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1 INTRODUCTION

Binary session types [Honda 1993; Honda et al. 1998] are a type discipline for specifying protocols of
interactions in message-passing concurrent programs. Session types have turned into an active area
of research that enjoys strong theoretical and practical foundations. The theoretical foundations
include a Curry-Howard correspondence between session-typed m-calculi and linear logic [Caires
and Pfenning 2010; Wadler 2012; Caires et al. 2013; Pérez et al. 2014; Toninho et al. 2013; Lindley and
Morris 2015; Toninho 2015] and session-typed A-calculi with mainstream programming language
features [Lindley and Morris 2016b, 2017; Igarashi et al. 2017; Fowler et al. 2019]. The practical
foundations include libraries for session types in mainstream programming languages [Dezani-
Ciancaglini et al. 2006; Pucella and Tov 2008; Imai et al. 2010; Jespersen et al. 2015; Lindley and
Morris 2016a; Scalas and Yoshida 2016; Padovani 2017; Imai et al. 2019; Kokke 2019; Chen and
Balzer 2020].
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Session-typed languages come with strong guarantees: they not only enjoy type safety (a.k.a.
preservation or session fidelity) but all well-typed programs also enjoy deadlock freedom (and
consequently, global progress). The proofs of deadlock freedom are notoriously intricate and subtle
because they have to establish that the dependency structure among the threads (or processes)
and channels (or buffers) remains acyclic, even in the presence of dynamic thread spawning and
higher-order channels. Despite the intricacies of these proofs and despite the active developments
in the mechanization of the meta-theory of binary session types [Thiemann 2019; Rouvoet et al.
2020; Hinrichsen et al. 2021b; Tassarotti et al. 2017; Goto et al. 2016; Ciccone and Padovani 2020;
Castro-Perez et al. 2020; Gay and Vasconcelos 2010], a mechanized proof of deadlock freedom
for binary session types with dynamic thread and channel creation and a dynamically changing
communication topology (due to higher-order channels) is still outstanding. While the semantics of
global and local types of multiparty session types has recently been mechanized [Castro-Perez et al.
2021], and thus global properties such as deadlock freedom shown to hold, the result is confined to
a single session without dynamic thread and channel creation and without higher-order channels.

In this paper we develop a parametric proof method for deadlock freedom of concurrently
computing entities that interact via shared resources on a dynamically changing acyclic commu-
nication topology. We mechanize the proof method in the Coq proof assistant, and instantiate
it for a deadlock freedom proof for a variant of GV [Wadler 2012; Lindley and Morris 2015], a
functional language with higher-order binary linear session types. Proof mechanization has the
obvious benefit of providing the peace of mind of a machine-checked proof. Another—maybe even
more important—benefit of mechanization is that it encourages us to develop abstractions that
encapsulate the reasoning about the acyclic dependency structure of threads and channels, and
that shield us from the intricacies of a language’s operational semantics and type system.

The key ingredients that make our proof method parametric are our new notion of a connec-
tivity graph, to abstract over the dependency structure, and our meta theoretic use of separation
logic [O’Hearn et al. 2001], to link our abstract connectivity graph to the concrete language’s oper-
ational semantics and type system. A connectivity graph abstracts concurrent entities and shared
resources as vertices and their possible interactions as edges, which are labeled with protocol state.
When instantiating the connectivity graph for session types, threads and channels become vertices,
channel references become edges whose labels indicate the session type of the referenced channel.
By asserting acyclicity of the connectivity graph, circular dependencies among the concurrent
entities and shared resources are rendered impossible. This guarantees that at any moment at least
one interaction can happen (deadlock freedom) and that all channels are deallocated when the
program terminates (memory leak freedom).

Example. Before we explain the parametric aspects of our proof method, let us consider an
example program to see connectivity graphs for linear session types in action:

1 'let cl = fork (A c1', ‘ // c1': ?2(?N.End).!N. End

2 ‘let (c1',c) = receive(cl") vTI // c1': IN.End, c: ?N.End

3 :let (c,n) = receive(c); ...) // c1': IN.End, c: End

i 5 g

5 ilet c2 = fork (A c2', ‘ T // c1: '(?N.End).?N.End, c2': ?N.End
6 let ¢1 = send(c1,c2'); ‘T2 // c1: ?N.End

7 let (c1,m) = receive(cl); ...) // c1: End

. :

9 // c2: 'N.End

10 let c2 = send(c2,10); ... » // c2: End

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2021.



Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic 1:3

After both forks: After T2’s send: After T1’s receive:

?(?N).IN

Fig. 1. Connectivity graphs with run-time information for our example program (the End markers have
been elided from session types). Boxes depict threads (red boxes are blocked threads, green dotted boxes are
running threads). Blue cicles depict channels. Black edges indicate references to channel endpoints, labeled
with their session type. Red triangles reveal the waiting dependency for each reference to a channel endpoint:
either the owner of the endpoint is waiting to receive a message from the channel, or the channel is waiting
for the owner of the endpoint to initiate the next action (send or receive or close).

The main thread (T) uses the fork construct to spawn two threads (T1 and T2) with bidirectional
channels (C1 and C2) connecting them to the main thread. The endpoints c¢2 and c2' of channel C2
(created on Line 5) have session types (! N. End) and (? N. End), respectively. These dual session
types express that a number should be sent (!) over c2 and received (?) over c2'. The session types
of channel C1 (created on Line 1) are more interesting—they are higher-order. Endpoint c1 has
session type (! (?N. End). ?N. End), which expresses that first a channel of type (? N. End) should
be sent, after which a number can be received. The A-expression of thread T2 captures endpoint c1,
resulting in the ownership of c1 being transferred from thread T to thread T2.

The first picture in Figure 1 displays the connectivity graph after both forks have been executed,
but no other steps have been performed yet. The solid red boxes correspond to threads that are
blocked on a receive, while the dotted green boxes correspond to threads that can make progress.
The small black arrowheads on the edges indicate the direction of channel ownership: an edge from
a thread to a channel indicates that the thread owns an endpoint of that channel, and an edge from
a channel to a channel indicates that an endpoint of the latter channel is stored in one of the buffers
of the former channel (an edge between two threads is not possible—all references are to channels).
The red triangles denote the waiting dependency. A crucial property of the connectivity graph is
that the waiting dependency remains acyclic. Acyclicity enables us to find a thread that can make
progress by starting at any vertex and repeatedly following the red triangles. For example, when
starting at thread T1, which is blocked, we find that thread T2 can perform a step.

When we continue by letting thread T2 perform the send operation on Line 6, the send will
move the endpoint c2' into the buffer of C1. In general, the effect of the send operation on the
connectivity graph is as follows:

send(c,v)

v

On the left, thread T has ownership of the transmitted value v and the endpoint of carrier channel
C with session type ! 7. s. The value v could in general contain any number of channel references
(depicted as Cy, C,, C3), for instance when it is a pair of channels or a closure that has captured
more than one channel. On the right, we have the resulting connectivity graph that we obtain after
the send operation has been performed. The session type changes to s (i.e., the remainder of the
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protocol) and the value v gets transferred to the buffer of C, so the incoming edges of the channels
in v are changed from T to C. Note that the red waiting triangles and the information about whether
a thread is blocked is not part of the connectivity graph because it can be derived from the run-time
configuration. We therefore depict the general transformation rule without waiting triangles and
use a neutral color for threads. In our running example, the thread is T2, the channel is C1, and the
value v is the single channel C2. The second picture in Figure 1 displays the resulting connectivity
graph: the session type of T2 has advanced to (? N. End) and the incoming edge from C2 to T2 has
turned into an incoming edge from C2 to C1.

Next, we let thread T1 perform the recv operation on Line 2, which will move the endpoint out
of the buffer of channel C1 and bind it to variable c. The rule to transform the connectivity graph
for a receive operation is similar to send (the exact rule can be found in Figure 8 in §3.5). The third
picture in Figure 1 displays the resulting connectivity graph, where we see that the session type of
T1 advanced, and that the outgoing edge from C1 to C2 has turned into an outgoing edge from T1
to C2. Observe that the connectivity graph has a non-trivial structure—to find a thread that can
unblock T2, we need to follow multiple edges to end up in thread T.

