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Abstract
Reasoning about object-oriented programs is difficult since such
programs usually involve aliasing, and it is not easy to identify the
ways objects can relate to each other and thus to confine a pro-
gram’s heap. In this paper, we address this problem in the context of
a relationship-based programming language. In relationship-based
programming languages, relationships are first-class citizens and
allow a precise description of inter-object relationships. Relation-
ships enforce a modularization discipline that is closer to the natu-
ral modularity inherent to many problem domains and that yields,
as a result, program heaps that are DAGs. We further describe a
mechanism, member interposition, that leverages the new modu-
larization discipline and supports encapsulation of fields of shared
objects. We have implemented the described modularization disci-
pline and the mechanism of member interposition in the context of
Rumer, a relationship-based programming language with support
for contract specifications. We discuss the implications of member
interposition for the modular verification of object invariants with
an example. Relationships and interposed members provide an al-
ternative to ownership type systems.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Verification

Keywords Invariants, Ownership type systems

1. Introduction
Object-oriented programming languages have become first choice
in many application domains as they provide programmers with
useful abstractions to create large software systems. Equally im-
portant as the availability of appropriate abstractions is the abil-
ity to reason modularly about the individual components of a large
software system. Modular reasoning becomes even more important
in program verification, allowing modules to be verified indepen-
dently from each other with the guarantee that their verification
remains valid upon module composition.

The presence of aliases in object-oriented programs, however,
compromises modular reasoning considerably. Various ownership
type systems [14, 24] have been proposed to mitigate the adverse
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affect of aliases to program understanding, and they have proved
effective for a variety of tasks [9, 13, 15]. Ownership type systems
have further been successfully applied to program verification,
allowing for modular verification of object invariants [5, 18, 21].

Classical ownership type systems typically require objects to
have precisely one primary owner and thus structure the heap into
an ownership tree. Unfortunately, such systems increase the anno-
tation burden on the programmer, and furthermore, conformance
to a tree structure is often too restrictive and conflicts with many
programming idioms. More recent approaches relax some of the
classical restrictions (i.e., single ownership) [5, 11, 19] and offer
more flexibility. Of course, the gain in flexibility comes at the cost
of detailing the class interdependences [5, 11] and a limited appli-
cability [19] of the approach.

The very fact that a programming language must set-up an aux-
iliary “machinery” to support modular reasoning clearly questions
the modularization capabilities of the language. In this paper, we
investigate an alternative approach: we introduce a simple sequen-
tial programming language, Rumer, which is a representative of
a relationship-based programming language [8, 23, 25, 26, 28].
Relationship-based programming languages offer abstractions sim-
ilar to the ones found in conceptual modelling languages (e.g.,
Unified Modelling Language (UML) [16], Entity-Relationship Di-
agrams [12]), accommodating more naturally the modularity in-
herent to many problem domains. More specifically, relationship-
based programming languages support, similarly to class-based
object-oriented languages, classes to represent real-world artifacts.
In addition to classes, however, relationship-based programming
languages also support the abstraction of a relationship to represent
the possible collaborations between instances of classes. Without
first-class support, the abstraction of a relationship is typically lost
in the implementation as relationships can be represented only by
means of reference fields and methods and thus are likely to dis-
tribute across several classes.

In contrast to other relationship-based programming languages,
Rumer departs in various respects from established object-oriented
principles. In particular, Rumer does not allow objects to reference
each other. Instead, programmers must declare relationships to rep-
resent any express of interactions between objects. This treatment
enforces a modularization discipline that requires a programmer to
compose modules in a “top-down” fashion, with the resulting ob-
ject structure forming a DAG. To emphasize the changed semantics,
we use the term entity (instead of class) to denote the type construc-
tor for objects. Our language further supports a refinement mech-
anism, member interposition, that allows refinement of entities in
the context of a relationship [2]. By interposing a member into an
entity, a relationship can add those features to a participating en-
tity that are relevant to the collaboration. Interposed members are
accessible only from within the relationship, encapsulating those
entity members within the relationship.
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This paper makes the following contributions:

• the introduction of a modularization discipline in the context
of a relationship-based programming language that makes pro-
gram heaps become DAGs.

• the use of member interposition as a means to encapsulate spe-
cific properties of otherwise shared objects within relationships.

• a discussion of the implications of member interposition for the
verification of program invariants.

• a discussion of the implementation of member interposition in
our prototype compiler for the programing language Rumer.

