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Programming digital contracts comes with unique challenges, which include (i) expressing and enforcing
protocols of interaction, (ii) controlling resource usage, and (iii) preventing the duplication or deletion of a
contract’s assets. This article presents the design and type-theoretic foundation of Nomos, a programming
language for digital contracts that addresses these challenges. To express and enforce protocols, Nomos
is based on shared binary session types. To control resource usage, Nomos employs automatic amortized
resource analysis. To prevent the duplication or deletion of assets, Nomos uses a linear type system. A monad
integrates the effectful session-typed language with a general-purpose functional language. Nomos’ prototype
implementation features linear-time type checking and efficient type reconstruction that includes automatic
inference of resource bounds via off-the-shelf linear optimization. The effectiveness of the language is evaluated
with case studies about implementing common smart contracts such as auctions, elections, and currencies.
Nomos is completely formalized, including the type system, a cost semantics, and a transactional semantics to
instantiate Nomos contracts on a blockchain. The type soundness proof ensures that protocols are followed at
run-time and that types establish sound upper bounds on the resource consumption, ruling out re-entrancy
attacks and out-of-gas vulnerabilities.

1 INTRODUCTION

Digital contracts are programs that implement the execution of a contract. With the rise of
blockchains and cryptocurrencies such as Bitcoin [Nakamoto 2008], Ethereum [Wood 2014], and
Tezos [Goodman 2014], digital contracts have become popular in the form of smart contracts, which
provide potentially distrusting parties with programmable money and a distributed consensus mech-
anism. Smart contracts are used to implement auctions [Auc 2016], investment instruments [Siegel
2016], insurance agreements [Initiative 2008], supply chain management [Law 2017], and mortgage
loans [Morabito 2017]. They hold the promise to lower cost, increase fairness, and expand access to
the financial infrastructure.

Many of today’s prominent smart contract languages suffer from security vulnerabilities, which
have severe financial consequences. A well-known example is the attack on The DAO [Siegel 2016],
resulting in a $60 million theft by exploiting a contract re-entrancy vulnerability. Smart contract
languages have been typically derived from existing general-purpose languages [Auc 2016; Liq 2018;
Cachin 2016] and fail to accommodate the domain-specific requirements of digital contracts. These
requirements are: (i) expressing and enforcing protocols of interaction, (ii) controlling resource (or
gas) usage, and (iii) preventing duplication or deletion of a contract’s assets.

This article presents the design, type-theoretic foundation, and implementation of Nomos, a language
for digital contracts accommodating these requirements by construction.

To express and enforce the protocols underlying a contract, Nomos is based on session types
[Caires and Pfenning 2010; Honda 1993; Honda et al. 1998, 2008; Pfenning and Griffith 2015; Toninho
et al. 2013; Wadler 2012]. Session types capture the protocols of interactions in the type, rather
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than the implementation code, and type-checking statically guarantees protocol adherence at
run-time. Delimiting the sequences of actions that must be executed atomically, session types
also prevent re-entrance into a contract in an inconsistent state. To control resource usage, Nomos
employs automatic amortized resource analysis (AARA), a type-based technique for automatically
inferring symbolic resource bounds [Carbonneaux et al. 2017; Hoffmann et al. 2011, 2017; Hofmann
and Jost 2003; Jost et al. 2010]. AARA is parametric in the cost model, allowing instantiation to
track gas usage. As a result, Nomos contracts mitigate denial-of-service attacks without being
vulnerable to out-of-gas exceptions. Moreover, resource bounds are integrated with session-typed
protocols and enable precise path-sensitive descriptions of cost that avoid gaps between worst-
case and average-case cost. To prevent duplication or deletion of assets, Nomos uses a linear type
system [Girard 1987]. The effectful session-typed language, which implements contract interfaces
and contract-to-contract communication, is integrated with a strict, general-purpose functional
language using a contextual monad.

Integrating these seemingly disparate approaches (session types, resource analysis, linearity,
and functional programming) and combining them with the different roles that arise in a digital
contract (contract, asset, transaction) in a way that the result remains consistent, presents unique
challenges. For one, both the functional as well as session-typed language use potential annotations
to bound the resource consumption, which requires care when functional values are exchanged
as messages between processes. For another, prior work on integrating shared and linear session
types [Balzer and Pfenning 2017] preclude contracts from persisting their linear assets across
transactions, a feature essential to digital contract development; a restriction that we lift in this
work. Fundamental is the use of different forms of typing judgments for expressions and processes
along with judgmental modes to distinguish the different roles in a digital contract. The modes are
essential in ensuring type safety, as they allow the expression of mode-indexed invariants on the
typing contexts and their enforcement by the typing rules.

Nomos is completely formalized, including the type system, a cost semantics, and a transactional
semantics to instantiate Nomos contracts on a blockchain. A type soundness proof ensures that
protocols are followed at run-time and that types establish sound upper bounds on the resource
consumption. Type checking is linear in the size of the program and resource bounds can be
efficiently inferred with an off-the-shelf LP solver. Efficient type checking is particularly important
if type-checking is part of contract validation and can be used for denial-of-service attacks.

To evaluate Nomos, we implemented a publicly available open-source prototype [Nom 2019] and
conducted 8 case studies implementing common smart contracts such as auctions, elections, and
currencies. Our experiments show that type-checking overhead is less than 0.7 ms for each contract
and bound inference (needed once at deployment) takes less than 10 ms. Moreover, gas bounds are
tight for most contracts. To the best of our knowledge, this is the first implementation to integrate
shared binary session types into a functional language with support for resource analysis.

To simplify programming and make Nomos accessible to digital contract developers, we incor-
porated the following design decisions: (i) we developed an intuitive surface syntax particularly
related to the contextual monad integrating session types into a functional core; (ii) we used a
bi-directional type checker with a particular focus on improving the quality of error messages
whenever a Nomos program fails to typecheck to guide the programmer to locate the source of the
error; (iii) we used an off-the-shelf LP solver to automatically infer channel modes and potential
annotations so that the burden of inference does not fall on the programmer.

Our main technical contributions are:

e design of Nomos, a language that addresses the domain-specific requirements of digital
contracts by construction;
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e a fine-tuned system of typing judgments (Section 4) that uses modes to orchestrate the sound
integration of session types (Section 3), functions (Section 5), and resource analysis (Section 6);

e extension of shared session types to store linear assets;

e resource cost amortization by allowing gas storage in internal data structures (Section 6);

o type safety proof of Nomos using a novel asynchronous cost semantics (Section 7);

e an implementation and case study of prominent blockchain applications (Section 8);

e a transactional semantics to deploy and execute Nomos contracts and transactions on a
blockchain (Section 9).

In addition, the supplementary material details the technical development, provides additional
explanations and provides the full implementation of the blockchain applications.

2 NOMOS BY EXAMPLE

This section provides an overview of the main features of Nomos based on a simple auction contract.

Explicit Protocols of Interaction. Digital contracts, like traditional contracts, follow a prede-
fined protocol. For instance, an auction contract distinguishes a bidding phase, where bidders submit
their bids, possibly multiple times, from a subsequent collection phase, where the highest bidder
receives the lot while all other bidders receive their bids back. In Solidity [Auc 2016], the bidding
phase of an auction is typically implemented as the bid function below. This function receives a bid
(msg.value) from a bidder (msg.sender) and adds it to the bidder’s total previous bids (bidValue).

function bid() public payable {

require (status == running);

bidder = msg.sender; bid = msg.value;

bidValue[bidder] = bidValue[bidder] + bid; }
To guarantee that a bid can only be placed in the bidding phase, the contract uses the state variable
status to track the different phases of a contract. The require statement tests whether the auction
is still running and thus accepts bids. It is checked at run-time and aborts the execution if the
condition is not met. It is the responsibility of the programmer to define state variables, update
them, and introduce corresponding guards.

Rather than burying the contract’s interaction protocol in implementation code by means of
state variables and run-time checks, Nomos allows the explicit expression and static enforcement
of protocols with session types. The auction’s protocol amounts to the below session type:
auction = TE<22 ® {running : &{bid : id — money —o J,Eauction, % recv bid from client

cancel : >21lfauction}, % client canceled
ended : &{collect : id —» ®&{won : lot ® lﬁauction, % client won
lost : money ® >7lfauction}, % client lost
cancel : >*! |Pauction}} % client canceled

We first focus on how the session type defines the main interactions of a contract with a bidder
and ignore the operators TS, li <, and » for now. To distinguish the two main phases an auction
can be in, the session type uses an internal choice (@), leading the contract to either send the label
running or ended, depending on whether the auction still accepts bids or not, respectively. Dual to
an internal choice is an external choice (&), which leaves the choice to the client (i.e., bidder) rather
than the provider (i.e., contract). For example, in case the auction is running, the client can choose
between placing a bid (label bid) or backing out (cancel). In the former case, the client indicates
their identifier (type id), followed by a payment (type money). Nomos session types allow transfer
of both non-linear (e.g., id) and linear assets (e.g., money), using the operators arrow (—) and (—o),
respectively. Should the auction have ended, the client can choose to check their outcome (label
collect) or back out (cancel). In the case of collect, the auction will answer with either won or lost.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2018.



1:4 Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar

In the former case, the auction will send the lot, in the latter case, it will return the client’s bid. The
linear product (®) is dual to —o and denotes the transfer of a linear value from the contract to the
client. The auction type guarantees that a client cannot collect during the running phase, while
they cannot bid during the ended phase.

Nomos uses shared session types [Balzer and Pfenning 2017] to guarantee that bidders interact
with the auction in mutual exclusion from each other and that the sequences of actions are executed
atomically. To demarcate the parts of the protocol that become a critical section, the above session
type uses the TE and li modalities. The TE modality denotes the beginning of a critical section, the
lf modality denotes its end. Programmatically, TE translates into an acquire of the auction session
and lf into its release, which is only sound if the protocol behaves like an auction afterwards
(equi-synchronizing type).