Progress and preservation. As shown by the examples in Figure 1, connectivity graphs describe
the types and abstract reference topology of a program’s execution configuration, but not the
concrete expressions and values that constitute the threads and channels. To prove a property
about the operational semantics, we need to define a relation that expresses that a configuration p
is well-formed w.r.t. a connectivity graph G. With that relation at hand, we can carry out a proof in
the style of progress and preservation [Wright and Felleisen 1994; Harper 2016; Pierce 2002].

e Progress: If p is well-formed w.r.t. G, then either p is final (all threads have terminated and
all channels have been deallocated), or p can step (deadlock freedom).

e Preservation: If p is well-formed w.r.t. G, and can take a step p ~» p’ in the operational
semantics, then we can transform G into G’ so that p’ is well-formed w.r.t. G'.

It is important to point out that connectivity graphs generalize heap typings from traditional
progress and preservation proofs for type systems with mutable references [Pierce 2002; Harper
2016]. Whereas heap typings are flat (they merely give the types of channels, which suffices for type
safety), connectivity graphs additionally describe the reference topology and ensure its acyclicity
(needed for deadlock and memory leak freedom).

Connectivity graphs as a parametric proof principle. When trying to formalize the above reasoning,
we encounter two problems:

(1) Due to linear types and concurrency, it is non-trivial to formalize the well-formedness relation
of configurations w.r.t. connectivity graphs. Definitions easily end up cluttered with details
about resource separation, which burdens mechanization in a proof assistant.

(2) Proving preservation and progress involves non-trivial reasoning about graphs. For preserva-
tion we need to transform graphs (to type a post-configuration), and for progress we need to
traverse graphs (to find a thread that can step). Reasoning about graphs is difficult in a proof
assistant because graphs are not inductively defined.

To address these problems, we use separation logic [O'Hearn et al. 2001] as a meta theoretic tool
to reason about graphs. Traditionally, separation logic is used as a specification language to write
pre- and postconditions for individual programs in Hoare-style logics. Inspired by recent work that
uses separation logic to establish type safety using logical relations [Krebbers et al. 2017; Jung et al.
2018a; Hinrichsen et al. 2021b] and intrinsically-typed interpreters and compilers [Rouvoet et al.
2020, 2021], we also use separation logic but in the context of a progress and preservation proof.
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Our version of separation logic makes it possible to define the well-formedness relation in a way
that is local (i.e., talks about threads in isolation) and that hides resources. To adopt separation
logic for our connectivity graph, we must decide on what to consider as a resource. The scenarios
in Figure 1 suggest that we should consider a vertex’s outgoing edges as resources, because then a
graph transformation, such as the one induced by moving endpoint c2' into C1’s buffer, simply
amounts to an ownership transfer. To prove preservation, we distill a set of separation logic rules
for reasoning about graph transformations by simply transferring ownership of resources. To prove
progress, we distill a form of waiting induction to perform induction on the connectivity graph to
find a vertex that can perform a step.

All ingredients of our method (the definition of connectivity graph, the separation logic, the
graph transformations, and waiting induction) are parametric in the vertices, edges and labels of
the connectivity graph. This is crucial for mechanization: we can encapsulate our proof method
as a library that is independent of the concrete programming language. We use our library in
combination with the Iris Proof Mode [Krebbers et al. 2017, 2018]—which provides tactics for
separation-logic based reasoning—to effectively hide reasoning about graphs and resources in Coq.

Contributions. We present a parametric method for proving deadlock and memory leak freedom
of binary linear session-typed languages. Concretely:

e We introduce connectivity graphs as a generalization of heap typings in progress and preser-
vation proofs. In addition to typing, connectivity graphs track the reference topology.

e We show how to use separation logic in a non-standard way as a language for linking our
abstract connectivity graphs to a concrete language’s operational semantics and type system.

e We implement connectivity graphs as a library in the Coq proof assistant that is parametric
in the type of vertices and edges. Our library includes graph transformations as separation
logic rules to aid proving preservation, and a principle of waiting induction over connectivity
graphs to aid proving progress.

e We use our connectivity graph library to obtain the first mechanized proof of deadlock and
leak freedom for a binary session-typed A-calculus with higher-order channels, recursive
types, and unrestricted types.

We start by introducing our language (§2), and explain our key ideas by proving deadlock freedom
for it (§3). Next, we present the parametric aspects of our proof method (§ 4 and 5). We then add
extensions to our language, and prove a stronger deadlock and memory leak freedom property than
the conventional formulation in terms of global progress (§6), and describe our Coq mechanization
(§7). We finish with related and future work (§ 8 and 9). An archive of the Coq mechanization can be
found at Jacobs et al. [2021], and the most recent version at https://github.com/julesjacobs/cgraphs.

2 LANGUAGE AND OPERATIONAL SEMANTICS

We present the core of our session-typed A-calculus with concurrency and asynchronous bidirec-
tional channels (extensions with more features are described in §6). This language is inspired by
GV [Wadler 2012; Lindley and Morris 2015], but there are a couple of differences. First, we are more
liberal and allow both channel endpoints to be closed anytime, rather than only when a thread ter-
minates. For our proofs this extension poses no problem—it just means that our connectivity graphs
might become disconnected. Second, our operational semantics uses a flat thread pool and heap
rather than binders and structural congruences, resembling more closely a realistic implementation
of message passing. The syntax of expressions of our core language is:

ecExpri=x|()|n|(ee)|Ax.e|c|lee|letx=eine]|let() =eine]|let (x1,x2) =eine|

if e then e else e | fork(e) | send(e, e) | receive(e) | close(e)
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Pure reduction relation:
(Ax. €) v ~pure €[0/x]
let x =0 in e ~>pue e[v/x]
let () =()ine~puee
let (x1,x2) = (v1,02) ine ~pure elo1/x1][v2/x2]
if n then e; else ez ~>pyre €1 (if n # 0)
if n then e else ey ~pyre €2 (if n =0)
Head reduction relation:
(e1. 1) ~head (e2,h,€) (i €1 ~>pure €2)

(fork(v), h) ~head (#(a, 1), h ¥ {(a,0) €, (a,1) €}, [0 #(a,0)])
(if (a,0), (a, 1) ¢ dom(h))

(send(c,v), h W {C > 0}) ~opead (. hW {C > 0+ [v]}, €)
(receive(c),hW {c > [v] + 7}) ~opead ((c,0), AW {c > T}, €)
(close(c),h @ {c > €}) ~peaq (), h, €)
Global reduction relation:

(€a+ [K[e]] + ey, h) ~gopar (€a+ [K[€"]]+ €+ € h") (if (e, h) ~neaa (¢',1,€))

Evaluation contexts:
KeCix:=oO|(K,e) | (v,K) | Ke|vK|letx=Kine|let()=Kine|let (x;,x)=Kine|
if K then e; else e, | fork(K) | send(K, e) | send(v, K) | receive(K) | close(K)

Fig. 2. The operational semantics of our language.

The literals include the unit value (), numbers n € N, and channel endpoint references ¢ € Chan
(these enter expressions at run time, see the operational semantics below). As usual in a linearly-
typed language, we consider let-binding constructs let () = e in e and let (x1, x3) = e in e for pattern
matching on the unit value () and pairs (e, e), respectively.

Operational semantics. We use an asynchronous semantics with two buffers per channel to
guarantee that sends in either direction are non-blocking.! This is formally modeled as:

c € Chan == #(a, t) h € Heap = Chan fin, Listval
veValz=() | n| (v,0) | Ax.e|c p € Cfg = List Expr X Heap

A heap h is a finite map from channel endpoint references to buffers (modeled as lists of values).
Channel endpoint references #(a, t) consist of an address a € Addrand a tag t € {0, 1} denoting
the endpoint. The operation #(n,t) £ #(n, 1 — t) gives the opposite endpoint. Configurations (&, h)
consist of a list of expressions €, modeling the threads, and a heap h that is shared by these threads.
The semantics of most constructs is standard, so we focus on the message passing constructs:

IDue to the session typing discipline, only one of the buffers is expected to be populated at any given time. The two buffers
are important to distinguish the origin of the messages, because otherwise an asynchronous send followed by a receive
creates a risk that the thread receives back its own message that it just sent.
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// no counter party

let c¢1 = fork(A c1', Q)

receive(cl)

// protocol violation

let c¢1 = fork(A c1', receive(cl'); ...) @

receive(cl)

// circular dependency @
let c1 = fork(d c1', send(cl', c1'))
let (c1,c1') = receive(cl)

let c2 = fork(A c2', receive(c2'); send(cl', 2)...)

receive(cl1); send(c2, 3) .