2. Invariants over Shared State
To illustrate the issues in the verification of program invariants
over shared state, we use the example of synchronized clocks,
adapted from [5], as a running example. Figure 1 shows a corre-
sponding implementation in a Spec]-like language [4]. The pro-
gram makes use of contract specifications — method preconditions
(requires) and postconditions (ensures) as well as object in-
variants (invariant). Whereas a precondition denotes the states
in which a caller is allowed to call the method and a postcondition
denotes the state in which the implementation is allowed to termi-
nate [3], an object invariant spells out what is expected to hold of
each object’s data fields in the steady states of the object [4]. There
is no consensus among the various verification techniques what the
steady states of an object are. The Spec]programming system [4],
in particular, does not assume a visible state semantics [22], requir-
ing object invariants to hold in pre-states and post-states of method
executions, but introduces a block statement expose to delineate
the non-steady states of an object. Such expose blocks offer an ele-
gant solution to the verification of object-oriented programs in the
presence of reentrant method calls [3]. Since the treatment of reen-
trancy is orthogonal to the issue discussed in this paper and has
furthermore been tackled successfully [3], we omit the specifica-
tion of expose blocks for the discussion in this paper.

The program in Figure 1 implements the idea of clock synchro-
nization where a clock can periodically be synchronized with a
master clock by copying the time of the master clock. This modus
operandi should guarantee that the time of a particular clock is al-
ways less than or equal to the time of its master. The object invari-
ant declared in class Clock in line 31 confirms this understanding.
Unfortunately, modular reasoning about a clock’s invariant is not
possible without introducing further restrictions. As the object in-
variant of class Clock depends not only on the state of the current
object but also on the state of the object referred to by the refer-
ence master, it is susceptible to invalidation by any changes done
to the referred to object. For instance, changing the implementation
of method Tick() in class Master to decrease rather than increase
the master time will falsify the clock invariant.

At first, one might expect that ownership would solve the prob-
lem. To allow for modular verification of the clock’s invariant in
that case, field master in class Clock would need to be declared
as being part of the representation of class Clock, making Clock
the owner of Master. Doing so would certainly restore local rea-
soning, however, this setup would foil the intention of our example.
Namely, it should be possible to associate a master clock with sev-
eral clocks, preventing a clock from becoming the single owner of
a master clock.

The crux of the example is that the field time of a master clock
should be shared among several clocks while at the same time be
“controlled” by every single clock that is synchronized with that
master clock. Barnett and Naumann [4] introduce friendship to
solve this problem. Friendship is a protocol that allows invariants
expressed over shared state. In that protocol, a granting class can

1 class Master {
2 int time;
3 String location;
4

5 Master(String loc)
6 ensures time == 0;
7 { time = 0; location = loc; }
8

9 Tick(int incr)
10 requires 0 <= incr;
11 ensures old(time) <= time;
12 { time = time + incr; }
13

14 invariant 0 <= time;
15 }
16

17 class Clock {
18 int time;
19 String location;
20 Master master;
21

22 Clock(Master m, String loc)
23 ensures master == m && time == 0;
24 { master = m ; location = loc; time = 0; }
25

26 Sync()
27 ensures time == master.time;
28 { time = master.time; }
29

30 invariant
31 master != null ==> 0 <= time && time <= master.time;
32 }

Figure 1. Simple program implementing synchronized clocks in a
Spec]-like programming language.

give privileges to another friend class, allowing the invariant of
the friend class to depend on fields of the granting class. In our
example, class Master would take the place of the granting class,
whereas class Clock would take the place of the friend class. For
the protocol to work, however, both classes must be complemented
with additional specifications. For instance, a granting class must
name its friend classes and list the fields these friends depend
on, and further maintain some bookkeeping information about its
actual friends. A friend class, in turn, needs to register with a
granting class and constrain the possible updates of the fields of
the granting class it depends on.

3. Rumer in a Nutshell
Rumer is a simple sequential programming language that sup-
ports relationships as first-class citizens. In contrast to other
relationship-based programming languages and systems [8, 23, 25,
26, 28], Rumer enforces a modularization discipline that requires
a programmer to compose modules in a “top-down” fashion, with
the resulting object structure forming a DAG. Furthermore, Rumer
supports contract specifications, as present in object-oriented con-
tract languages [4, 10, 17, 20], that are checked dynamically by the
current prototype compiler.