Contracts are implemented by processes, revealing the concurrent, message-passing nature of
session-typed languages. The process run below implements the auction’s running phase. Line 2
gives the process’ signature, indicating that it offers a shared session of type auction along the
channel sa and uses a linear hash map b : hashmap,y ;4 of bids indexed by id and a linear lot [. The
bid session type (line 1) can be queried for the stored identifier and bid value, and is offered by a
process (not shown) that internally stores this identifier and money. Line 4 onward list the process
body. Line 1 defines session types bid and bids, respectively.

1: stype bid = &{addr : id A bid, val : money}, stype bids = hashmap; 1,;4

2: (b : bids), (I : lot) F run :: (sa : auction) %  syntax for process declaration
3: sa—run<bl= %  syntax for process definition
4 la « accept sa ; % accept a client acquire request
5 la.running ; % auction is running

6: case la (bid = r « recv la; %  receive identifier r : id

7 m « recv la; %  receive bid m : money

8 sa « detach la ; %  detach from client

9: b’ «— addbidr «— bm; %  store bid internally

10: sa « check — b’ 1 %  check if threshold reached

11: | cancel = sa « detach la ; %  detach from client

12: sa<—run<bl) % recurse

The contract process first accepts an acquire request by a bidder (line 4) and then sends the message
running (line 5), indicating the auction status and waiting for the bidder’s choice. Should the bidder
choose to make a bid, the process waits to receive the bidder’s identifier (line 6) followed by money
equivalent to the bidder’s bid (line 7). After this linear exchange, the process leaves the critical
section by issuing a detach (line 8), matching the bidder’s release request. Internally, the process
stores the pair of the bidder’s identifier and bid in the data structure bids (line 9). The ended
protocol of the contract is governed by a different process (not shown), responsible for distributing
the bids back to the clients. The contract transitions to the ended state when the number of bidders
reaches a threshold (stored in auction). This is achieved by the check process (line 10) which checks
if the threshold has been reached and makes this transition, or calls run otherwise. Should the
bidder choose to cancel, the contract simply detaches and recurses (lines 11,12).

Re-Entrancy Vulnerabilities. A contract function is re-entrant if, once called by a user, it can
potentially be called again before the previous call has completed. As an illustration, consider the
following collect function of the auction contract in Solidity where the funds are transferred to the
bidder before the hash map is updated to reflect this change.
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function collect() public payable { function () payable {
require (status == ended); // 'auction' variable stores the
bidder = msg.sender; bid = bidValue[bidder]; // address to auction contract
bidder.send(bid); bidValue[bidder] = @; } auction.collect(); }

A bidder can now cause re-entrancy by creating a dummy contract with an unnamed fallback
function (on the right) that calls the auction’s collect function. This call is triggered when collect
calls send (last line on the left), leading to an infinite recursive call to collect, depleting all funds
from the auction. The message-passing framework of session types eliminates this vulnerability.
While session types provide multiple clients access to a contract, the acquire-release discipline
ensures that clients interact with the contract in mutual exclusion. To attempt re-entrancy, a bidder
will need to acquire the auction contract twice without releasing it.

Linear Assets. Nomos integrates a linear type system that tracks the assets stored in a process.
The type system enforces that assets are never duplicated, but only exchanged between processes.
Moreover, the type system prevents a process from terminating while it holds linear assets. For
example, the auction contract treats money and lot as linear assets, which is witnessed by the use
of the linear operators — and ® for their exchange. In contrast, no provisions to handle assets
linearly exist in Solidity, allowing such assets to be created out of thin air, duplicated, or discarded.
In the above bid function, for instance, the language does not prevent the programmer from writing
bidValue[bidder] = bid instead, losing the bidder’s previous bid.

Resource Cost. Another important aspect of digital contracts is their resource usage. On a
blockchain, executing a contract function, or transaction, requires new blocks to be added to the
blockchain. In existing blockchains like Ethereum, this is done by miners who charge a fee based on
the gas usage of the transaction, indicating the cost of its execution. Precisely computing this cost
statically is important because the sender of a transaction must pay this fee to the miners along
with sending the transaction. If the sender does not pay a sufficient amount, the transaction will be
rejected by the miners and the sender’s fee is lost!

Nomos uses resource-aware session types [Das et al. 2018b] to statically analyze the resource
cost of a transaction. They operate by assigning an initial potential to each process. This potential
is consumed by each operation that the process executes or can be transferred between processes
to share and amortize cost. The cost of each operation is defined by a cost model. If the cost model
assigns a cost to each operation as equivalent to their gas cost during execution, the potential
consumed during a transaction reflects upper bound on the gas usage.

Resource-aware session types express the potential as part of the session type using the operators
< and ». The < operator prescribes that the client must send potential to the contract, with the
amount of potential indicated as a superscript. Dually, > prescribes that the contract must send
potential to the client. In case of the auction contract, we require the client to pay potential for the
operations that the contract must execute, both while placing and collecting their bids. If the cost
model assigns a cost of 1 to each contract operation, then the maximum cost of an auction session
is 22 (taking the max number of operations in all branches). Thus, we require the client to send
22 units of potential at the start of a session using <*2. In the lost branch of the auction type, on
the other hand, the contract returns 7 units of potential to the client using »’. This simulates gas
usage in smart contracts, where the sender initiates a transaction with some initial gas, and the
leftover gas at the end of the transaction is returned to the sender. In contrast to existing smart
contract languages like Solidity, which provide no support for analyzing the cost of a transaction,
Nomos’ type checker has automatically inferred these potential annotations and guarantees that
well-typed transactions cannot run out of gas.
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Bringing It All Together. Combining all these features soundly in one language is challenging.
In Nomos, we achieve this by using different typing judgments and modes, identifying the role of the
process offered along that channel. The mode R denotes purely linear processes for linear assets or
private data structures, such as b and [ in the auction. The modes S and L denote sharable processes,
i.e., contracts, that are either in their shared or linear phase such as sa and la, respectively. The
mode T denotes a transaction process that can refer to shared and linear processes and is issued by
a user, such as bidder in the auction. The mode assignment carries over into the process typing
judgments imposing invariants (Definition 1) that are key to type safety. The mode annotations are
automatically inferred by the type checker relieving programmers from this burden.

3 BASE SYSTEM OF SESSION TYPES

Nomos builds on linear session types for message-passing concurrency [Caires and Pfenning
2010; Honda 1993; Honda et al. 1998, 2008; Wadler 2012] and, in particular, on the line of works
that have a logical foundation due to the existence of a Curry-Howard correspondence between
linear logic and the session-typed 7-calculus [Caires and Pfenning 2010; Wadler 2012]. Linear
logic [Girard 1987] is a substructural logic that exhibits exchange as the only structural property,
with no contraction or weakening. As a result, linear propositions can be viewed as resources that
must be used exactly once in a proof. Under the Curry-Howard correspondence, an intuitionistic
linear sequent Ay, A,, ..., A, F C can be interpreted as the offer of a session C by a process P using
the sessions Aj, As, ..., A,

(x1 : A1), (x2 : Ag), ..., (xp : Ap) F P (z2: C)

We label each antecedent as well as the conclusion with the name of the channel along which the
session is provided. The x;’s correspond to channels used by P, and z is the channel provided by P.
As is standard, we use the linear context A to combine multiple assumptions.

For the typing of processes in Nomos, we extend the above judgment with two additional contexts
(¥ and I'), a resource annotation g, and a mode m of the offered channel:

ViT; AEP:(xpy:A)
We will gradually introduce each concept in the remainder of this article. For future reference,
we show the complete typing rules, with additional contexts, resource annotations, and modes
henceforth, but highlight the parts that will be discussed in later sections in blue.

The Curry-Howard correspondence gives each connective of linear logic an interpretation as a
session type, as demonstrated by the grammar:

AB = &{t:Alex | &{t:Alpexk | A—om B|A®, B 1

Each type prescribes the kind of message that must be sent or received along a channel of that
type and at which type the session continues after the exchange. Following previous work on
session types [Pfenning and Griffith 2015; Toninho et al. 2013], the process expressions of Nomos
are defined as follows.

Pu=x.1; P|casex ({ = P)rex | close x | wait x; P|sendxw; P|y«recvx; P|x 1y

Table 1 provides an overview of the types along with their operational meaning. Because we
adopt the intuitionistic version of linear logic, session types are expressed from the point of view of
the provider. Table 1 provides the viewpoint of the provider in the first line, and that of the client
in the second line for each connective. Columns 1 and 3 describe the session type and process term
before the interaction. Similarly, columns 2 and 4 describe the type and term after the interaction.
Finally, the last column describes the provider and client action. Figure 1 provides the corresponding
typing rules. As illustrations of the statics and semantics, we explain internal choice (®) and linear
implication (—o) connectives. The complete formalization is presented in the supplement.
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Session Type  Cont. Process Term Cont. Description
c:@®{C:Apteer c:Axr ck; P P provider sends label k along ¢
case ¢ ({ = Q¢)eer Ok client receives label k along ¢
c: &{l: A} c:Ar casec({ = Ppleer  Pr provider receives label k along ¢
ck; Q 0 client sends label k along c
c:A®B c:B sendcw; P P provider sends channel w : Aonc
y<«recvce; Qy [w/y]Qy client receives channel w : Aon ¢
c:A— B c:B  yerecvce; Py [w/y]P, provider receives chan. w: Aon ¢
sendcw; Q o) client sends channel w : Aon ¢
c:1 - close ¢ - provider sends end along ¢
wait c¢; Q Q client receives end along ¢

Table 1. Overview of binary session types with their operational description

Y T;A8P:(xp: A) ‘ Process P uses linear channels in A and offers type A on channel x

VT;A¢ P (xpm: A (l€eK)
VT A x.05 P (- ©{C: Aryeck)

VT A (xm:Ar) ¥ Qp i (2 : C) (V€ € K)

oL
W5 T3 A (xm: &{€: Ar}eek) F case xm (€ = Qp)rexk (2 : C)

YT A (y,:A)F P(xy:B)
¥, T;A¢y, «—recvxy,; P:(xy:A—o, B)

—on R

YT ;A (xm:B)EQ:u(zr:0)
e
YT A (wy:A),(xm:A—o, B)¥ send xp, wy 5 Q = (2 : C)

n

=0
;] fw
VT (Ym:A)F xm — ym i (1 A)

d

Fig. 1. Selected typing rules for process communication

Internal Choice. The linear logic connective A @ B has been generalized to n-ary labeled sum
&{¢ : Ar}rek. A process that provides x : @{¢ : A¢}recx can send any label [ € K along x and then
continues by providing x : A;. The corresponding process term is written as (x./ ; P), where P is the
continuation. A client branches on the label received along x using the term case x (£ = Q¢)¢exk.
The typing rules for the provider and client are @R and @®L, respectively, in Figure 1.