=)

// memory leak

let ¢1 = fork(d c1', O))
let c2 = fork(A c2', ()
send(c2, c1)

send(c1, c2)

ON©
©550

T2

Fig. 3. Examples of configurations that are deadlocked or have leaked.

fork(v) Allocates a new channel with endpoints ciery = #(a,0) and cright = #(a, 1), where ais a
fresh address. It starts a new thread running v cief; (v should be a function) and returns cyigh.

send(c,v) Places the message v into the buffer of the opposite endpoint ¢ of ¢ and returns c.?
This construct does not block.

receive(c) Takes a message v out of the buffer of endpoint ¢ and returns the pair (c,v). If the
buffer is empty, it blocks until a message is available.

close(c) Closes the endpoint ¢ and returns the unit value (). This construct does not block.

The formal definition of the semantics is given in Figure 2. It involves three reduction relations: (1)
pure reductions e ~>pure €, (2) head-reductions (e, h) ~>head (€', 1, €), where € is a list of spawned
threads (empty for all constructs but fork), and (3) global reductions p ~>gjopat p’. Global reductions
make use of standard call-by-value evaluation contexts K € Ctx.

Deadlocks and memory leaks. Untyped programs in our language can deadlock or have memory
leaks. A configuration (€, h) is deadlocked if each expression e € € is a receive(c) that is waiting
on an empty buffer ¢ in the heap h. A configuration (€, h) has leaked if each expression e € €
is a value, but the heap h is not empty, meaning not all channels have been closed. In Figure 3
we show examples of both. On the left we show the code, and on the right we show a graphical
representation of the resulting configuration. As in § 1, boxes denote threads (i.e., expressions),
circles denote channels (i.e., buffer pairs), black arrows denote channel references, and red triangles
denote the waiting dependency. Concretely, a thread with a red triangle pointing to a channel is
waiting to receive a message from that channel, and a channel with a red triangle pointing to a
thread is waiting for the thread to send a message along that channel.

The simplest form of deadlock is a thread attempting to receive a message from a channel that
nobody else has a reference to (first program). If threads violate the usual protocol that one side

2The reason why send returns the endpoint c is the session type system, which gives the endpoint a new type, prescribing
the remainder of the protocol. The same applies to the receive operation.
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F={x—r1} neN Iike :n Lke:1 Trw{x—rnlre:n
Trx:71 Or(:1 Orn:N Wk (e, e0) : 1y X1 F'rAx.e: 1 o1y
INrei:mp o Lhre:n Irei:ny rzw{XI—)Tl}F(fzITZ
whkree:n I“1L+JI‘2|—|etx=e1inezzrz
INkte :1 e :T INNrter: X1 rzkﬂ{le—)Tl}U{XZP—)Tz}l-ele

Mwhrlet()=eine:r LWl klet (x,x) =ejiney : T
INre :N et Ires:t I'te:s—o1 Tire:lrs ket

TTwI, +ife theneyelsees: 7

I'te:?1.s

T + receive(e) : s X 1

T + fork(e) : s I W, +send(e, e3) : s

F're:End

T + close(e) : 1

Fig. 4. The static type system of our language.

receives and the other side sends a message, then a deadlock can occur if both try to receive
(second program). A deadlock can occur even if all parties are locally well behaved, but cause a
cyclic dependency (third program). Note that even though the reference structure (black arrows)
of this example forms a directed acyclic graph, a deadlock occurs because the waiting direction
(red triangles) can be opposite of the reference direction (black arrows). Finally, memory leaks can
occur if channels are not properly closed (fourth program).

Session Typing. A linear type system with session types can be used to rule out deadlocks:
reType:=1|N|rxt|r—-07]S
s € Session == End | ?7.s | !1.5

A session type s denotes a sequence of actions, with ? 7 indicating a receive, ! 7 a send, and End
termination, where 7 denotes the type of the message. The dual s of a session type s is defined by
flipping all sends (!) and receives (?):

End = End

The rules of the type system are shown in Figure 4. Note that the type system is higher-order
because it allows sending any value over a channel, including functions and channel endpoints.
Session types ensure deadlock and leak freedom by combining channel and thread creation
through the fork construct.* Together with linear channel typing, this ensures that the resulting
reference structure is acyclic, even when viewed as an undirected graph, in which edges may be
traversed in either direction. Let us consider the deadlocked programs in Figure 3. The first one is
ruled out by ensuring that there always exists a counter party (due to the absence of weakening).
The second one is ruled out by ensuring that all threads adhere to protocols (due to session duality).
The third one is ruled out by ensuring that the reference structure is acyclic (due to the absence of
contraction). The memory leak in the last example is ruled out by a combination of these rules.

?1.5 .5

3For simplicity we let even integers be linear; in §6 we extend the type system with support for unrestricted types.
4If we had a new_chan : 1 —o (s x5) construct, then let (c1, ¢;) = new_chan () in let x = receive(cy) in ... would deadlock.
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3 KEY IDEAS

Before we detail the abstractions that make our proof method parametric (§4 and §5), we describe a
concrete instantiation of our method to our session-typed language (§2). To do so, we first discuss
the well-known method of progress and preservation and the challenges in applying it to prove
deadlock and resource leak freedom (§3.1). To address these challenges, we introduce connectivity
graphs (§3.2) and describe how we use separation logic to formalize run-time typing judgments for
individual expressions (§3.3) and a well-formedness predicate for configurations (§3.4). We finally
show how to use our proof method to prove preservation (§3.5) and progress (§3.6).

3.1 Generalizing The Progress & Preservation Method

Traditionally, a language is said to be type safe if well typed programs do not get stuck. For purely
functional languages, like the Simply Typed Lambda Calculus (STLC), this is stated as:

Theorem 3.1 (Type safety). IfQ + e :  and e ~™ €, then either e’ is a value, or e’ can step further
(ie,de”. e ~ e”).

Type safety is often proved using the method of progress and preservation [Wright and Felleisen
1994; Harper 2016; Pierce 2002], which decomposes type safety into two properties that imply it:
e Preservation: If 0 re:r7ande~> e’, thenO e’ : 7.
e Progress: If 0 I- e : 7, then either e is a value, or e can step further (i.e., Je”’. ¢’ ~> €”’).

For pure languages like STLC, the proofs of these properties are straightforward: both properties
are proved by induction on the structure of the typing judgment and/or the reduction relation.

For languages with mutable state or concurrency, the above properties must be generalized to
account for a program’s run-time configurations. In general, for a language with expressions Expr
we have a set p € Cfg of configurations, an initial configuration init € Expr — Cfg, and a predicate
final € Cfg — Prop of configurations that are considered to be safely terminated.

Theorem 3.2 (Generalized type safety). If0 + e : () and init(e) ~* p, then either final(p) or p can
step further (i.e., Ap’. p ~> p’).

Recall that for our session-typed language we have Cfg = List Expr X Heap. We let final select
configurations where all threads have terminated with a unit value, and the heap is empty:

init(e) £ ([e], 0) final(Z,h) = h=0 AVi.e; = ()

By defining final this way, the type safety theorem expresses deadlock and memory leak freedom.®
To see why, consider a configuration p = (€, h) that does not satisfy final(p) and cannot step any
further. It must either consist of threads € that have not terminated but cannot step (indicating a
deadlock), or of terminated threads € but a non-empty heap A (indicating a memory leak).

For deadlock and resource leak freedom, we need to restrict expressions to have a ground type.
For example, an expression like fork(Ax. close(x)) : End exhibits a trivial memory leak because
the channel endpoint returned by fork() is still active. For simplicity, we use the unit type () in
Theorem 3.2, but of course, other ground types like N would suffice too.

The method of progress and preservation can be generalized to prove our generalized type safety
theorem (Theorem 3.2) by choosing a well-formedness predicate wf € Cfg — Prop that satisfies:

e Initialization: If @ + e : (), then wf(init(e)).
e Generalized preservation: If wf(p) and p ~ p’, then wf(p’).
o Generalized progress: If wf(p), then either final(p) or p can step further (i.e, Ip’. p ~> p’).

SThis kind of deadlock freedom is also known as global progress in the session type literature. In §6.3 we prove a stronger
property that also rules out partial deadlocks.
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(L)) == (0,54)
(1@

(0,s3)

Fig. 5. An example of a connectivity graph. Brown boxes depict threads, and blue circles depict channels.

The primary challenge is to define a well-formedness predicate wf in such a way that these
properties can be proved. A naive definition of wf(€, h) would simply demand each expression in
the thread pool € and each buffer in the heap A to be well typed. Unfortunately, this naive definition
does not quite work:

(1) Channel references #(a, t) enter the expressions € and heap h throughout the execution of
the program. The typing judgment I + e : 7 of our type system (Figure 4) does not account
for channel references #(a, t) because they cannot be written in source programs.