Figure 2 shows the corresponding implementation of the run-
ning example in Rumer. Rumer supports two user-definable types:
the entity and the relationship. An entity describes the abstract char-
acteristics of objects of a particular kind. A relationship, on the
other hand, describes the abstract characteristics of the collabora-
tions between some particular objects. The program in Figure 2 de-
clares the entity Clock and the relationship SyncClocks. Whereas
the entity Clock defines the common properties of clocks, the re-
lationship SyncClocks defines a specific collaboration between
such clocks, namely the synchronization between a clock and its
master. A relationship indicates in its participants clause the
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1 entity Clock {
2 string location;
3

4 init initialize(string loc)
5 { location = loc; }
6 }
7

8 relationship SyncClocks
9 participants (Clock client, Clock server) {

10 int >client time;
11 int >server time;
12

13 init initialize()
14 ensures client.time == 0 & server.time == 0;
15 { client.time = 0; server.time = 0; }
16

17 void >server tick(int incr)
18 requires 0 <= incr;
19 ensures old(time) <= time;
20 { time = time + incr; }
21

22 void sync()
23 ensures client.time == server.time;
24 { client.time = server.time; }
25

26 invariant
27 0 <= client.time & client.time <= server.time;
28 }

Figure 2. Simple Rumer program implementing synchronized
clocks.

entity types involved in the collaboration. In the example, the col-
laboration occurs between clocks. Rumer allows a programmer to
associate role names with the entities participating in a relation-
ship. In the example, the role names client and server are used
to denote a clock and its master clock, respectively. Role names
can be used to refer to a participating object in the program text
(e.g., lines 15 and 24). Both entities and relationships can fur-
thermore declare fields and methods. For instance, entity Clock
declares the field location as well as the initialization method
initialize(). An initialization method is similar to a creation
procedure in Eiffel [20] and is only used during instance creation.
Relationship SyncClocks, on the other hand, declares the fields
time — one for each role — (see Section 4) as well as an ini-
tialization method and the methods tick() and sync(). Lastly,
Rumer also supports a code block (omitted in the example) that
plays a role similar to the“main” function in other languages and
allows the ”root” combination of relationships and entities.

Entities correspond to classes in object-oriented languages but
differ in an important aspect: an entity can declare only value type
fields1. This restriction applies similarly to relationships: a rela-
tionship can only declare value type fields, yet has access to its par-
ticipating entities through the declared role names. Limiting field
types to value types has important consequences: (i) it changes the
modularization of a program considerably since object structures
are built declaratively through relationship declarations rather than
imperatively through reference manipulations, and (ii), it prevents
cycles in the traversals of such object structures since entities can
only be reached from relationships (but not the other way around)
and since no entity nor relationship can refer to another entity or
relationship, respectively.

Figure 3 shows a schematic view of the Rumer heap for the
running example. The figure depicts the partitioning of the pro-
gram heap due to the entity and relationship declarations. Entity
instances (i.e., objects) are depicted as filled circles and relation-

1 Note that type string in Rumer is a value type and not an immutable
reference type.

ship instances are depicted as a pair of entity instances surrounded
by an ellipse. In the example, there are two partitions: one compris-
ing all instances of entity Clock and one partition comprising all
instances of relationship SyncClocks. In Rumer, these partitions
are, inspired by database technology, called extents. Such extents
are accessible to the programmer and can be queried using query
expressions similar to C] LINQ heap queries [7]. The arrows in Fig-
ure 3 indicate possible heap traversals. Using the roles client and
server one can reach a clock and a master clock object, respec-
tively, from a corresponding SyncClocks relationship instance. As
indicated by the figure, the program heap forms a DAG with entities
and relationships as nodes and role projection operators as edges.

4. Member-Level Encapsulation
This section introduces the mechanism of member interposition
and discusses its use for enforcing member-level encapsulation as
well as its implications for the verification of program invariants.