The operational semantics is formalized as a system of multiset rewriting rules [Cervesato and
Scedrov 2009]. We introduce semantic objects proc(cy,, w, P) and msg(c,,, w, N) denoting process P
and message N, respectively, being provided along channel ¢ at mode m. The resource annotation w
indicates the work performed so far, the discussion of which we defer to Section 6. Communication
is asynchronous, allowing the sender (cy,.l ; P) to continue with P without waiting for [ to be
received. As a technical device to ensure that consecutive messages arrive in the order they were
sent, the sender also creates a fresh continuation channel c;, so that the message [ is actually
represented as (¢p,.l ; ¢ < cf,) (read: send [ along ¢, and continue as c}},):

(®S):  proc(cm, w,yem.l; P) > proc(c), w, (¢} /em]P), msg(cm, 0, cm.l ;5 cm < ch)
Receiving the message | corresponds to selecting branch Q; and substituting continuation ¢* for ¢:
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(®C):  msg(cm, w,em.l 5 cm — cp,), proc(di, W', case cm (£ = Qr)eex) =
proc(di, w +w’, [c;, /cm]Q1)

The message msg(cm, W, ¢m.l ; ¢m < c) is just a particular form of process, where ¢, « ¢, is
forwarding, which is explained below. Therefore, no separate typing rules for messages are needed;
they can be typed as processes [Balzer and Pfenning 2017].

Channel Passing. Nomos allows the exchange of channels over channels, also referred to as
higher-order channels. A process providing A —o, B can receive a channel of type A at mode n
and then continue with providing B. The provider process term is (y, < recv x,, ; P), where P
is the continuation. The corresponding client sends this channel using (send x,, w, ; Q). The
corresponding typing rules are presented in Figure 1. Operationally, the client creates a message
containing the channel:

(—on S) : proc(dk, w, send ¢y, e, ; P) — msg(ch,0,send ¢, €, 5 ¢, «— cm), proc(di, w, [¢},/cm]P)
The provider receives this channel, and substitutes it appropriately.

(—on C) : proc(cm, W', xn < recv ¢, 3 Q), msg(c;, w,send ¢y €y 5 ¢ < )

proc(cy,, w +w’, [c), /cm]len/xn]Q)
An important distinction from standard session types is that the — and ® types are decorated
with the mode m of the channel exchanged. Since modes distinguish the status of the channels in
Nomos, this mode decoration is necessary to ensure type safety.

Forwarding. A forwarding process x,, < y, (which provides channel x) identifies channels
x and y (both at mode m) so that any further communication along x or y occurs on the unified
channel. The typing rule fwd is given in Figure 1 and corresponds to the logical rule of identity.

(id*C):  msg(dm, w', N), proc(cm, W, cm < dm) = msg(cm, w+ W, [cm/dm]N)
(id™C):  proc(cm, W, cm — dp), msg(ex, w',N(cp,)) +—  msgler, w+ w',N(dp))
Operationally, a process ¢ «— d forwards any message N that arrives along d to ¢ and vice versa.

Since linearity ensures that every process has a unique client, forwarding results in terminating
the forwarding process and corresponding renaming of the channel in the client process.

Process and Type Definitions. Process definitions have the form ¥ ; T ; A¥ f =P :: (x, : A)
where f is the name of the process and P its definition. All definitions are collected in a fixed global
signature ¥. We require well-typedness, i.e., ¥ ; T'; A ¥ f = P :: (x,, : A) for every definition,
which allows the definitions to be mutually recursive. For readability of the examples, we break
a definition into two declarations, one providing the type (on the left) and the other the process
definition (on the right) binding the variables x;,, and those in ¥, I" and A (omitting their types):

\I’;F;Aﬂsz::(xm:A) Xme— fP¥«<T;A=P

A new instance of a defined process f can be spawned with the expression x,, < f y; <732 ; Q
where 77 is a sequence of functional variables matching the antecedents ¥ and 7; is a sequence of
channels matching the antecedents I' ; A. The newly spawned process will use all variables in 3y
and channels in y; and provide x, to the continuation Q. The operational semantics is defined by
(defC) : proc(ck, w, X, «— f de—¢e; Q)

proc(am, 0, [am/Xm,d/¥,€/T A]P), proc(ck, W, [am/xm]Q)

where a, is a fresh channel. Here we write [d/¥] and [¢/T A] to denote substitution of the variables
in d and e for the corresponding variables in ¥ and I" ; A respectively in that order.
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Sometimes a process invocation is a tail call, written without a continuation as x,,, « f 71 < 7.
This is a short-hand for x,, « f y1 < Yz ; x,, < x,, for a fresh variable x/,, that is, we create a
fresh channel and immediately identify it with x,, (although it is implemented more efficiently).

Session types can be naturally extended to include recursive types. For this purpose we allow
(possibly mutually recursive) type definitions X = A in the signature, where we require A to be
contractive [Gay and Hole 2005]. This means here that A should not itself be a type name. Our
type definitions are equi-recursive so we can silently replace X by A during type checking, and no
explicit rules for recursive types are needed.

4 SHARING CONTRACTS

Multi-user support is fundamental to digital contract development. Linear session types, as defined
in Section 3, unfortunately preclude such sharing because they restrict processes to exactly one
client; only one bidder for the auction, for instance (who will always win!). To support multi-user
contracts, we base Nomos on shared session types [Balzer and Pfenning 2017]. Shared session
types impose an acquire-release discipline on shared processes to guarantee that multiple clients
interact with a contract in mutual exclusion of each other. When a client acquires a shared contract,
it obtains a private linear channel along which it can communicate with the contract undisturbed
by any other clients. Once the client releases the contract, it loses its private linear channel and
only retains a shared reference to the contract.

A key idea of shared session types is to lift the acquire-release discipline to the type level.
Generalizing the idea of type stratification [Benton 1994; Pfenning and Griffith 2015; Reed 2009],
session types are stratified into a linear and shared layer with two adjoint modalities going back
and forth between them:

As o= Tf AL shared session type
AL ou= L] li As linear session types

The Tf type modality translates into an acquire, while the dual li type modality into a release.
Whereas mutual exclusion is one key ingredient to guarantee session fidelity (a.k.a. type preserva-
tion) for shared session types, the other key ingredient is the requirement that a session type is
equi-synchronizing. A session type is equi-synchronizing if it imposes the invariant on a process
to be released back to the same type at which the process was previously acquired. This is also
the key behind eliminating re-entrancy vulnerabilities since it prevents a user from interrupting an
ongoing session in the middle and initiating a new one.

Recall the process typing judgment in Nomos ¥ ; T'; A ¥ P :: (x,, : A) denoting a process P
offering service of type A along channel x at mode m. The contexts I' and A store the shared and
linear channels that P can refer to, respectively (¥ and q are explained later and thus marked in
blue in Figure 3). The stratification of channels into layers arises from a difference in structural
properties that exist for types at a mode. Shared propositions exhibit weakening, contraction and
exchange, thus can be discarded or duplicated, while linear propositions only exhibit exchange.

Allowing Contracts to Rely on Linear Assets. As exemplified by the auction contract, a digital
contract typically amounts to a process that is shared at the outset, but oscillates between shared
and linear to interact with clients, one at a time. Crucial for this pattern is the ability of a contract to
maintain its linear assets (e.g., money or lot for the auction) regardless of its mode. Unfortunately,
current shared session types [Balzer and Pfenning 2017] do not allow a shared process to rely on
any linear channels, requiring any linear assets to be consumed before becoming shared. This
precaution was logically motivated [Pruiksma et al. 2018] and also crucial for type preservation.

A key novelty of our work is to lift this restriction while maintaining type preservation. The main
concern regarding preservation is to prevent a process from acquiring its client, which would result
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AR u= O{C:Artrer | 8{C: ArYreL | 1| Am —om AR | A ®m AR | T — AR | T A AR

Al = o{C:Abrer | &{C: ALleer |11 A —om AL | An ®@m AL | T > AL TAAL| L] As
As u= Ti AL

AT n= AR

Fig. 2. Grammar for shared session types

in a cycle in the linear process tree. To this end, we factorize the process typing judgment according
to the three roles that arise in digital contract programs: contracts, transactions, and linear assets.
Since contracts are shared and thus can oscillate between shared and linear, we get 4 sub-judgments
for typing processes, each characterized by the mode of the channel being offered.