(2) Whenever a channel reference #(a, t) appears in a thread or channel buffer, the type of #(a, t)
should match up with the values in the buffers at address a in the heap h, and with the type
#(a,1 — t) of the other endpoint.

For the simpler case of proving type safety for the STLC with references, Harper [2016] and
Pierce [2002] remedy issue (1) by introducing a run-time typing judgment I'; ¥ + e : 7. This judgment
extends the static typing judgment with a heap typing %, which assigns types to heap addresses.
Issue (2) is addressed because the heap typing makes sure that the typing of each reference is
consistent with the corresponding value in the heap.

Unfortunately, adapting this approach to prove deadlock and resource freedom is not as simple.
Conventional heap typings only capture the typing of addresses, not the acyclicity of the reference
topology. The latter is crucial to prove “generalized progress”, which states that the well-formedness
predicate wf indeed implies deadlock and resource leak freedom.

3.2 Generalizing Heap Typings to Connectivity Graphs

Our notion of connectivity graphs generalizes the notion of heap typings by simultaneously keeping
track of the types of channels in the heap, and providing an abstract representation of the reference
topology. In their full generality, connectivity graphs are represented as finite maps from pairs of
vertices V to the labels L on the edges between them:

G € Cgraph(V,L) = {G € Vx vinp | G has no undirected cycles}
To reason about our language defined in § 2, we instantiate the vertices V and edge labels L of a
connectivity graph Cgraph(V, L) as follows:

v € V= Thread(i) | Chan(a) le L= {0,1} X Session
The vertices V are threads Thread(i) (with position i in the thread pool) or channels Chan(a) (with
address a in the heap). The edges are channel references and have a label (¢, s) € L that consists of a

tag t € {0, 1}, indicating the channel endpoint pointed to, and a session type s € Session, indicating
the endpoint’s session type. An example of a connectivity graph is depicted in Figure 5. Note that
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the red triangles that we used to depict the waiting directions in Figures 1 and 3 in §1 are not part
of the connectivity graph itself, because these can be derived from the run-time configuration. The
session types on the edges are part of the connectivity graph, because they cannot be derived from
the run-time configuration. In Definition 3.2 we formalize how the red triangles are derived.

Connectivity graphs corresponding to configurations in our language have a number of important
properties. First, vertices Thread(i) can have an arbitrary number of outgoing edges, but have no
incoming edges. That is because threads can own channel endpoints, but threads can never be
owned. Second, vertices Chan(a) can also have an arbitrary number of outgoing edges, but at most
two incoming edges. Outgoing edges are due to higher-order channels—a channel ¢, can be sent
over another channel cy, resulting in an edge from c; to c¢; that models that c; owns ¢;. Ingoing
edges correspond to a channel’s endpoints, which can be at most two. The number of incoming
edges is one in case one channel endpoint has been deallocated, but the other is still in use.

A key ingredient of connectivity graphs is the acyclicity restriction. They should be acyclic in the
undirected sense: there must be no cycles even if we disregard the direction of the edges. In other
words, a connectivity graph must be an unrooted undirected forest if we erase the direction of the
edges. The third example in Figure 3 shows why acyclicity in the undirected sense is important.

To formally reason about ownership, we introduce the following functions:

out(G,v) € yin g in(G,v) € Multiset L

The outgoing edges out(G, v) determine which resources vertex v owns, whereas the incoming edges
in(G, v) determine at which labels (i.e., types) the vertex v is owned. We use the above functions
in the definitions of the run-time typing judgment (§3.3) and the configuration well-formedness
predicate (§3.4). We represent the the outgoing edges out(G, v) of a vertex v as a finite map from
vertices to labels to track which resources a vertex v owns and at which type. The incoming edges
in(G, v) of a vertex v, however, we represent as a multiset of labels because it only matters at which
type a vertex v is owned, but not by whom (note that only channel endpoints can be owned).

What is parametric in this section. Connectivity graphs Cgraph(V, L) are parametric over the type
of vertices Vand labels L. All theory about connectivity graphs (including the separation logic) that
we present throughout the rest of this section is parametric. Connectivity graphs and their theory
are thus modularly separated from the operational semantics and type system of the language,
which we found to be essential for keeping the complexity of the mechanization manageable.

3.3 Run-Time Typing Judgment Using Separation Logic

In the previous section, we developed the notion of a connectivity graph as a generalization of the
heap typing, known from type safety proofs of the STLC with references [Harper 2016; Pierce 2002].
We now make this generalization precise, develop a run-time typing judgment for our language,
and show how we can use separation logic to hide reasoning about hnearlty

We start with the run-time judgment I'; X + e : 7, where X € V fin g provides the session types
of the free channel references in e. Channel references amount to edges in our connectivity graph,
and thus ¥ becomes the set of outgoing edges out(G, v) associated with the threads and channels v
occurring in e. Let us consider the typing rule for channel references and function application:

Fl;le—el:rl—>Tz r2;22|—€227.'1
0;{Chan(a) > (t,s)} + #(a,t) : s MWD Wl ke e

Because our language is linear, we insist that the 3-context is a singleton in the rule for channel
references. In the rule for application, both contexts are split into disjoint parts for the subexpres-
sions. Unfortunately, this leads to a multiplication of contexts and disjointness side conditions,
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(Emp)(2) = (2 =0) (P,Q € oProp = (Vﬁ—n\ L) — Prop)

("$N(E) 2 $A(2=0) @eviip
(PAQ)ZE) = P(2) AQ(Z)
(Fx. P(x))(2) £ 3x. P(x)(X)
(own(Z)(2) = (2 =%')
(PxQ)(2) £3335.dom(Z) Ndom(Z) =0 AZ =31 W 3 AP(Z) AQ(Z2)
(P +Q)(2) £ V3. (dom(Z) Ndom(Z) =0 AP(Z')) = Q(Z W)

1 | L | L | |

Fig. 6. Semantics of separation logic.

because of the disjoint unions in the conclusion. These side conditions cannot be ignored because
we want to mechanize our results. This is not a big issue for the variable context I' since we mostly
deal with closed expressions (i.e., with T' = ) because the operational semantics operates on closed
expressions. The X-context, however, is in general non-empty for run-time expressions.

We use separation logic [O’'Hearn et al. 2001] to hide the >-context and its disjointness conditions.
We work with separatlon logic propositions oProp = (V - fin, L) — Prop, which are predicates over a
context 3 € VI [ of outgoing edges. Our use of separation logic as an internal, meta theoretical
tool is inspired by Rouvoet et al. [2020] and contrasts with traditional uses which employ separation
logic as an external, user-visible tool when specifying programs in Hoare-style logics. The separation
logic connectives are defined in Figure 6. To assert that a separation logic proposition P is true, is
to assert that P(0) is true. An important special case is that P - Q is true, if V. P(Z) = Q(2).

Instead of the ordinary typing judgment (I'; X + e : 7) € Prop we define a separation-logic based
judgment (T + e : 7) € oProp, so that (I'; 2 F e : 7) iff (T + e : 7)(2). The preceding two rules are
then reformulated as follows:

own(Chan(a) — (t,s)) Iire :rp—o1m * Ihrey: 1

0!—#(a,t):s Twlhree:

The 2-contexts are hidden by the separation logic connectives, and the disjointness conditions
on X are taken care of by the separating conjunction (*). At a channel reference, we use the own(X)
connective, which asserts that the separation logic resource is precisely X.

An exception to the rule that contexts are split up disjointly (with =) is the if e; then e, else e;
expression. Although the channel references occurring in e; must be disjoint from those occurring
in e; and es, the same endpoint is allowed to occur in both e, and e3, because only one of the
branches will be executed. This pattern too fits neatly in the separation logic methodology; we use
separating conjunction (x) between e; and ey, es, but ordinary conjunction (A) between e, and es:

INre : N x (rzl-ezil' A r2|—€357.')

TwWwI)rife theneyelsees: 7

Figure 7 contains the full definition of our run-time type system using separation logic. Although
it is possible to define the meaning of general inductive separation logic inference rules via Tarski’s
fixed point theorem, this generality is not necessary here: the expressions in the premises of each
rule are strictly smaller than the expression in the conclusion, so the rules can be interpreted
as being defined by recursion on the expression. We use this approach in the Coq formalization,
because it has the additional benefit that we get the inversion rules for free.
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T ={x+1}" Emp "neNT Tirer:p * Iokep: Tz
I'krx:7 0'—()1 Orn:N lerzk(el,eg):rlxrg
Iire:p—o1m * Ihre:n Tw{x—r}re:n

Hwlhhree:n l"!—lx.e:rl—orz

Iirter:ng *= DLW{xnlre:n Ite:1 = Dhrey:rt

Lwhtletx=eine:m Mwhrlet()=eine:r

Ibte X1y * Fz&J{x1»—>r1}L+J{x2i—>T2}|—ezzr

LWl klet (x,x) =ejiney : T

Iirte:N = (rex:r A Dkey:1) ke :!'t.s = Ihrey:t
W, Fif e; theneselsees : 7 I WI +send(eg,e;) : s
F're:?7.s +te:s5—o1 I'+e:End own(Chan(a) — (t,s))

T + receive(e) : s X 1 I + fork(e) : s I+ close(e) : 1 O+ #(at):s

Fig. 7. The separation-logic based run-time type system of our language.

