1812.08829
http://arxiv.org/abs/1812.08829
https://doi.org/10.1145/3314221.3314635
https://doi.org/10.1145/2976749.2978309
http://bitcoin.org/bitcoin.pdf

1:28 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM Trans. Program. Lang. Syst. 22, 1 (Jan. 2000), 1–44.
https://doi.org/10.1145/345099.345100

Francois Pottier and Yann Régis-Gianas. 2019. Menhir Reference Manual.
Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. 2018. Adjoint Logic. Technical Report. Carnegie Mellon

University.

Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. 2017. Monadic Refinements for Relational

Cost Analysis. Proc. ACM Program. Lang. 2, POPL (2017).

Jason Reed. 2009. A Judgmental Deconstruction of Modal Logic. (January 2009). http://www.cs.cmu.edu/~jcreed/papers/

jdml.pdf Unpublished manuscript.

Michiel Ronsse and Koen De Bosschere. 1999. RecPlay: A Fully Integrated Practical Record/Replay System. ACM Trans.
Comput. Syst. 17, 2 (May 1999), 133–152. https://doi.org/10.1145/312203.312214

Vikram Saraph and Maurice Herlihy. 2019. An Empirical Study of Speculative Concurrency in Ethereum Smart Contracts.

CoRR abs/1901.01376 (2019). arXiv:1901.01376 http://arxiv.org/abs/1901.01376

Alceste Scalas and Nobuko Yoshida. 2019. Less is More: Multiparty Session Types Revisited. Proc. ACM Program. Lang. 3,
POPL, Article 30 (Jan. 2019), 29 pages. https://doi.org/10.1145/3290343

Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao. 2019. Safer

Smart Contract Programming with Scilla. Proc. ACM Program. Lang. 3, OOPSLA, Article 185 (Oct. 2019), 30 pages.

https://doi.org/10.1145/3360611

David Siegel. 2016. Understanding The DAO Hack for Journalists. https://medium.com/@pullnews/

understanding-the-dao-hack-for-journalists-2312dd43e993.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov. 2018. SmartCheck: Static

Analysis of Ethereum Smart Contracts. In 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB). 9–16.

Bernardo Toninho, Luís Caires, and Frank Pfenning. 2013. Higher-Order Processes, Functions, and Sessions: a Monadic

Integration. In 22nd European Symposium on Programming (ESOP). Springer, 350–369.
Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin Vechev. 2018. Securify:

Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18). Association for Computing Machinery, New York, NY, USA, 67–82. https://doi.org/

10.1145/3243734.3243780

Philip Wadler. 2012. Propositions as Sessions. In 17th ACM SIGPLAN International Conference on Functional Programming
(ICFP). ACM, 273–286.

Gavin Wood. 2014. Ethereum: A secure decentralized transaction ledger. http://gavwood.com/paper.pdf.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.

https://doi.org/10.1145/345099.345100
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf
https://doi.org/10.1145/312203.312214
http://arxiv.org/abs/1901.01376
http://arxiv.org/abs/1901.01376
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3360611
https://medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993
https://medium.com/@pullnews/understanding-the-dao-hack-for-journalists-2312dd43e993
https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 Nomos by Example
	3 Base System of Session Types
	4 Sharing Contracts
	5 Adding a Functional Layer
	6 Tracking Resource Usage
	7 Type Soundness
	8 Implementation and Evaluation
	8.1 Case Studies
	8.2 Experimental Evaluation

	9 Blockchain Integration
	10 Other Related Work
	11 Conclusion
	References