DEFINITION 1 (PROCESS TYPING). The judgment'¥ ; T'; A ¥ P :: (x,, : A) is categorized according
to mode m. This factorization imposes certain invariants on the judgment outlined below. L(A) denotes
the language generated by the grammar of A.

(1) If m = R, then (i) T is empty, (ii) for alld, € A = k =R, and (iii) A € L(AR).

(2) If m =S, then (i) foralldy € A = k =R, and (ii) A € L(Ag).

(3) If m =L, then (i) foralld, €e A = k =RV k=1L, and (ii) A € L(AL).

(4) If m =T, then A € L(Ar).

Figure 2 shows the session type grammar in Nomos. The first sub-judgment in Definition 1
is for typing linear assets. These type a purely linear process P using a purely linear context A
(types belonging to grammar Ag in Figure 2) and offering a purely linear type A along channel xp.
The mode R of the channel indicates that a purely linear session is offered. The second and third
sub-judgments are for typing contracts. The second sub-judgment shows the type of a contract
process P using a shared context I and a purely linear channel context A (judgment A purelin) and
offering shared type A on the shared channel xs. Once this shared channel is acquired by a user, the
shared process transitions to its linear phase, whose typing is governed by the third sub-judgment.
The offered channel transitions to linear mode L, while the linear context may now contain channels
at modes R or L. Finally, the fourth typing judgment types a linear process, corresponding to a
transaction holding access to shared channels I' and linear channels A, and offering at mode T.

This novel factorization upholds preservation while allowing shared contract processes to rely
on linear resources. The modes impose the ordering R < S < L < T among the linear channels
in the configuration. A process (offering a channel) at a certain mode is allowed to rely only on
processes at the same or lower mode. These are exactly the conditions imposed by Definition 1.
This introduces an implicit ordering among the linear processes depending on their mode, thus
eliminating cycles in the process tree. Relatedly, shared processes can only refer to shared channels
(at mode S) or purely linear channels (at mode R) as exemplified by the judgment A purelin in
Figure 3. Formally, A purelin denotes that for all dy € A = k = R. This ensures that a shared
contract must release all processes it has acquired before itself being released. This further enforces
an ordering in which the channels are acquired and released, thus allowing contracts to interact
with other contracts without compromising type safety.

Shared session types introduce new typing rules into our system, concerning the acquire-release
constructs (see Figure 3). In rule TE L, an acquire is applied to the shared channel xg TE A inT and
yields a linear channel x added to A when successful. A contract process can accept an acquire
request along its offering shared channel xs. After the accept is successful, the shared contract
process transitions to its linear phase, now offering along the linear channel x| (rule TE R).

The synchronous dynamics of the acquire-accept pair is

(TE C) : proc(as, ', x| < accept as ; Py, ), proc(cm, w, x| < acquire as ; Qy ) —
proc(ar, w’, Py, ), proc(cm, w, Qq,)
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¥.T; A¥ P:(xpy:A)| Process P uses shared channels in T and offers A along x.

YT A :AD)FE Q:(zm:C) S
T, (xs T} AL) s A xp «— acquire x5 3 Q =2 (2 : C) L
A purelin Y T; A9 P:(x:A) S R
T ; A¥ x. «— accept xs; P (xs :17 Ap) L
YT, (xs:As); A Q:(zy:C) S
WL

YT A (x li Ag) ¥ x5 «— release x| ; Q :: (zm : C)

A purelin VT ; AP (xs:As)
YT Algx5<—detachx|_;P::(xL:lfAs)

S
IR
Fig. 3. Typing rules corresponding to the shared layer.

This rule exploits the invariant that a contract process’ providing channel a can come at two
different modes, a linear one a, and a shared one as. The linear channel a, is substituted for the
channel variable x| occurring in the process terms P and Q.

The dual to acquire-accept is release-detach. A client can release linear access to a contract process,
while the contract process detaches from the client. The corresponding typing rules are presented
in Figure 3. The effect of releasing the linear channel x| is that the continuation Q loses access to
x1, while a new reference to xs is made available in the shared context I'. The contract, on the other
hand, detaches from the client by transitioning its offering channel from linear mode x| back to the
shared mode xs. Both right rules TE R and lﬁ R require A purelin ensuring that a shared process
releases all shared channels before themselves being released. Operationally, the release-detach
rule is inverse to the acquire-accept rule.

(lf C) : proc(ar, w’, xs « detach ai ; Py, ), proc(cm, w, xs < release ai ; Q)
proc(as, W, Pag),  proc(cm, w, Qqs)

5 ADDING A FUNCTIONAL LAYER

To support general-purpose programming patterns, Nomos combines linear channels with conven-
tional data structures, such as integers, lists, or dictionaries. To reflect and track different classes of
data in the type system, we take inspiration from prior work [Pfenning and Griffith 2015; Toninho
et al. 2013] and incorporate processes into a functional core via a linear contextual monad that
isolates session-based concurrency. To this end, we introduce a separate functional context to the
typing of a process. The linear contextual monad encapsulates open concurrent computations,
which can be passed in functional computations but also transferred between processes in the form
of higher-order processes, providing a uniform integration of higher-order functions and processes.

The types are separated into a functional and concurrent part, mutually dependent on each other.
The functional types 7 are given by the type grammar below.

T u= T—o71|7+7]|7X7]|int]|bool|Li(r)
| {Ar «— Ar}r | {As « As; Ap}s | {Ar « As; A}r

The types are standard, except for the potential annotation q € N in list type L9(r), which we
explain in Section 6, and the contextual monadic types in the last line, which are the topic of this
section. The expressivity of the types and terms in the functional layer are not important for the
development in this paper. Thus, we do not formally define functional terms M but assume that they
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¥;T; A?P:(xp:A)| Process P uses functional values in ¥, and provides A along x.

r=p+gq AZdRZD TY(‘Pl,‘IIz)
¥, P M: {A < D} W5 A Gr:A)E Qi (zr: 0)

‘I’;~;A,A'Ifo<—M<—d_R;Q::(zR:C)

{}Err

Y, (y:7); T; A¥ Pu(xp: A
‘I’;F;Algy<—recvxm;P::(xm:T—>A)

— R

r=p+gq ¥ Y (¥, ¥,) v M: ‘I’Z;F;A,(xm:A)ﬂQ::(zk:C)_)L
VT, A(xp:T—AF sendxp, M; Q:(z:C)

Fig. 4. Typing rules corresponding to the functional layer.
have the expected term formers such as function abstraction and application, type constructors, and
pattern matching. We also define a standard type judgment for the functional part of the language.
¥ I M:7 term M has type 7 in functional context ¥ (potential p discussed later)

Contextual Monad. The main novelty in the functional types are the three type formers for
contextual monads, denoting the type of a process expression. The type {Ar < Ag}r denotes a
process offering a purely linear session type Ag and using the purely linear vector of types Ag.
The corresponding introduction form in the functional language is the monadic value constructor
{cg «— P « dg}, denoting a runnable process offering along channel cg that uses channels dg, all
at mode R. The corresponding typing rule for the monad is (ignore the blue portions)

A=dg:D ¥, s ACP:(xp:A)
Y1 {xg — P —dg}: {A < D}x

The monadic bind operation implements process composition and acts as the elimination form

{}r

for values of type {Ar « AR }r. The bind operation, written as cg «— M « dr ; Q., composes the
process underlying the monadic term M, which offers along channel cg and uses channels d_R, with
Q., which uses cg. The typing rule for the monadic bind is rule {}Erg in Figure 4. The linear context
is split between the monad M and continuation Q, enforcing linearity. Similarly, the potential in
the functional context is split using the sharing judgment (Y), explained in Section 6. The shared
context I' is empty in accordance with the invariants established in Definition 1 (i), since the mode
of offered channel x is R. The effect of executing a bind is the spawn of the purely linear process
corresponding to the monad M, and the parent process continuing with Q. The corresponding
operational semantics rule (named spawngg) is given as follows:

proc(dr, w, xg < {xg < Pxr 5 < 4y} < a3 Q) > proc(cg, 0, Peg 7). proc(dr, w, [cr/xr]Q)

The above rule spawns the process P offering along a globally fresh channel cg, and using channels
a. The continuation process Q acts as a client for this fresh channel cg. The other two monadic
types correspond to spawning a shared process {As < As ; Ag}s and a transaction process
{A7 « Ag ; A}y at mode S and T, respectively. Their rules are analogous to {}Iz and {}Egg.

Value Communication. Communicating a value of the functional language along a channel is
expressed at the type level by adding the following two session types.

Au=...|t>A|TAA
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The type ¢ — A prescribes receiving a value of type r with continuation type A, while its dual
7 A A prescribes sending a value of type 7 with continuation A. The corresponding typing rules
for arrow (— R, — L) are given in Figure 4 (rules for A are inverse). Receiving a value adds it to
the functional context ¥, while sending it requires proving that the value has type 7. Semantically,
sending a value M : 7 creates a message predicate along a fresh channel ¢}, containing the value:

(— S) : proc(dk, w,send ¢, M ; P) — msg(c;,,0,send ¢,y M ; ¢}, < cp), proc(di, w, [c},/cm]P)
The recipient process substitutes M for x, and continues to offer along the fresh continuation
channel received by the message. This ensures that messages are received in the order they are

sent. The rule is formalized below.