4.1 Member Interposition
The Rumer programming language supports member interposition,
a mechanism introduced in earlier work [2] that allows refining en-
tity instances in the context of a relationship. An interposed mem-
ber (i.e., field or method) declaration appears within a relation-
ship declaration like any other “regular” member and is denoted
by the ’>’ symbol. In Figure 2, interposed members are declared
in lines 10, 11, and 17. The ’>’ symbol is followed by a role name
and indicates of which participating entity the declared member
is a property. In the example, two interposed fields with the name
time are declared, whereas one is interposed into the clock play-
ing the role of a client (“clock”) and the other is interposed into
the clock playing the role of a server (“master clock”). To under-
stand the semantic difference between non-interposed relationship
members and interposed relationship members, let’s assume that
we introduce a third field called time in relationship SyncClocks
that we declare as a non-interposed member (i.e., int time). This
set-up would allow us to record not only the time of a particular
clock and the time of its associated master clock, but also the time
when the two clocks were last synchronized. In terms of Figure 3,
non-interposed relationship members can be thought of as being
associated with a relationship instance (ellipse), and thus with an
entity instance pair, whereas interposed relationship members can
be though of as being associated with an entity instance (filled cir-
cle).

Interposed members are encapsulated within their declaring re-
lationships. As a result, interposed members are accessible only
from within their defining relationships, but not from within the
entities they affect. This means further, that only the properties
defined in an entity declaration are “globally” visible and can be
shared among all the relationships the entity participates in. Ba-
sically, member interposition introduces a subtyping relation be-
tween the entity and the role the entity plays in a relationship. This
means in turn, that a role inherits the members defined by the entity
it refines, whereby an interposed member shadows any inherited
member with the same name. Let’s assume, for instance, that we
import entity Clock from a library and that this entity already de-
clares a field time. In that case, the interposed fields time declared
in relationship SyncClocks for the roles client and server,
respectively, would shadow the field time declared in the entity
Clock.

To understand the encapsulation capabilities offered by mem-
ber interposition, let’s explore whether the relationship SyncClocks
of Figure 2 could be emulated by a class in a class-based object-
oriented language. Obviously that class would need to declare ref-
erences to the participants of the relationship, namely the fields
Clock client and Clock server, respectively. Such a class
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Figure 3. Schematic view of the Rumer program heap for the synchronized clocks example.

would further need to declare a method for the initialization method
initialize() and a method for the non-interposed method
sync(). Since the class emulating the relationship maintains ref-
erences to its participants, an instance of that class represents a
relationship instance. Any member declared in that emulating class
thus represents a property of a relationship participant pair rather
than a property of a particular relationship participant. As a re-
sult, the interposed fields time and the interposed method tick()
could not be declared in the emulating class. Instead, those inter-
posed members would need to be declared in the participant class
Clock where they become no longer encapsulated by the class
emulating the relationship.

4.2 Controlling the Visibility of Changes
Noble et al. [24] have made the observation that in an object-
oriented program “aliasing per se is not the major problem —
rather, the problem is the visibility of changes caused via aliases”.
To control aliasing, it seems thus not to be necessary to categori-
cally forbid state changes, but to limit the visibility of those state
changes one cares about. Member interposition is an instrument of-
fering remedy in exactly such situations: by interposing a member
into a participant of a relationship, the visibility of that member
is local to the relationship and thus any changes to the state of that
member become fully encapsulated by the relationship. Member in-
terposition is thus not only a refinement mechanism but also a form
of alias control mechanism with regard to a participant’s properties.

Using member interposition as a mechanism to control aliasing
is appealing for a number of reasons: (i) Member interposition al-
lows for member-level encapsulation. Whereas classical alias con-
trol approaches typically rely on ownership and make the owner
own the entire object, member interposition makes the relationship
only “own” a subset of the object, namely the members it inter-
poses. As a result, member interposition enables the sharing of
“owned” objects among several relationships. (ii) Member inter-
position is a light-weight technique to alias control. Since, on the
type system level, the role that an entity plays in a relationship is
represented as a separate type that is a subtype of the entity, the pre-
vention of representation exposure can be achieved by regular type
conformance checks and does not require any special-purpose typ-
ing rules. (iii) Member interposition is a non-invasive technique.
Member-level encapsulation of entities can be achieved without
touching the entity itself, a property that eases also the integration
of library functionality.