A key strength of separation logic is that we can prove assertions using the proof rules of the
logic of Bunched Implications (BI) [O'Hearn and Pym 1999]. For example, separating conjunction
() is associative and commutative, separating conjunction (*) has Emp as identity element, and
magic wand (-+) is the adjoint of separating conjunction (). We use the Iris Proof Mode [Krebbers
et al. 2017, 2018] to reason abstractly using the rules of separation logic in Coq (see §7 for details).

What is parametric in this section. The definition of the separation logic connectives and the
proof rules for the separation logic are parametric in the types of vertices V and labels L.

3.4 Well-Formedness of Configurations Using Connectivity Graphs

Now that we have a run-time typing judgment for a single expression, we are in a position to define
which configurations are well-formed. Recall that a configuration is a pair (€, h) where € : List Expr
is the thread pool and where h : Chan fin, ListValis the heap of channel buffers. We must certainly
insist that all threads € are well-typed expressions (of unit type), and that all the values inside the
heap h are well-typed. For the latter we have to ensure that a channel’s endpoints are of dual types,
modulo the messages queued up in the buffer. This requires us to consider the incoming edges
in(G, v) of a vertex v in addition to its outgoing edges out(G, v). We can thus state well-formedness
of a configuration in terms of its connectivity graph.

A configuration is well-formed if there exists a connectivity graph such that each thread
and channel is locally well-formed with respect to its vertex in the graph:

wf(&,h) £ 3G : Cgraph(V,L).Vv e V. wfl“;l)(v in(G, v))(out(G, v))

Here, wfl("czl) VX Multiset L — oProp gives the local well-formedness condition for each vertex. It
has two explicit arguments (the vertex v € Vand its incoming edges in(G, v) € Multiset L), and an
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extra argument out(G,v) € V fin, [ that will form the vertex’ local -context, which is implicit in
the type signature of wf® because oProp £ (V fin, L) — Prop.

A thread is locally well-formed if it is well-typed (with the implicit 3-context given by its outgoing
edges), and has no incoming edges (because threads cannot be owned):

TA=0"%0re:1 ifi<]|é|

flocal (Thread (i), A) £
wf G (Thread (i), A) A= Q0 otherwise

Note that wf quantifies over any vertex v € V, and we thus have to consider any thread index
i, including those i > |€| that are not yet in use. For such indexes, we use the separation logic
proposition "A = 07 to assert that both the incoming and outgoing edges are empty. The latter is
implicit by the semantics of "A = 07 (see Figure 6).

A channel is locally well-formed if the buffers are well-typed (with the implicit 3-context given
by its outgoing edges), and have matching incoming edges match the types of the endpoints:

dsg, s1,8. "TA = {(0,s9), (1,51)} "= if #(a,0),#(a, 1) € dom(h)
"buf h(a> 0) : (SO; S) *

Wflocal (Chan(a),A) A '_buf h(a’ 1) : (31,5)

(&h) Ib,s. A = {(t,5)} 7 = if #(a, t) € dom(h)
Fouf h(a,t) : (s, End) and #(a,1 —t) ¢ dom(h)
"TA=0" otherwise

In this definition we have to consider three cases. The first case corresponds to the situation in
which both buffers are still in use. In that case, there must be two incoming edges in the connectivity
graph, labeled with session types that are dual modulo the values in the buffers. For instance, if the
left endpoint has session type ? 7;. ? 7,. s and the right endpoint has session type s, then the buffer
of the left endpoint must be [v1,v5] with + 91 : 7; and + v, : 75. The second case corresponds to the
situation in which one buffer has been deallocated. The third case corresponds to the situation in
which the channel is not allocated (or both buffers have been deallocated).
The buffer typing judgment Fpur U : (s1,52) is inductively defined by the following rules:

Emp Dro:r * by 7 : (s1,52)
. g

Fouf €1 (S, 5) Fouf ([0] + ) @ (?7.51,52)
These rules express that Fy,r 0 : (s1,52) holds if s is equal to prefixing s, with the types of the
values 9 in the buffer. Note that similar to the other run-time judgments, the buffer typing judgment
is defined in separation logic, which implicitly ensures that the X-environment is distributed
disjointly over the values in the buffer.

What is parametric in this section. The definition of wf is parametric in the type of vertices V and
labels L, but also a local well-formedness predicate wf'® that captures the language-specific infor-
mation by linking the incoming and outgoing edges of each vertex to their run-time counterpart.

3.5 Proving Preservation Using Local Connectivity Graph Transformations

Now that we have defined the well-formedness predicate wf (€, h), we must prove that it is preserved
by the operational semantics: if (€, h) ~>giopar (€', h’), then wf(€, h) implies wf(€’, h"). Recall that
the well-formedness predicate wf (€, h) intuitively means “there exists a connectivity graph G
describing the configuration (€, h)”, so when the configuration steps to a new configuration (¢’, h’),
we must show that there exists a new connectivity graph G’ that describes (€, h’).
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Fig. 8. The operational steps and the corresponding connectivity graph transformations.

If the head step is a pure step, then the new connectivity graph is exactly the same as the old
one, and the preservation of the well-formedness predicate follows by a standard case analysis of
the possible pure steps, because the heap does not change and no new threads are spawned.

Operational steps that involve channel operations are the interesting cases because they may
alter the connectivity graph. Figure 8 provides a schematic overview. We focus on the send(c, v)
operation, which moves the value v from the thread into the buffer of channel c. The session type in
the label on the edge corresponding to ¢ itself must change from ! 7. s to s. Additionally, if the value
v contains channel references, the connectivity graph must change to reflect this. The changes to
the connectivity graph for send and the other channel operations are depicted in Figure 8.

Once we have chosen the appropriate new connectivity graph G’, we have to prove that this
graph indeed describes the new configuration (¢’, #’). This amounts to showing that the local
well-formedness condition wfi"c“l )(v, in(G’,v))(out(G’, v)) is re-established for every vertex v.

e
For send(c, v) the relevant parts of the (€, h)-configuration and (¢, h’)-configuration are:
e; = K[ send(c,0) | h(c) =0
e; =K[c] h'(c) =0+ [o]

The thread pool and heap do not change at other locations. After this change to the configuration
and the corresponding change to the connectivity graph (as depicted in Figure 8), we classify the

vertices into three types and explain how the local well-formedness wfé%c,“}ll,) is restored.

(1) For the vertices v’ where neither the corresponding part of the configuration nor the incoming
and outgoing edges change, wféoef‘;ll) (v/,in(G,v"))(out(G, v')) remains valid.

(2) For the vertices v’ that correspoild to channels referenced inside the message v, the owner
changes from Thread(i) to Chan(c.1) (corresponding to T1 and C in the figure). These
vertices are not affected either, because in(G, v’) = in(G’,v’). Since in(G,v’) and in(G’, v")
are multisets of labels, they are thus not affected by the change of owner.
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(3) The vertices v; = Thread(i) and v; = Chan(c.1) (corresponding to T1 and C in the figure) are
the vertices that are truly affected. Re-establishing their wf l(";,“}ll,) (v12,in(G’, v12)) (out(G’, v12))
requires some language-specific reasoning, because both their part of the configuration and
their incoming and outgoing edges change.

There is another proof obligation that we need to meet: the connectivity graph has to remain
acyclic when we do these local transformations.

Even though Figure 8 looks hopelessly language specific, we show that we can use our separation
logic to distill abstract rules for local graph transformations (§5). These rules involve the transfer of

resources between the old local well-formedness predicates wf i";fll) (v,in(G, v)) and the new local

flocal )(v, in(G’,v)) (for the affected vertices v in question). To distill

e
these rules, it is crucial that thé local well-formedness predicate is a separation logic proposition,
which enables reasoning using the abstract proof rules of separation logic, without explicitly
having to reference the graph, nor having to explicitly establish acyclicity, nor having to deal with
disjointness conditions. The reasoning left to the user of the rule is purely local and precisely the
language-specific reasoning that cannot be done generically. The result is that the preservation
proof appears to perform no graph reasoning at all: at no point in the preservation proof is there
any value of type G, G’ : Cgraph(V, L) in the proof context.

well-formedness predicates w

What is parametric in this section. The separation-logic based rules for local graph transformations
(§5) are parametric in the type of vertices V and labels L, and the local well-formedness predicate.