(— C) : proc(cm, W', x < recv ¢y 5 Q), msg(ch,w,send ¢,y M ; ¢ «— cp)

proc(cy, w+w', [, /cm][M/x]Q)

Tracking Linear Assets. As an illustration, consider the type money introduced in the auction
example (Section 2). The type is an abstraction over funds stored in a process and is described as

money = &{value : int A money, % send value
add : money —ogp money, % receive money and add it
subtract : int — @{sufficient : money ®g money, % receive int, send money
insufficient : money} % funds insufficient to subtract
coins : listein } % send list of coins

The type supports querying for value, and addition and subtraction. The type also expresses
insufficiency of funds in the case of subtraction. The provider process only supplies money to
the client if the requested amount is less than the current balance, as depicted in the sufficient
label. The type is implemented by a wallet process that internally stores a linear list of coins and
an integer representing its value. Since linearity is only enforced on the list of coins in the linear
context, we trust the programmer updates the integer in the functional context correctly during
transactions. The process is typed and implemented as (modes of channels [ and m is R, skipped in
the definition for brevity)

1: (n:int); (Ig : listeoin) + wallet :: (mg : money)

20 me— walletn — 1 =

3: case m %  case analyze on label received on m
4: (value = send mn ; %  receive value, send n

5: m <« walletn « |

6: | add = m’ « recv m; % receive m’ : money to add

7: m’.value ; %  query value of m’

8: v recvm’;

9: m’.coins ; %  extract list of coins stored in m’

10: k < append «— I m’; %  append list received to internal list
11: m «— wallet (n +v) «— k

12: | subtract = n’ « recv m ; %  receive int to subtract

13: if (n’ > n) then

14: m.insufficient ; %  funds insufficient

15: m «— walletn « [

16: else

17: m.sufficient ; %  funds sufficient

18: I’ «<— removen’ < 1; % remove n’ coins from [

19: k «—recv!; % and create its own list

20: m’ «— walletn” — k; % new wallet process for subtracted funds
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21: send mm'’; %  send new money channel to client
22: m <« wallet(n—n’) « I’
23: | coins = m « I)

If the wallet process receives the message value, it sends back the integer n, and recurses (lines 4
and 5). If it receives the message add followed by a channel of type money (line 6), it queries the
value of the received money m’ (line 7), stores it in v (line 8), extracts the coins stored in m’ (line 9),
and appends them to its internal list of coins (line 10). Similarly, if the wallet process receives the
message subtract followed by an integer, it compares the requested amount against the stored
funds. If the balance is insufficient, it sends the corresponding label, and recurses (lines 14 and
15). Otherwise, it removes n’ coins using the remove process (line 18), creates a money abstraction
using the wallet process (line 20), sends it (line 21) and recurses. Finally, if the wallet receives the
message coins, it simply forwards its internal list along the offered channel.

6 TRACKING RESOURCE USAGE

Resource usage is particularly important in digital contracts: Since multiple parties need to agree
on the result of the execution of a contract, the computation is potentially performed multiple
times or by a trusted third party. This immediately introduces the need to prevent denial of service
attacks and to distribute the cost of the computation among the participating parties.

The predominant approach for smart contracts on blockchains like Ethereum is not to restrict
the computation model but to introduce a cost model that defines the gas consumption of low
level operations. Any transaction with a smart contract needs to be executed and validated before
adding it to the global distributed ledger, i.e., blockchain. This validation is performed by miners,
who charge fees based on the gas consumption of the transaction. This fee has to be estimated and
provided by the sender prior to the transaction. If the provided amount does not cover the gas cost,
the money falls to the miner, the transaction fails, and the state of the contract is reverted back.
Overestimates bear the risk of high losses if the contract has flaws or vulnerabilities.

It is not trivial to decide on the right amount for the fee since the gas cost of the contract does not
only depend on the requested transaction but also on the (a priori unknown) state of the blockchain.
Thus, precise and static estimation of gas cost facilitates transactions and reduces risks. We discuss
our approach of tracking resource usage, both at the functional and process layer.

Functional Layer. Numerous techniques have been proposed to statically derive resource
bounds for functional programs [Avanzini et al. 2015; Cicek et al. 2017; Danner et al. 2015; Lago and
Gaboardi 2011; Radicek et al. 2017]. In Nomos, we adapt the work on automatic amortized resource
analysis (AARA) [Hoffmann et al. 2011; Hofmann and Jost 2003] that has been implemented in
Resource Aware ML (RaML) [Hoffmann et al. 2017]. RaML can automatically derive worst-case
resource bounds for higher-order polymorphic programs with user-defined inductive types. The
derived bounds are multivariate resource polynomials of the size parameters of the arguments.
AARA is parametric in the resource metric and can deal with non-monotone resources like memory
that can become available during the evaluation.

As an illustration, consider the function applylnterest that iterates over a list of balances and
applies interest on each element, multiplying them by a constant c. We use tick annotations to
define the resource usage of an expression in this article. We have annotated the code to count the
number of multiplications. The resource usage of an evaluation of applylnterest b is |b|.
let applyInterest balances =

match balances with

| [1->1]

| hd::tl -> tick(1); (c*hd)::(applyInterest tl) (x consume unit potential for tick x*)
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The idea of AARA is to decorate base types with potential annotations that define a potential
function as in amortized analysis. The typing rules ensure that the potential before evaluating an
expression is sufficient to cover the cost of the evaluation and the potential defined by the return
type. This posterior potential can then be used to pay for resource usage in the continuation of the
program. For example, we can derive the following resource-annotated type.

applyInterest : L'(int) L% [%(int)
The type L!(int) denotes a list of integers assigning a unit potential to each element in the list. The
return value, on the other hand, has no potential. The annotation on the function arrow indicates
that we do not need any potential to call the function and that no constant potential is left after the
function call has returned.

In a larger program, we might want to call the function applylnterest again on the result of a
call to the function. In this case, we would need to assign the type L!(int) to the resulting list
and require L%(int) for the argument. In general, the type for the function can be described with
symbolic annotations with linear constraints between them. To derive a worst-case bound for a
function the constraints can be solved by an off-the-shelf LP solver, even if the potential functions
are polynomial [Hoffmann et al. 2011, 2017].

In Nomos, we simply adopt the standard typing judgment of AARA for functional programs.

YEM:

It states that under the resource-annotated functional context ¥, with constant potential g, the
expression M has the resource-aware type 7.

The operational cost semantics is defined by the judgment

MUV]|p

which states that the closed expression M evaluates to the value V with cost p. The type soundness
theorem states that if - I M : 7 and M || V | y then q > p.

More details about AARA can be found in the literature [Hoffmann et al. 2017; Hofmann and
Jost 2003] and the supplementary material.

Process Layer. To bound the resource usage of a process, Nomos features resource-aware session

types [Das et al. 2018b] for work analysis. Resource-aware session types describe resource contracts
for inter-process communication. The type system supports amortized analysis by assigning
potential to both messages and processes. The derived resource bounds are functions of interactions
between processes. As an illustration, consider the following resource-aware list interface from
prior work [Das et al. 2018b].
lista = ®{nil’ : 1° cons! : A % lista}
The type prescribes that the provider of a list must send one unit of potential with every cons
message that it sends. Dually, a client of this list will receive a unit potential with every cons message.
All other type constructors are marked with potential 0, and exchanging the corresponding messages
does not lead to transfer of potential.

While resource-aware session types in Nomos are equivalent to the existing formulation [Das
et al. 2018b], our version is simpler and more streamlined. Instead of requiring every message to
carry a potential (and potentially tagging several messages with 0 potential), we introduce two
new type constructors for exchanging potential.

Az=...|pA| <A
The type »" A requires the provider to pay r units of potential which are transferred to the client.
Dually, the type <" A requires the client to pay r units of potential that are received by the provider.
Thus, the reformulated list type becomes
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¥;T; A?P:(x,:A)| Process P has potential g and provides type A along channel x.

p=q+r V;T;AEP:(xy:A)
¥, T; A getxpy {r}; P (xp: <"A)

<R

g=p+r ¥,T; A(xm:A)EP:(zx:0)
VT A (xpm:<"A) ¥ pay xp, {r}; P (2 : C) )

q=p+r YT, AEP: (x: A
¥ T; Adtick(r); P (xp : A)

Fig. 5. Selected typing rules corresponding to potential.

tick

list4 = ®{nil : 1, cons : >} (A ® list4)}
The reformulation is more compact since we need to account for potential in only the typing rules
corresponding to »" A and <" A.

With all aspects introduced, the process typing judgment

ViT; AEP:(xpy:A)
denotes a process P accessing functional variables in ¥, shared channels in T, linear channels in A,
offers service of type A along channel x at mode m and stores a non-negative constant potential gq.
Similarly, the expressing typing judgment
YIPM: T

denotes that expression M has type 7 in the presence of functional context ¥ and potential p.

Figure 5 shows the rules that interact with the potential annotations. In the rule <R, process P
storing potential q receives r units along the offered channel x,, : <" A using the get construct and
the continuation executes with p = g + r units of potential. In the dual rule <L, a process storing
potential g = p + r sends r units along the channel x,, : <"A in A using the pay construct, and the
continuation remains with p units of potential. The typing rules for the dual constructor »"A are
the exact inverse. Finally, executing the tick (r) construct consumes r potential from the stored
process potential g, and the continuation remains with p = g — r units, as described in the tick rule.

The tick construct is used to simulate a cost model in Nomos. If an operation (e.g., sending a
message, calling a function, etc.) has a cost of r, this cost is simulated by inserting tick (r) just before
the operation. Then, the tick operations are the only ones that cost potential, thus simplifying
the type system. These tick operations are automatically inserted by the Nomos type checker,
using a predefined cost model that assigns a constant cost to each operation. In addition, our
implementation provides some standard cost models, for instance, that assign a unit cost to each
internal operation and sending a message.