4.3 Implications for Invariant Verification
The previous section has shown that member interposition facili-
tates modular reasoning about a relationship. This result suggests
that member interposition may also ease the modular verification
of invariants. Let’s consider again the Rumer implementation of
our running example (see Figure 2). The invariant declaration
of relationship SyncClocks (line 27) asserts that a clock’s time

(client.time) is less than or equal to the time of its associated
master clock (server.time) and that both times are non-negative.
As opposed to the invariant of class Clock in the Spec]-like im-
plementation of the running example (see Figure 1), the invariant
of relationship SyncClocks depends only on fields declared in
the relationship. The use of interposed fields in its invariant, al-
lows the relationship SyncClocks to control any updates of those
fields, guaranteeing that such updates do not invalidate the invari-
ant. Given the encapsulation of the affected fields and the post-
conditions of methods initialize(), tick(), and sync(), the
invariant of relationship SyncClocks can thus be modularly veri-
fied. In order to be amenable to modular verification, a program has
thus to meet certain well-formedness conditions. This gives raise
to the definition of an admissible invariant.

Definition 1. An invariant is admissible if it only mentions fields
that are encapsulated by the invariant declaring type.

For a relationship invariant, Definition 1 requires that the fields
occurring in the invariant declaration are either non-interposed
fields or interposed fields. This restriction rules any occurrences of
inherited entity fields out. Although not used in Figure 2, entities
can also declare invariants. Of course Definition 1 applies likewise
to entity invariants. Since an entity is, as opposed to a relationship,
self-contained, any field occurrence in an entity invariant will be
encapsulated by the entity and thus be admissible.

The invariants used in the code examples so far, constrain the
state of objects and relationship instances by delimiting their field
values. Other kinds of constraints are conceivable. In the Spec]-like
implementation of the running example (see Figure 1), an implicit
constraint on the cardinality of the synchronization collaboration
exists. By declaring field master of class Clock to be of type
Master rather than of type LinkedList<Master>, we implicitly
enforce that a clock is associated with at most one master clock.
Figure 4 shows an extended version of the Rumer implementation
of the running example, taking care of this additional constraint
explicitly in the invariant declaration.

The new invariant SyncClocks.isPartialFunction() de-
clared in line 41 of relationship SyncClocks in Figure 4 uses a
Rumer built-in predicate to test whether the target of the predicate
invocation (i.e., the extent SyncClocks) is a partial function. The
example demonstrates another consequence of Rumer’s modular-
ization discipline: the declarative nature of program construction
and thereby induced heap partitioning makes the language inher-
ently set-oriented. As a result, Rumer abstracts entity extents as
sets of objects and relationship extents as relations [2]. Requiring
the extent of relationship SyncClocks to form a partial function
precisely realizes our design intention, namely that a clock can syn-
chronize with at most one master clock.

Invariants like SyncClocks.isPartialFunction() declared
in relationship SyncClocks, are representatives of a different kind
of invariant category. As opposed to the invariant in line 40, which
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restricts the state of the participating entities, the new invariant
restricts the state of the relationship extent. In line with the termi-
nology introduced in [2], we call the former category value-based
invariants as such invariants constrain the values instances may
assume for their fields, and we call the latter category structural
invariants as such invariants constrain the occurrence of instances
in their respective extents. As indicate in Figure 4, structural invari-
ants are prefixed by the keyword extent.

Structural invariants entail new requirements with regard to
their modular verification. The underlying scheme to achieve mod-
ular reasoning, however, remains essentially the same for structural
invariants as for value-based invariants. The main idea is basically
to encapsulate any state changes within the declaring type of the in-
variant. For structural invariants this means consequently that any
additions to entity and relationship extents as well as any removals
from these extents need to be encapsulated within the entity and
relationship, respectively.

To enable modular verification of its structural invariant, the ex-
tended version of the Rumer program (see Figure 4) encapsulates
any such extent-changing operations, such as the creation of rela-
tionship instances, in method createSyncClocks(). As opposed
to the methods tick() and sync(), which are instance meth-
ods, the method createSyncClocks() is declared to be an extent
method and behaves analogously to a static method in class-based
object-oriented programming languages. The creation of a rela-
tionship tuple and its addition to its corresponding extent happen in
the body of the if statement in method createSyncClocks().
The add() operation builds the Cartesian product of the sets
passed as second and third argument, initializes each resulting
tuple as defined by the initialization method passed as first ar-
gument, and adds the tuple to the SyncClocks extent. The sec-
ond and third argument of the addition operation make use of
Rumer’s built-in querying facility to retrieve the clocks with the
indicated location. Note that method createSyncClocks() only
creates and adds a new relationship tuple if the client clock in
question has not yet been associated with a master clock (i.e., is
not yet contained in the SyncClocks extent). Provided that the
location names passed as arguments are unique (precondition),
method createSyncClocks() guarantees in turn to maintain the
structural invariant (postcondition). Given the fact that relationship
SyncClocks encapsulates any state changes within appropriate
methods, and given the fact that these methods are appropriately
annotated with pre- and postconditions, we can conclude that the
entire invariant of relationship SyncClocks can be modularly ver-
ified.