3.6 Proving Progress Using Waiting Induction

To prove progress, we have to show that if wf(€, h) holds, then either final(€, h) holds (i.e., e; = ()
for all i and h = ), or the configuration can step. This is equivalent to saying that:

wf(€, h) and active(€, h) # 0 implies that (¢, h) can step

Here, active(€, h) is the set of threads and channels that have not yet terminated and not yet been
fully deallocated, respectively.

Definition 3.1 (Active). The set of active vertices in configuration (¢, &) is formally defined as
active(é, h) 2 {Thread(i) | e; # ()} U {Chan(a) | h(a,0) # LV h(a, 1) # L}

If active(e, h) # 0, then there exists a vertex v € active(e, h) for which we must find a thread
that can step. If the vertex v is a thread that can step, we are done. The difficulty is that v may be a
thread that is blocked on a receive(c), where the corresponding buffer of ¢ in heap h is empty. If
the configuration is well-formed, then we will presumably be able to find a non-blocked thread
connected to the other endpoint of ¢, since that side will eventually be responsible for sending a
message to c. However, the thread holding the other endpoint of ¢ may be blocked itself, waiting
on a receive on a different channel. Also, the endpoint ¢ may not even be held by another thread; it
could be stored in the buffer of some other channel ¢’.

Our way out is to use the connectivity graph: starting from vertex v, we search for another thread
that can step. To organize this search process, we annotate edges of the connectivity graph with a
waiting direction (as also done in § 1), depicted as red triangles in Figure 9. The waiting direction is
formalized using the notion of being blocked.

Definition 3.2 (Blocked). A vertex v; is blocked on vertex v, in configuration (&, h) if v, is a thread
that is trying to receive from channel v, whose buffer is empty. Formally:

blocked gy (v1,v2) = Ji,a,t,K. vi = Thread(i) A v; = Chan(a) A
e; = K[ receive(#(a,t)) ] A h(a,t) =€
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Threads: E'Tl‘s Channels: @

Blocked Rul.ming Terminated
Thread T1 has a reference @
to C1 and is blocked on C1:
Thread T1 has a reference to :',I',l"_
C1 but is not blocked on C1: %, .. ( ]
(but could be blocked @
on another channel) 1

Channel C1 has a refer-
ence to C2 in its buffers:

Fig. 9. The connectivity graph from Figure 5 annotated with red triangles for the waiting direction.

The waiting direction (red triangle) v, —>IG v, of an edge coincides with its ownership direction

(black arrowhead) if v; is blocked on v,. Otherwise, it is opposite to the ownership direction.

To find a thread that can step from v € active(e, h), we follow edges in the waiting direction
until we arrive at a vertex that has no outgoing waiting edges. As one can see in Figure 9, if we
follow the waiting direction (red triangles) from any start vertex v, we always end up in a thread
that can step (green dotted square). To prove that we can always find a thread that can step by
simply following the waiting edges from any starting vertex, we have to show that:

(1) If the current vertex v is a thread, it can either step, or it has an outgoing waiting edge.

(2) If the current vertex v is a channel, it always has an outgoing waiting edge.

(3) The search process terminates, because the graph is acyclic as an undirected graph.

To show (1): We show that active threads v can step or have an outgoing waiting arrow by
induction on typing. The interesting cases are the channel operations, and receive in particular,
so suppose that the thread’s expression is K| receive(v) ]. By run-time typing, we know that v
is a channel reference #(a,t), and the typing rule for receive(v) gives us the separation logic
resource own({Chan(a) — (t,?7.s)}). From this it follows that the thread has an outgoing edge
to Chan(a), and hence Chan(a) has an incoming edge with the label (¢, ? 7. s). From the channel’s
local well-formedness predicate, it follows that the required buffer exists in the heap. If the buffer
is non-empty, then the receive can proceed, so the configuration can step. If the buffer is empty, we
have an outgoing waiting arrow from the thread to the channel, so the search process can continue.

To show (2): The channel v is active, so it has a buffer, so it must have a corresponding incoming
edge in the graph by the definition of the local well-formedness predicate for channels. If that
incoming edge comes from a vertex v’, and that vertex v’ is not blocked on v, we are done. That is
because then the waiting direction is pointing from v to v/, and we can continue the search process
from v'. If v/ is a thread currently blocked on v, then the session type on that edge must be a receive.
It follows from the channel’s local well-formedness predicate that the other endpoint has not yet
been closed, and thus there is another incoming edge. It cannot be the case that both buffers are
empty and the other edge is also a receive, because that would violate duality. Thus, the other edge
is coming from a vertex v’ that is not a thread currently blocked on us. So there is a waiting edge
from v to v”/, and we can continue the search process from v”’.

To show (3): Although (3) is intuitively obvious if one looks at a picture such as Figure 9, one has
two difficulties in a formal setting. Firstly, showing that such a search process actually terminates
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requires formally reasoning about the (undirected) acyclicity of graphs. We refer the interested
reader to our appendix and Coq mechanization for details [Jacobs et al. 2021]. Secondly, one has
to restructure the argument in order to even formally state what it means that “the search process
terminates”. Our key idea is that the progress proof can be proved with an inductive argument, with
a non-standard graph induction principle.

We call this induction principle for connectivity graphs waiting induction. The induction principle
says that in order to prove P(v) for all vertices v € V, we can assume that P(v’) already holds for
all vertices v’ that v is waiting for. Note the similarity with strong induction on natural numbers:
in order to prove P(n) for all n € N, we can assume that P(n’) already holds for all n’ < n.

We restructure the progress proof by applying our waiting induction principle at the start.
Whenever we said “continue the search process” in the argument above, we can apply the inductive
hypothesis. The induction principle is formally stated and discussed in more detail in §4.

What is parametric in this section. The waiting induction principle is parametric in the types of
vertices V and labels L. This induction principle encapsulates the acyclicity reasoning, so that the
progress proof can focus on the language-specific reasoning.

4 CONNECTIVITY GRAPHS & WAITING INDUCTION IN DETAIL

Reasoning about graphs in a progress and preservation proof is non-standard, and reasoning about
graphs in a proof assistant is more involved than reasoning about inductively-defined types like
lists or maps that are normally used to define heap typings. We therefore factor graph reasoning
out into a connectivity graph library that is parametric in vertices V and labels L. In this section we
explain the foundations of this library by presenting the formal definition of acyclicity, a selected
set of primitive rules (which are used to prove soundness of our separation-logic based graph
transformations in §5 for proving preservation), as well as our principle of waiting induction (for
proving progress). We hope to convince the reader that our graph-based approach is feasible—even
in a mechanized setting in a proof assistant.

Recall the informal definition of connectivity graphs Cgraph from §3.2:

Cgraph(V,L) = {G € VX yin g | G has no undirected cycles}

To define “G has no undirected cycles formally, we need to introduce some basic notions about
graphs. We let graph(V,L) £ VXV fin, I be graphs without the acyclicity restriction. The notation
% —>IG v, expresses that there is an edge from vertex v; to v, with label [ (i.e., we have G(vy, v3) = I).
The notation v; < v, expresses that there is an edge from v; to v; or from v, to v;. The notation
V1 €, v, expresses that vertices v; and v; are connected by a (possibly empty) path from v; to v,
where we may follow edges in either direction, and v; <5, v, expresses that there is no such path.

Definition 4.1 (Undirected acyclicity). A graph G € graph(V, L) has no undirected cycles if:

(1) The undirected erasure G = {{v1, 2} | vi ©¢ vz}, where we forget the labels and directions
of the edges, is acyclic. See Jacobs et al. [2021] for details about the formalization of acyclicity
of undirected graphs and the undirected erasure.

(2) There are no short loops, i.e., we do not both have v, —>é vo and v, —>IC; V1.

Our reasoning about the acyclicity of graphs rests on two primitive lemmas:

Lemma 4.1 (Graph insertion). IfG € graph(V, L) is a graph with no undirected cycles and vy <p¢; va,
then G U {v; —' vy} has no undirected cycles.