Integration. Since both AARA for functional programs and resource-aware session types are
based on the integration of the potential method into their type systems, their combination is
natural. The two points of integration of the functional and process layer are (i) spawning a process,
and (ii) sending/receiving a value from the functional layer. Recall the spawn rule {}Erg from
Figure 4. A process storing potential r = p + g can spawn a process corresponding to the monadic
expression M, if M needs p units of potential to evaluate, while the continuation needs g units of
potential to execute. Moreover, the functional context ¥ is shared in the two premises as ¥; and
¥, using the judgment ¥ Y (¥;, ¥2). This judgment, already explored in prior work [Hoffmann
et al. 2017] describes that the base types in ¥ are copied to both ¥; and ¥, but the potential is split
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up. For instance, L9'*%(zr) Y (L% (r), L%(7)). The rule — L in Figure 4 follows a similar pattern. A
process Q storing r = p + q potential sends a monadic expression M needing p units of potential
to evaluate, and the continuation remains with g units of potential to execute. The p units of
potential are consumed to evaluate M to a value before sending since only values are exchanged at
runtime. Thus, the combination of the two type systems is smooth, assigning a uniform meaning to
potential, both for the functional and process layer. Remarkably, this technical device of exchanging
functional values can be used to exchange non-constant potential with messages. For instance,
exchanging a list [ : L9(7) will exchange q - n units of potential where n is the size of the list /.

Operational Cost Semantics. The resource usage of a process (or message) is tracked in se-
mantic objects proc(c, w, P) and msg(c, w, N) using the local counters w. This signifies that the
process P (or message N) has performed work w so far. The rules of semantics that explicitly affect
the work counter are

MUV |p
proc(cm, w, P[M]) — proc(ci, w + p1, P[V])

internal

This rule describes that if an expression M evaluates to V with cost p, then the process P[M]
depending on monadic expression M steps to P[V], while the work counter increments by g,
denoting the total number of internal steps taken by the process. At the process layer, the work
increments on executing a tick operation.

proc(cm, w, tick (¢) ; P) +— proc(cp, w + 1, P)

A new process (or message) is spawned with w = 0, and a terminating process transfers its work to
the corresponding message it interacts with before termination, thus preserving the total work
performed by the system.

7 TYPE SOUNDNESS

The main theorems that exhibit the connections between our type system and the operational cost
semantics are the usual type preservation and progress. First, Definition 1 asserts certain invariants
on process typing judgment depending on the mode of the channel offered by a process. This
mode, remains invariant, as the process evolves. This is ensured by the process typing rules, which
remarkably preserve these invariants despite being parametric in the mode.

LEMMA 1 (INVARIANTS). The typing rules on the judgment ¥ ; T ; A ¥ (x,, : A) preserve the
invariants outlined in Definition 1, i.e., if the conclusion satisfies the invariant, so do all the premises.

Configuration Typing. At run-time, a program evolves into a number of processes and mes-
sages, represented by proc and msg predicates. This multiset of predicates is referred to as a
configuration (abbreviated as Q).

Q=] Q,proc(c,w, P) | Q, msg(c,w, N)

A key question is how to type these configurations because a configuration both uses and provides
anumber of channels. The solution is to have the typing impose a partial order among the processes
and messages, requiring the provider of a channel to appear before its client. We stipulate that no
two distinct processes or messages in a well-formed configuration provide the same channel c.

The typing judgment for configurations has the form ¥ ; T IE Q :: (T'; A) defining a configura-
tion Q providing shared channels in I' and linear channels in A. Additionally, we need to track the
mapping between the shared channels and their linear counterparts offered by a contract process,
switching back and forth between them when the channel is acquired or released respectively. This
mapping, along with the type of the shared channels, is stored in I}. E is a natural number and
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stores the sum of the total potential and work as recorded in each process and message. We call E
the energy of the configuration. The supplement details the configuration typing rules.

Finally, ¥ denotes a signature storing the type and function definitions. A signature is well-
formed if (i) every type definition V = Ay is contractive [Gay and Hole 2005] and (ii) every function
definition f = M : 7 is well-typed according to the expression typing judgment = ; - I¥ M : 7.
The signature does not contain process definitions; every process is encapsulated inside a function
using the contextual monad.

THEOREM 1 (TYPE PRESERVATION).
e If a closed well-typed expression - ! M : t evaluates to a value, i.e, M || V | y, then q¢ > p and
ARV
E
o Consider a closed well-formed and well-typed configuration Q such that ¥ ; Ty E Q =: (T ; A). If the

E
configuration takes a step, i.e. Q > Q’, then there exist I/,T’ such that X ; T) F Q' = (I ; A), ie,
the resulting configuration is well-typed. Additionally, Iy C T, andT C T".

The preservation theorem is standard for expressions [Hoffmann et al. 2017]. For processes, we
proceed by induction on the operational cost semantics and inversion on the configuration and
process typing judgment.

To state progress, we need the notion of a poised process [Pfenning and Griffith 2015]. A process
proc(cm, w, P) is poised if it is trying to receive a message on c,,. Dually, a message msg(c,, w, N)
is poised if it is sending along c,,. A configuration is poised if every message or process in the
configuration is poised. Intuitively, this means that the configuration is trying to interact with
the outside world along a channel in I" or A. Additionally, a process can be blocked [Balzer and
Pfenning 2017] if it is trying to acquire a contract process that has already been acquired by some
process. This can lead to the possibility of deadlocks.

THEOREM 2 (PROGRESS). Consider a closed well-formed and well-typed configuration Q such that

E
I E Q= (T; A). Either Q is poised, or it can take a step, i.e., Q — Q’, or some process in Q is blocked
along as for some shared channel as and there is a process proc(a., w, P) € Q.

The progress theorem is weaker than that for binary linear session types, where progress
guarantees deadlock freedom due to absence of shared channels.

8 IMPLEMENTATION AND EVALUATION

We have developed an open-source prototype implementation [Nom 2019] of Nomos in OCaml.
This prototype contains a lexer and parser (929 lines of code), a type checker (2388 lines of code), a
pretty printer (451 lines of code), an LP solver interface (915 lines of code) and an interpreter (1286
lines of code) for implementing, type checking and executing Nomos programs. We also describe
our efforts to simplify programming and improve accessiblity of Nomos to developers.

Syntax. The lexer and parser for Nomos have been implemented in Menbhir [Pottier and Régis-
Gianas 2019], an LR(1) parser generator for OCaml. A Nomos program is a list of mutually recursive
type and process definitions. To visually separate out functional variables from session-typed
channels, we require that shared channels are prefixed by #, while linear channels are prefixed by
$. This avoids confusion between the two, both for the programmer and the parser. We also require
the programmer to indicate the mode of the process being defined: asset, contract or transaction,
assigning the respective modes R, S and T to the offered channel. The modes for all other channels
are inferred automatically (explained later). The initial potential {gq} of a process is marked on the
turnstile in the declaration. The syntax for definitions is
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type v = A

proc <mode> f : (x1 : T), ($c2 : A), ... [{a}- ($c : A) = M

In the context, T is the functional type for variable x1, while A is the session type for channel
$c2 and M is a functional expression implementing the process. We add syntactic sugar, such as
the forms let x = M; P and if M then P, else P,, to the process layer to ease programming. Finally,
a functional expression can enter the session type monad using {}, i.e., M = {P} where P is a
session-typed expression.

Type Checking. We implemented a bi-directional [Pierce and Turner 2000] type checker with a
specific focus on the quality of error messages, which include, for example, extent (source code
location) information for each definition and expression. The programmer provides the initial
type of each variable and channel in the declaration and the definition is checked against it, while
reconstructing the intermediate types. This helps localize the source of a type error as the point
where type reconstruction fails. Type equality is restricted to reflexivity (constant time), although
we have also implemented the standard co-inductive algorithm [Gay and Hole 2005] which is
quadratic in the size of type definitions. For all our examples, the reflexive notion of equality
was sufficient. Type checking is linear time in the size of the program, which is important in the
blockchain domain where type checking can be part of the attack surface.

Potential and Mode Inference. The potential and mode annotations are the most interesting
aspects of the Nomos type system. Since modes are associated with each channel, they are tedious
to write. Similarly, the exact potential annotations depend on the cost assigned to each operation
and is difficult to predict statically. Thus, we implemented an automatic inference algorithm for
both these annotations by relying on an off-the-shelf LP solver.

Using ideas from existing techniques for type inference for AARA [Hoffmann et al. 2017; Hofmann
and Jost 2003], we reduce the reconstruction of potential annotations to linear optimization. To this
end, Nomos’ inference engine uses the Coin-Or LP solver. In a Nomos program, the programmer
can indicate unknown potential using *. Thus, resource-aware session types can be marked with
>* and <*, list types can be marked as L*(r) and process definitions can be marked with |{*}— on
the turnstile. The mode of all the channels is marked as ‘unknown’ while parsing.

The inference engine iterates over the program and substitutes the star annotations with po-
tential variables and ‘unknown’ with mode variables. Then, the bidirectional typing rules are
applied, approximately checking the program (modulo potential and mode annotations) while also
generating linear constraints for potential annotations (see Figure 4). and mode annotations (see
Definition 1 and Figure 3). Finally, these constraints are shipped to the LP solver, which minimizes
the value of the potential annotations to achieve tight bounds. The LP solver either returns that the
constraints are infeasible, or returns a satisfying assignment, which is then substituted into the
program. The final program is pretty printed for the programmer to view and verify the potential
and mode annotations.

8.1 Case Studies

We evaluate the design of Nomos by implementing several smart contract applications and dis-
cussing the typical issues that arise. All the contracts are implemented and type checked in the
prototype implementation and the potential and mode annotations are derived automatically by
the inference engine. The cost model used for these examples assigns 1 unit of cost to every atomic
internal computation and sending of a message. We show the contract types from the implementa-
tion with the following ASCII format: i) /\ for 13, ii) \/ for |}, iii) <{q}| for <9, iv) |{q}> for »9, v)
* for A, vi) x[m] for ®,,, vii) —o[m] for —o,,.
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ERC-20 Token Standard. ERC-20 [ERC 2018] is a technical standard for smart contracts on the
Ethereum blockchain that defines a common list of standard functions that a token contract has to
implement. The majority of tokens on the Ethereum blockchain are ERC-20 compliant.