We are now in the position to update Definition 1 to include
the treatment of structural invariants. Before doing so, however, we
must briefly discuss two last issues with regard to the modular veri-
fication of structural invariants. The first issue relates to the removal
of instances from an extent. The modular verification of a structural
invariant requires not only that any removal operations are encapsu-
lated by their declaring types, but also that no entity instance can be
removed from an extent as long as the entity instance participates in
a relationship. Rumer accounts for this reservation and treats entity
removals as “scheduled for removal” requests, guaranteeing that an
entity instance is only removed from an extent once it is no longer
participating in any relationship. The second issue, lastly, relates to
the infeasibility of the modular verification of certain kinds of struc-
tural invariants. More precisely, these are invariants constraining a
relation to be total or surjective, respectively. To modularly reason
whether a relation is total or surjective, a relationship would need
to own the respective entity extent. Since entities are shared among
several relationships, however, a relationship cannot become the
owner of an entity extent. The final definition for an admissible in-
variant thus becomes:

1 entity Clock {
2 string location;
3

4 init initialize(string loc)
5 { location = loc; }
6 }
7

8 relationship SyncClocks
9 participants (Clock client, Clock server) {

10 int >client time;
11 int >server time;
12

13 init initialize()
14 ensures client.time == 0 & server.time == 0;
15 { client.time = 0; server.time = 0; }
16

17 void >server tick(int incr)
18 requires 0 <= incr;
19 ensures old(time) <= time;
20 { time = time + incr; }
21

22 void sync()
23 ensures client.time == server.time;
24 { client.time = server.time; }
25

26 extent void createSyncClocks (string clLoc, string svLoc)

27 requires

28 Clock.select(c: c.location == clLoc).count() <= 1 &

29 Clock.select(c: c.location == cvLoc).count() <= 1;

30 ensures SyncClocks.select(c_s:

31 c_s.client.location == clLoc).count() <= 1;

32 {

33 if (!(Clock.select(c: c.location == clLoc) isSubsetOf

34 SyncClocks.client)) {

35 SyncClocks.add(new SyncClocks().initialize(),

36 Clock.select(c: c.location == clLoc),

37 Clock.select(c: c.location == svLoc));}

38 }

39

40 invariant 0 <= client.time & client.time <= server.time;

41 extent invariant SyncClocks.isPartialFunction();
42 }

Figure 4. Extended version of Rumer program from Figure 2.
Added code is highlighted.

Definition 2. A value-based invariant is admissible if it only men-
tions fields that are encapsulated by the invariant declaring type. A
structural invariant is admissible if it does not impose a totality or
surjectivitiy constraint on a relationship and if all addition and re-
moval operations are encapsulated by the invariant declaring type.

From Definition 2 we can finally conclude that, using Rumer’s
enforced modularization discipline together with member-level en-
capsulation, all value-based invariants and most structural invari-
ants (all but those requiring totality or surjectivitiy of a relationship)
can be turned into admissible invariants and are thus amenable to
modular verification.

5. Implementation
We implemented a prototype compiler for Rumer that supports
member-level encapsulation through member interposition. The
current prototype compiler supports furthermore invariant declara-
tions and offers run-time monitoring of such invariants. Our com-
piler is a source-to-source compiler, using Java as the target lan-
guage.
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As the target language of the Rumer compiler is Java, the code
generator must map the language constructs of Rumer onto the
available constructs in Java. In particular, the compiler defines a
mapping from the user-definable types in Rumer, i.e., entities and
relationships, onto Java classes. This mapping relies basically on a
simplified version of the role object pattern [6], providing separate
classes for both entity and relationship declarations as well as for
entity roles to accommodate interposed members. Furthermore,
the compiler defines a set of Java classes comprising the run-time
data structures necessary to execute the target program. These are
in particular classes representing extents, sets, as well as bags
and their corresponding built-in operations (e.g., add, remove,
select, map, etc.).