Lemma 4.2 (Graph deletion). IfG € graph(V L) is a graph with no undirected cycles and v, —> Va,
then vy <3, vy in the graph H = G\ {» -yl
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We build a library of derived lemmas on top of these two primitive lemmas. A lemma that is
crucial for proving the correctness of our separation logic rules in §5 is the exchange lemma, which
is used to exchange separation logic resources between vertices of the graph:

Lemma 4.3 (Graph exchange). Let G, H € graph(V, L) be graphs and let v1, v, € V be vertices. If

(1) G has no undirected cycles,
(2) v1 <P V2,
(3) out(G, v1) Wout(G, v5) = out(H, v;) W out(H, v5), and
(4) out(G,v) =out(H,v) forallv € V\ {vy,v2}.
Then:

(1) H has no undirected cycles,

(2) v1 ¢ vo, and
(3) in(G,v) =in(H,v) forallve V.

This lemma is quite a mouthful, so let us go over it step by step. We start with a graph G and we
want to exchange outgoing edges between two unconnected vertices v; and v, to obtain a graph H
in which the union of the outgoing edges of v, and v; stays the same. The lemma tells us that this
operation maintains undirected acyclicity and that v; and v, are unconnected. Furthermore, the
labels of incoming edges stay the same for all vertices.

Note that this property only holds because in(G, v) is a multiset rather than a map that stores
the vertices, like we did for out(G, v). The fact that the local invariants are unaware of the vertices
of origin of the incoming edges is what enables local reasoning: exchange of edges only affects the
local invariants of v; and v,. In particular, for a channel it does not matter if its owner changes due
to an exchange of resources, because it only matters at which type the channel is owned.

A typical pattern is to compose the lemma for exchange with with lemma for insertion and
deletion. For instance, given an edge v; —>IG vy, we can first delete the edge using Lemma 4.1 to
obtain v; ¢»7; v2. Then we can apply Lemma 4.3 to exchange some of the outgoing edges of v; and
vy, and then we can re-insert a new edge v, —! v, with a new label using Lemma 4.1.

The lemmas for insertion and deletion (Lemmas 4.1 and 4.2) can not only be used to prove the
acyclicity of modified connectivity graphs, but also to prove structural properties of connectivity
graphs. The simplest example is a lemma that connectivity graphs have no self loops, which we
give here as an illustration that the lemmas for insertion and deletion suffice.®

Lemma 4.4 (No self loops). A connectivity graph G € Cgraph(V, L) has no self loops v —>IG v.

Proor. Suppose that v —>g v. By Lemma 4.2, v <47, v in the connectivity graph G’ = G \ {v —!
v}. Since every vertex is connected to itself (by definition), we have a contradiction. )

Another example of a structural property that follows from the lemmas for insertion and deletion
is the separation lemma. In § 5 this lemma will play an important role in enabling our use of
separation logic, where the separating conjunction requires that resources are disjoint.

Lemma 4.5 (Separation). IfG € Cgraph(V,L) and vy <p(; v, or vi <> vy, then the outgoing edges
of vi and v; are disjoint, i.e., dom(out(G, v1)) N dom(out(G, v;)) = 0.

Lastly, we have our generic principle of waiting induction that is key to our progress proof.

Lemma 4.6 (Waiting induction). Let G € Cgraph(V, L) be a connectivity graph, P € V— Prop a
predicate over V, and R : Vx V — Prop a binary relation over V.

%We do actually need this lemma at various points in the Coq proofs of the lemmas in §5.
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Then in order to proveYv € V. P(v) it suffices to prove:
YweV.(WeV. (v —>g vV AR(v,v)) = P(v)) =
(Vv e V.(v' =L v A=R(V,v)) = P(V)) = P(v)

In other words, to prove P(v), we can assume that P(v”) already holds for outgoing neighbors of
v’ of v that are in relation R(v, v’), and we can also assume that P(v”) holds for incoming neighbors
v/ of v that are not in relation R(v’, v).

Thus, for neighbors v —l v/, either the proof of P(v) can assume P(v’), or vice versa, but not
both, and the relation R(v, v') determines which. This induction principle is well founded due to
the acyclicity of connectivity graphs. We prove this lemma using a similar lemma for undirected
graphs, which we detail in Jacobs et al. [2021].

We call the lemma waiting induction because (1) we choose R = blocked g ) from §3.6 and thus
R is the waiting relation in our application, and (2) because of the similarity to induction on natural
numbers: in order to prove P(n) we can assume that P(n — 1) already holds, if n # 0.

5 LOCAL GRAPH TRANSFORMATION RULES IN SEPARATION LOGIC

We now generalize the well-formedness predicate wf from §3.4 to become parametric in the vertices
V and labels L, which involves making it parametric in the local well-formedness predicate to
abstract from language-specific aspects. We state separation-logic based rules for the parametric
well-formedness predicate so that preservation can be proved using local reasoning. After an initial
attempt at a monolithic proof of preservation, we found our approach of separating the graph
reasoning from the local language-specific reasoning to be indispensable for mechanization.

Given a local well-formedness predicate P : VX Multiset L — oProp, we define the generic global
well-formedness predicate wf(P) as follows:

wf(P) £ 3G : Cgraph(V,L).Yv € V. P(v,in(G,v))(out(G,v))

We can instantiate the above definition with P = wf Z(O;ZI) to obtain the well-formedness predicate
from §3.4 that was tied to our concrete language.
Recall from § 3.5 that preservation means: if (€,h) ~>gopa (€', h"), then wf(wfi%fﬁl)) implies

wif (wf ga}ll,>). We now present a set of graph transformation rules for proving results “wf (P) implies
wf(P’)” where P and P’ are arbitrary local well-formedness predicates, instead of a concrete local
well-formedness predicate. These graph transformation rules perform a transformation of the graph
under the hood, but the graphs are encapsulated by the definition of wf, and the rules thus do not
mention any graphs. Instead, the premises of these graph transformation rules ask the user of the
rule to prove local separation logic entailments involving P and P’.

The first of these graph transformation rules allows the user to exchange separation logic

resources between two vertices v;, v; € Vin order to prove that wf(P) implies wf(P’):

Lemma 5.1 (Exchange). Let vy, v, € V. To prove wf(P) implies wf(P’), it suffices to prove:’

(1) P(v,A) = P'(v,A) forallv e V\ {vy,vy} and A € Multiset L
(2) P(vy, A1) = 3l.own(vy > I) * VA, € Multiset L.
(P(vo, {I} W Ap) = Al". (own(vy > I") = P’ (v1, A1) * P/ (vo, {I'} W Ay)) for Ay € Multiset L

This rule generalizes the transformations for send and receive from Figure 8 where resources
are exchanged between two vertices. We go over the premises of the rule in detail:

"Recall that proving P € oProp means proving P(0) (see §3.3), but in practice (and in Coq) this is done using the proof
rules of separation logic.
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(1) The first premise asks the user of the rule to prove the local implication P(v, A) - P’(v,A)
for the vertices v € V'\ {vy, v} that are not involved in the exchange.

(2) The second premise first gives the user access to the local resources P(v;, A1) of vertex
v1. The rule then asks the user to prove that there exists an edge 14 —>g V2, by showing
that 3l. own(v; +— [) * - - - follows from the local resources of v;. The rule then gives the
user access to the local resources P(vs, {I} W A,) of vertex v,, where we have obtained the
information that the label {I} is part of the incoming edge label multiset of v,. The rule then
allows the user to pick a new label I’ for the edge v; — v;. Subsequently, the user has
to restore the local resources of v; and v, for the new P’. For restoring the local resources
P’(v1, A1), the user additionally gets the own(v; + [’) of the new edge. For restoring the
local resources P’ (vq, {I’} W A;), we get the new label in the incoming edge label multiset.

It may seem like this rule only allows us to change the label on the edge v, —>lG vy from [ to I,
but the rule in fact allows us to arbitrarily exchange separation logic resources (i.e., outgoing edges)
between v, and v,. The way this works is that the rule gives us access to the old local resources of
both v; and v;, and it asks us to prove the separating conjunction of the new local resources of
both v; and v,. The proof rules of separation logic allow us to use resources stored in the old local
resources of v; to prove the new local resources of vy, and vice versa. Thus, the graph transformation
that is applied internally in the rule depends on which proof of the separation logic entailment is
provided by the user of the rule.

A note on the proof of the transformation rule. That the transformation rule is able to offer us
access to both local resources simultaneously relies crucially on the acyclicity of the graph. The
acyclicity, and the existence of an edge between the two vertices, is what allows us to apply the
separation lemma (Lemma 4.5) that allows us to construct the separating conjunction of the two
local resources. In the proof of the rule we re-establish the validity of the resources and the acyclicity
of the graph using the exchange lemma (Lemma 4.3).