The ERC-20 token contract implements the following session type in Nomos:

type erc20token = /\ <{11}| &{

totalSupply : int * |{9}> \/ erc20token,

balanceOf : id -> int * [{8}> \/ erc2@token,

transfer : id -> id -> int -> |{@}> \/ erc20token,

approve : id -> id -> int -> |{63}> \/ erc20token,

allowance : id -> id -> int * |[{6}> \/ erc20token }

The type ensures that the token implements the protocol underlying the ERC-20 standard. To query
the total number of tokens in supply, a client sends the totalSupply label, and the contract sends
back an integer. If the contract receives the balanceOf label followed by the owner’s identifier, it
sends back an integer corresponding to the owner’s balance. A balance transfer can be initiated by
sending the transfer label to the contract followed by sender’s and receiver’s identifier, and the
amount to be transferred. If the contract receives approve, it receives the two identifiers and the
value, and updates the allowance internally. Finally, this allowance can be checked by issuing the
allowance label, and sending the owner’s and spender’s identifier.

A programmer can design their own implementation (contract) of the erc20token session type.
In our implementation, we store two hash maps, one for the balance of each account, and one for
the allowance between each pair of accounts. The contract relies on custom linear coins that are
used exclusively for exchanges among the private accounts. These coins can be minted by a special
transaction that can only be issued by the owner of the contract and that creates coins out of thin
air (consuming gas to create coins). We use a built-in type to represent a single coin, providing
custom functions to mint and burn a coin. The type for the two hash maps is described below.
type balance-map = &{ get-balance : id -> int * balance-map,

transfer : id -> id -> int -> balance-map}
type allowance-map = &{ get : id -> id -> int * allowance-map,
set : id -> id -> int -> allowance-map}

The type balance—map supports two functionalities: querying the balance value of an account by
receiving an id and responding with an int; and allowing a transfer by receiving the sender and
receiver ids and the transfer amount. In each case, the type recurses back to balance—map allowing
other users to interact with the hash map. The allowance—map type stores the allowances for each
pair of accounts, which can be queried and updated using the get and set functionalities. They have
a similar communication protocol as the balance—map.

Another implementation can use a different linear type with its own introduction and elimination
forms for minting and burning, respectively. Nomos’ linear type system enforces that the coins are
treated linearly modulo minting and burning.

Hacker Gold (HKG) Token. The HKG token is one particular implementation of the ERC-20
token specification. Recently, a vulnerability was discovered in the HKG token smart contract based
on a typographical error leading to a re-issuance of the entire token [HKG 2017]. When updating
the receiver’s balance during a transfer, instead of writing balance+=value, the programmer mis-
takenly wrote balance=+value (semantically meaning balance=value). Moreover, while testing
this error was missed, because the first transfer always succeeds (since the two statements are
semantically equivalent when balance=0. Nomos’ type system would have caught the linearity
violation in the latter statement that drops the existing balance in the recipient’s account.
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Puzzle Contract. This contract, taken from prior work [Luu et al. 2016] rewards users who
solve a computational puzzle and submit the solution. The contract allows two functions, one that
allows the owner to update the reward, and the other that allows a user to submit their solution
and collect the reward.

In Nomos, this contract is implemented to offer the type
type puzzle = /\ <{14}] &{

update : id -> money -o[R] |{@}> \/ puzzle,

submit : int * &{ success : int -> money *[R] |{5}> \/ puzzle,

failure : |{9}> \/ puzzle } }

The contract still supports the two transactions. To update the reward, it receives the update label
and an identifier, verifies that the sender is the owner, receives money from the sender, and acts
like a puzzle again. The transaction to submit a solution has a guard associated with it. First, the
contract sends an integer corresponding to the reward amount, the user then verifies that the
reward matches the expected reward (the guard condition). If this check succeeds, the user sends
the success label, followed by the solution, receives the winnings, and the session terminates. If
the guard fails, the user issues the failure label and immediately terminates the session. Thus,
acquire-release discipline along with the guarded session type guarantees that the user submitting
the solution receives their expected winnings.

Voting. The voting contract provides a ballot type in an election.
type ballot = /\ <{163}| +{
open : id -> +{ vote : id -> [{0}> \/ ballot,
novote : [{9}> \/ ballot 3},
closed : id * [{13}> \/ ballot }

This contract allows voting when the election is open by receiving the candidate’s id. To only
allow legitimate voters to cast a ballot and prevent double voting by the same voter, the contract
then checks if the voter is eligible to vote. It then replies with vote or novote depending on their
eligibility. Once the election closes (the closed label), the contract can be acquired to check the
winner of the election. We use two implementations for the contract: the first stores a counter for
each candidate that is updated after each vote is cast (voting in Table 2); the second does not use
a counter but stores potential inside the vote list that is consumed for counting the votes at the
end (voting-aa in Table 2). This stored potential is provided by the voter to amortize the cost of
counting. The type above shows the potential annotations corresponding to the latter.

Insurance. Nomos has been carefully designed to allow inter-contract communication without
compromising type safety. We illustrate this feature using an insurance contract that processes
flight delay insurance claims after verifying them with a trusted third party. The insurer and third
party verifier are implemented as separate contracts providing the following session types.
type insurer = /\ <{6}| &{

submit : claim -> +{ success : money *[R] |{@}> \/ insurer,

failure : |> \/ insurer } }
type verifier = /\ <{3}| &{
verify : claim -> +{ valid : [{0}> \/ verifier,

invalid : [{@}> \/ verifier } }
The insurer type provides the option to submit a claim by receiving it and responds with success
or failure depending upon verification of the claim. If the claim is successful, the insurer sends
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Contract LOC Defs Procs T(ms) Vars Cons I(ms) Gap

auction 176 5 10 0.558 229 730  5.225 3
ERC 20 136 4 2 0.579 161 561  4.317 6
puzzle 108 3 7 0.410 126 389  8.994 8
voting 101 3 6 0.324 109 351 3.664 0
voting-aa 101 3 7 0.346 140 457  3.926 0
insurance 56 3 2 0.299 76 224 8.289 0
escrow 85 2 2 0.404 95 321 3.816 3
bank 147 4 5 0.663 173 561  4.549 0
wallet 30 3 2 0.231 32 102  3.224 0

Table 2. Evaluation of Nomos with Case Studies. LOC = lines of code; Defs = #type definitions; Procs =
#process definitions; T (ms) = type checking time in ms; Vars = #potential and mode variables generated
during type checking; Cons = #constraints generated during type checking; | (ms) = potential and mode
inference time in ms; Gap = maximal gas bound gap.

over the reimbursement in the form of money. The verifier type provides the option to verify a
claim by receiving it and responding with valid or invalid depending on the validity of the claim.

The insurer, upon receiving a claim, acquires the verifier and sends it the claim details. If the
claim is valid, then it responds with success, sends the money and detaches from its client. If the
claim is invalid, it responds with failure and immediately detaches from its client.

8.2 Experimental Evaluation

We implemented 8 case studies in Nomos. We have already discussed the auction (Section 2), ERC
20, puzzle, voting and insurance contracts. The other case studies are:

e An escrow to exchange bonds between two parties.

e A bank account that allows users to create accounts, make deposits and withdrawals and
check their balance relying on custom linear coins.

o A wallet allowing users to store money on the blockchain.

Table 2 contains a compilation of our experiments with the case studies and the prototype imple-
mentation. The experiments were run on an Intel Core i5 2.7 GHz processor with 16 GB 1867 MHz
DDR3 memory. It presents the contract name, its lines of code (LOC), the number of type (Defs)
and process definitions (Procs), the type checking time (T (ms)), number of potential and mode
variables introduced (Vars), number of potential and mode constraints that were generated while
type checking (Cons) and the time the LP solver took to infer their values (I (ms)). The last column
describes the maximal gap between the static gas bound inferred and the actual runtime gas cost. It
accounts for the difference in the gas cost in different program paths. However, this waste is clearly
marked in the program by explicit tick instructions so the programmer is aware of this runtime
gap, based on the program path executed.

The evaluation shows that the type-checking overhead is less than a millisecond for case studies.
This indicates that Nomos is applicable to settings like distributed blockchains in which type
checking could add significant overhead and could be part of the attack surface. Type inference
is also efficient but an order of magnitude slower than type checking. This is acceptable since
inference is only performed once during deployment of the contract. Gas bounds are tight in most
cases. Loose gas bounds are caused by conditional branches with different gas cost. In practice, this
is not a major concern since the Nomos semantics tracks the exact gas cost, and a user will not be
overcharged for their transaction. Moreover, Nomos’ type system can be easily modified to only
allow contracts with tight bounds.
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Our implementation experience revealed that describing the session type of a contract crystallizes
the important aspects of its protocol. Often, subtle aspects of a contract are revealed while defining
the protocol as a session type. Once the type is defined, the implementation simply follows the type
protocol. The error messages from the type checker were helpful in ensuring linearity of assets and
adherence to the protocol. Using * for potential annotations meant we could remain unaware of the
exact gas cost of operations. The syntactic sugar constructs reduced the programming overhead
and the size of the contract implementations.

9 BLOCKCHAIN INTEGRATION

To integrate Nomos with a blockchain, we need a mechanism to (i) represent the contracts and
their addresses in the current blockchain state, (ii) create and send transactions to the appropriate
addresses, and most importantly, (iii) construct the global distributed ledger, which stores the
history of all transactions.