The implementation of lambda functions became actually the
main technical “obstacle” to overcome since Java does not provide
inherent support for closures. As a result, the compiler emulates
closures in the generate target code using anonymous inner classes.
A well-known problem regarding the emulation of closures with
anonymous inner classes, however, is the fact that anonymous in-
ner classes do not properly close over their surrounding scope. In
particular, anonymous inner classes copy the values of any primi-
tive local variables of the surrounding scope that are accessed in the
anonymous inner class, requiring the programmer in turn to declare
such variables final. Even though for our purposes a lambda func-
tion actually does not need to change the content of a local variable
of the surrounding scope, requiring such variables to be final in gen-
eral is too restrictive as it forbids any updates of those variables.
To circumvent this restriction, the Rumer compiler introduces a
generic wrapper class for wrapping primitive values and replaces
all reads of local primitive values in anonymous inner classes with
respective getter invocations on an instance of that wrapper class.

6. Related Work
Our work intersects mainly with efforts in two separate domains:
relationship-based programming languages and ownership type
systems.

Relationship-based programming languages: While the impor-
tance of relationships as a means to model software systems dates
back approximately 20 years [1, 27], it is only recently that the sup-
port of relationships as a separate abstraction in an object-oriented
programming language has been investigated. As a result of these
efforts relationship-based programming languages [8, 23, 25, 26,
28] have emerged. Whereas existing approaches to relationship-
based programming languages rely firm on object-oriented prin-
ciples and mainly extend object-oriented languages with relation-
ship support, Rumer departs in various respects from established
object-oriented principles. The most important distinguishing fea-
tures of Rumer with regard to other relationship-based languages
are its enforced modularization discipline and its set-orientation.
Furthermore, Rumer is the only relationship-based language that
supports member interposition.

Ownership type systems: The work on ownership type systems
that is most closely related to our work is the research on the veri-
fication of ownership-based invariants [5, 18, 19, 21]. These efforts
have contributed a methodology for the verification of class-based
object-oriented programming languages equipped with contracts.
Our work differs from the work on the verification of ownership-
based invariants mainly in (i) the targeted programming language
paradigm and, more importantly, in (ii) the actually applied alias
control technique. Whereas existing approaches enforce a single
owner regime where the owner owns the entire object, our work
allows the sharing of owned objects where the owner only owns a
subset of the object’s state. The only other techniques that also drop

the single ownership restriction, is the work by Barnett and Nau-
mann [5] on friendship-based invariants and the work by Leino and
Schulte [19] on history invariants. Both techniques allow the verifi-
cation of the observer pattern but differ in applicability and entailed
restrictions. Whereas in the friendship-based approach a granting
class (subject) needs to “know” its friend (observer) classes, the
history invariant-based approach drops this restriction. This flexi-
bility, however, comes at the cost of limiting the possible evolu-
tion of the subject. Whereas in the friendship-based approach an
observer can restrict how a subject can evolve over time by spec-
ifying an appropriate update guard, in the history invariant-based
approach the subject is limited to evolve monotonically. Our work
essentially differs from friendship and history invariants in the tar-
geted programming language paradigm and in the fact that our ap-
proach does not require adapting the collaborating classes nor does
it limit the possible evolution of the subject.

7. Conclusions
This paper introduces a simple sequential programming language
with contracts, Rumer, that supports relationships as first-class cit-
izens and that enforces a modularization discipline requiring pro-
grammers to compose modules in a “top-down” fashion. The en-
forced modularization discipline has a surprising consequence: it
prevents cycles in the traversals of object structures and thus make
the program heap become a DAG. Building on the new modular-
ization discipline and a technique to refine relationship participants
(member interposition), the paper contributes a light-weight tech-
nique to alias control allowing for member-level encapsulation of
shared objects. Light-weight encapsulation based on member inter-
position furthermore facilitates modular reasoning, and the paper
discusses the implications of member interposition for the verifi-
cation of entity and relationship invariants. It turns out that thanks
to the new modularization of a program and thanks to the use of
member interposition to encapsulate the fields of an entity a rela-
tionship depends on, the major part of invariant declarations in a
Rumer program are amenable to modular verification.

Limiting field types to only value types may seem at first overly
restrictive. In developing Rumer programs so far, we have never
come across a situation where a problem was not implementable
in Rumer. We were rather confronted with the usual issue, that
comes along with any change in programming paradigm, of finding
out what the “Rumer-way” of expressing the problem would be.
To finally address this question, further experience with Rumer, in
particular on a larger scale, is necessary. The prospective benefits of
dropping reference fields from a programming language, however,
are certainly worth any investigation.
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