Nomos on a Blockchain. We assume a blockchain like Ethereum that contains a set of Nomos
contracts Cy, . . ., C, together with their type information - ; T'* ; A} KL (x& : AL). The shared
context I'’ types the shared contracts that C; refers to, and the linear context AfQ types the contract’s
linear assets. The channel name xé of a contract is its address and has to be globally unique. We
allow contracts to carry potential given by the annotation g; and the potential defined by the
annotations in Afz but the type system could easily be altered to suppress the stored potential.

These contracts form a stuck configuration (a valid virtual blockchain state) typed as

E
3 ; T E proc(xy, wi,Cy). .. proc(xg, wp, Cp) = (T 5 +)

where T = (x§ : A}), ..., (xg : A?) and E = 37 q; + w; is the total energy, that is, the sum of the
stored potential and previously performed work. To perform a transaction with a contract, a user
submits a transaction script Q (a process) that is well-typed with respect to the existing contracts:

-;F;-IQQ::(xT:I)

We mandate that the transaction offers along a channel of type 1 and terminates by sending a close
message on its offered channel. This approach enables dynamic deadlock detection (explained later)
and allows abortion of a transaction if a deadlock is detected. This script process is added to the set
of contracts and the new (closed) configuration is typed as
E+q
35T E proc(xg, wi, Cy)...proc(xt,0,Q) :: (T ; (x7: 1))

This configuration then steps according to the Nomos semantics, ending with the termination of
the script Q, leaving the configuration in a stuck state again to start a new transaction. If type
checking were too costly here, that can lead to yet another source of denial-of-service attacks. In
Nomos however, type checking is linear time in the size of the script.

A transaction script is connected to the blockchain state using a server process. This process,
named bc—server stores the entire transaction history and offers along channel bc : tx_interface
where the transaction code is received and relayed to the blockchain state. It is defined as follows.

1: type tx_code = {1} type tx_queue = list tx_code
2: stype tx_interface = tx_code — tx_interface

3: (txns : tx_queue); - ; - £ bc—server = (bc : tx_interface)
4:  bc « bc—server txns =

5 tx < recv bc ; x7 « tx ; wait xT ;

6 bc <« bc—server (tx :: txns)
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The transaction script is packaged as a value of the contextual monadic type introduced in Section 5.
For instance, the transaction Q is packaged as {xt «— Q} : {1} = tx_code. The bc—server process re-
ceives this code, spawns a process corresponding to it and waits for the transaction to terminate (line
5). Note that the transaction is required to terminate with a (close x7) message which matches with
the (wait x7) being executed by the server, ensuring the execution order of the transactions. Finally,
the latest transaction is added to the queue of transactions txns : type tx_queue = list tx_code,
and the bc—server process recurses.

A transaction can either create new contracts or update the state of existing ones. In the former
case, new contracts are added to the blockchain state, making them visible in the type of the
configuration for subsequent transactions to access. In the latter case, it acquires the contracts it
wishes to interact with, followed by an update in the contracts’ internal state and releases them.
Since the contract types are equi-synchronizing, they remain unchanged at the end of transaction
execution. This ensures that the subsequent transactions can access the same contracts at the same
type. In the future we plan to allow sub-synchronizing types that enable a client to release a contract
channel not at the same type, but a subtype. The subtype can then describe the phase of the contract.
For instance, the ended phase of auction contract will be a subtype of the running phase.

Deterministic Execution. Since blockchains rely on consensus among the miners, it is impor-
tant to ensure deterministic execution of transactions. However, Nomos semantics has one source of
non-determinism: the acquire-accept rule where an accepting contract latches on to any acquiring
transaction. One simple approach to resolve this non-determinism is to determinize the resource
scheduler based on some heuristics. Another promising approach is record-and-replay [Lidbury
and Donaldson 2019; Ronsse and De Bosschere 1999]. The miner records the order in which the
contracts are acquired in the ledger, which is then replayed by others to compute the current
blockchain state.

Deadlocks. The only language specific reason a transaction can fail is a deadlock in the transac-
tion code. Our progress theorem accounts for this possibility of deadlocks. Since a valid blockchain
state represents a stuck configuration of a particular form (only shared contracts in the configura-
tion), we verify at the end of the transaction execution if the new configuration has this form. If
not, we conclude that a deadlock occurred during the execution, and we simply abort the whole
transaction. We maintain snapshots of the configuration after every transaction execution, so we
simply revert to the previous valid blockchain state. It is the user’s responsibility to issue a new
transaction that does not deadlock. In the future, we also plan to employ deadlock prevention
techniques [Balzer et al. 2019] to statically rule out deadlocks.

10 OTHER RELATED WORK

We classify the related work into 3 categories - i) new programming languages for smart contracts, ii)
static analysis techniques for existing languages and bytecode, and iii) session-typed and type-based
resource analysis systems technically related to Nomos.

Smart Contract Languages. Existing smart contracts on Ethereum are predominantly imple-
mented in Solidity [Auc 2016], a statically typed object-oriented language influenced by Python and
Javascript. Languages like Vyper [Vyp 2018] address resource usage by disallowing recursion and
infinite-length loops, thus making estimation of gas usage decidable. However, both languages still
suffer from re-entrancy vulnerabilities. Bamboo [Bam 2018], on the other hand, makes state transi-
tions explicit and avoids re-entrance by design. In contrast to our work, none of these languages
use linear type systems to track assets stored in a contract.
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Domain specific languages have also been designed for other blockchains apart from Ethereum.
Typecoin [Crary and Sullivan 2015] uses affine logic to solve the peer-to-peer affine commitment
problem using a generalization of Bitcoin where transactions deal in types rather than numbers.
Although Typecoin does not provide a mechanism for expressing protocols, it also uses a linear type
system to prevent resources from being discarded or duplicated. Rholang [Rho 2018] is formally
modeled by the p-calculus, a reflective higher-order extension of the 7-calculus. Michelson [Mic
2018] is a purely functional stack-based language that has no side effects. However, none of these
languages describe and enforce communication protocols statically. Scilla [Sergey et al. 2019] is an
intermediate-level language where contracts are structured as communicating automata providing
a continuation-passing style computational model to the language semantics. Scilla does not use
session types or linearity but features static gas bounds. A difference is that Nomos’ bounds are
not asymptotic and are proved sound with respect to a cost semantics. The Move programming
language from Facebook [Blackshear et al. 2019] is a flexible language based on Rust [Klabnik and
Nichols 2018] to implement contracts on the Libra blockchain. Similar to Nomos, it provides the
ability to define custom linear types to represent assets. However, it does not provide support to
express contract protocols or gas usage.

Static Analysis. Analysis of smart contracts has received substantial attention [Grishchenko
et al. 2018; Tikhomirov et al. 2018] recently due to their security vulnerabilities [Atzei et al.
2017; Tsankov et al. 2018]. KEVM [Hildenbrandt et al. 2018] creates a program verifier based on
reachability logic that given an EVM program and specification, tries to automatically prove the
corresponding reachability theorems. However, the verifier requires significant manual intervention,
both in specification and proof construction. Oyente [Luu et al. 2016] is a symbolic execution tool
that checks for 4 kinds of security bugs in smart contracts: transaction-order dependence, timestamp
dependence, mishandled exceptions and re-entrancy vulnerabilities. MadMax [Grech et al. 2018]
automatically detects gas-focused vulnerabilities with high confidence. The analysis is based on a
decompiler that extracts control and data flow information from EVM bytecode, and a logic-based
analysis specification that produces a high-level program model. Bhargavan et al. [2016] translate
Ethereum contracts to F* to prove runtime safety and functional correctness, although they do not
support all syntactic features. VERISoL [Lahiri et al. 2018] is a highly-automated formal verifier for
Solidity that can produce proofs as well as counterexamples and proves semantic conformance of
smart contracts against a state machine model with access-control policy. However, in contrast
to Nomos, where guarantees are proved by a soundness proof of the type system, static analysis
techniques often do not explore all program paths, can report false positives that need to be
manually filtered, and miss bugs due to timeouts and other sources of incompleteness.

Session types and Resource analysis. Session types were introduced by Honda [Honda 1993] as
a typed formalism for inter-process dyadic interaction. They have been integrated into a functional
language in prior work [Toninho et al. 2013]. However, this integration does not account for
resource usage or sharing. Sharing in session types has also been explored in prior work [Balzer
and Pfenning 2017], but with the strong restriction that shared processes cannot rely on linear
resources that we lift in Nomos. Shared session types were also never integrated with a functional
layer or tracked for resource usage. While we consider binary session types that express local
interactions, global protocols can be expressed using multi-party session types [Honda et al. 2008;
Scalas and Yoshida 2019]. Automatic amortized resource analysis (AARA) has been introduced as
a type system to derive linear [Hofmann and Jost 2003] and polynomial bounds [Hoffmann et al.
2017] for functional programming languages. Resource usage has also previously been explored
separately for the purely linear process layer [Das et al. 2018a,b], but was never combined with
shared session types or integrated with the functional layer.
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11 CONCLUSION

We have described the programming language Nomos, its type-theoretic foundation, a prototype
implementation and evaluated its feasibility on several real world smart contract applications.
Nomos builds on linear logic, shared session types, and automatic amortized resource analysis to
address the challenges that programmers are faced with when implementing digital contracts. Our
main contributions are the design and implementation of Nomos’ multi-layered resource-aware
type system and its type soundness proof.

In future work, we plan to explore refinement session types [Das and Pfenning 2020] for ex-
pressing and verifying functional correctness of contracts against their specifications. We also plan
to target open questions regarding a blockchain integration. These include the exact cost model,
fluctuation of gas prices, and potential compilation to a lower-level language. Since Nomos has a
concurrent semantics, we also plan to support parallel execution of transactions using speculation
techniques [Saraph and Herlihy 2019] and evaluate the corresponding speed-up.
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