In addition to the preceding transformation rule for changing the label on an edge (and exchanging
resources), we have a transformation rule for removing an edge (after exchanging resources). This
rule is used in the close case of the preservation proof:

Lemma 5.2 (Deallocation). Let vy, v, € V. To prove wf(P) implies wf(P’), it suffices to prove:
(1) P(v,A) = P’(v,A) forallv e V\ {vy,vo} and A € Multiset L
(2) P(vy, A1) = 3l.own(vy > [) * VA, € Multiset L.
(P(vo, {I} W Ay) = P'(v1, A1) = P’ (v2,A2)) for Ay € Multiset L

We have the following two transformation rules for inserting an outgoing/incoming edge between
v1 and v, respectively. To maintain acyclicity, we have to show that v, has no existing outgoing
edges. Like the preceding rules, these rules also allow us to transfer resources to v;.

Lemma 5.3 (Allocation out). Let vy, v, € V. To prove wf(P) implies wf(P’), it suffices to prove:
(1) P(v,A) = P’ (v,A) forallv € V\ {v1,v2} and A € Multiset L
(2) P(va,Az) =+ "Ay =07 forall Ay € Multiset L
(3) P(vi, A1) = 3Al". (own(vy > I”) - P’ (v1,A1)) = P'(vo, {I’})  for all Ay € Multiset L
Lemma 5.4 (Allocation in). Let v, v, € V. To prove wf(P) implies wf(P’), it suffices to prove:
(1) P(v,A) = P’ (v,A) forallv € V\ {v1,v2} and A € Multiset L
(2) P(va,Ap) =+ "Ay =07 forall Ay € Multiset L
(3) P(vi,Ar) = A" P’ (v, Ay W {l'}) = (own(vy > I") = P'(v5,0)) forall Ay € Multiset L

I L

Lastly, we have a derived transformation rule that adds two new edges v; — 1 vy and vy <5 vs.

We use this rule in the fork case of the preservation proof.
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Fig. 10. Selected typing rules for unrestricted types.

Lemma 5.5 (Allocation out and in). Let vq, v, v3 € V. To prove wf(P) implies wf(P’), it suffices to
prove:
(1) P(v,A) = P’ (v,A) forallv € V\ {vy, vz, v3} and A € Multiset L
(2) P(v,A) « "A =07 forallv € {vy,v3} and A € Multiset L
(3) P(vy,Ay) =31, L. (own(vy = 1)) = P’ (v1, Ay W{l'})) = P'(vo, {1, 1}) *
(own(vz > 13) = P'(v3,0))
for all Ay € Multiset L

This rule can be proved by applying both allocation out and allocation in. It pays off to prove
this in the generic setting, because the intermediate state (in which the channel has been allocated
but not yet the thread that will hold the other endpoint) is not well-formed according to our wf’¢.
Instead, we prove wf(P) = wf(P’) by carefully choosing Q and proving wf(P) = wf(Q)
using Lemma 5.3, and wf(Q) = wf(P’) using Lemma 5.4.

6 EXTENSIONS

The programming language for which we have mechanized deadlock and memory leak freedom in
Coq [Jacobs et al. 2021] supports more features than described in §2. It has:

(1) More standard features such as sum types, which we do not describe because their rules are
standard and the modification of the proof is straightforward.

(2) Unrestricted (non-linear) types, including unrestricted products and sums, and an unrestricted
function type, described in §6.1.

(3) General equi-recursive functional types (which can encode algebraic data types) and equi-
recursive recursive session types (which can encode infinite protocols), described in §6.2.

Furthermore, we prove a deadlock freedom property that is stronger than global progress and
also rules out partial deadlock in §6.3.

6.1 Unrestricted Types

We make the types used for conventional functional programming (such as product, sum, and func-
tion types) unrestricted (i.e., non-linear) if their components are unrestricted. Instead of introducing
separate linear and non-linear products and sums, we introduce the judgment “z unrestricted” on
types 7, which holds if all the components of 7 are unrestricted. Formally, the base types 0, 1 and
N are unrestricted, and 7; X 7, and 71 + 7, are unrestricted if 7; and 7, are unrestricted. The type
71 —o 1, is always linear (i.e., not unrestricted), even if 7; and 7, are unrestricted, because the closure
may capture linear variables. We introduce the type 7; — 77 of unrestricted functions, which is
always unrestricted (even if 7; and 7, are linear), and whose closures are only allowed to capture
unrestricted variables. Selected typing rules are shown in Figure 10. The typing rules involve the
disjointness relation Iy L T, which expresses that I7 and I'; might share unrestricted variables, but
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otherwise do not overlap. Formally:
I1 L I; £ Vx € dom(I7) Ndom(T3). I7(x) = I(x) A T1(x) unrestricted

Changes to the proof. In order to reason about unrestricted values in the separation logic, we add
a standard box modality O] P, defined as (O P)(Z) = P(0) A ¥ = 0. The box modality asserts that P
does not use any linear resources, which allows it to support proof rules for deletion (O P -+ Emp)
and duplication (O P - O P * O P). Lastly, we have the rule O P - P to open the box. We use the
box modality in the run-time typing rule for the unrestricted function type:

OTwW{x—r}re:r) = T unrestricted”

TrAx.e:ry > 1

The box modality makes sure that the closure cannot capture any channels at run-time.

We prove (I' + e : 7) = O (T + e : 7) if 7 unrestricted. This entailment says that run-time typing
judgments for expressions e of unrestricted type r can be freely deleted and duplicated in the
separation logic sense. This is crucial for the main change to our proof—the substitution lemma—in
which we now have to consider the case that the type is unrestricted, and that a variable could be
substituted in multiple or zero places. We use the preceding entailment and the laws of the box
modality to adapt the proof of the substitution lemma.

6.2 Equi-Recursive Types

We extend our type system with equi-recursive functional (ua.7) and session types (pa.s), in order
to be able to encode algebraic data types and infinite protocols, respectively. We extend the type
system with the following rule for unfolding recursive types:

T're:ny T1=1

I're:

The congruence relation (=) relates types up to unfolding of pa.r = r[ua.v/a]. Our mechanization
(§7) is somewhat more general: we use a coinductive definition of types to allow mutual recursion
and recursion through the message type as well as the tail. We also extend unrestricted types to
allow recursive types to be unrestricted. We can encode algebraic data types such as lists by using
sums and products and recursive types.

Changes to the proof. We do not add a rule for unfolding recursive types to the run-time type
system. Rather, we define the run-time type system in a syntax directed way so that all constructors
respect the congruence relation (=), and then prove a version of the unfolding rule:

Lemma 6.1. IfT1 = andt =1, then Ty Fe: 1) + (Ix Fe: ).

Example. The combination of equi-recursive and unrestricted types allows us to type check the
call-by-value Y-combinator for constructing recursive functions of type 71 — 5. Defining recursive
functions in terms of a self-referential type is standard [Harper 2016]:

Yi((n > ) = (- ) »(n— )
Y2 Af. (Ax. f (Ay. x x y)) (Ax. f (Ay. x x y))

We use the recursive type pa.(a — (r; — 12)) for x and the type (1; — ) — (17 — 12) for f.
Note that while 7; and 7, can be restricted (linear) types, we must use an unrestricted function type
for f and x in order to type check the multiple uses of f and x. In fact, a fixed-point combinator for
constructing functions 7; —o 7, with linear function type would violate type safety. Intuitively, a
recursive function is allowed to manipulate both linear and non-linear resources, but the definition
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of a recursive function is not allowed to capture linear resources in its closure because this closure
will be invoked multiple times.

6.3 Partial Deadlock and Memory Leak Freedom via Reachability

In the context of session-typed languages with non-termination (e.g., due to recursive types),
deadlock freedom is typically stated as global progress, which we prove in §3.6. Global progress
guarantees that the configuration can either take a step, or is in a final state where all threads have
successfully terminated and all channels have been deallocated. Although global progress rules out
whole-program deadlocks, as well as memory leaks when all threads have terminated, it admits
partial deadlocks as long there is still a thread that can step (e.g., is in an infinite loop). Linear
session types actually rule out partial deadlocks and memory leaks even when some threads are still
running. Although deadlock freedom and memory leak freedom may seem like separate properties,
we state two properties that simultaneously generalize both, namely partial deadlock/leak freedom
(Definition 6.3) and full reachability (Definition 6.5). We prove that these properties are equivalent
(Theorem 6.2) and show that full reachability can be proven using the waiting induction principle
of our proof method (Theorem 6.3). Finally, we show that they imply global progress.
In order to arrive at a simultaneous generalization of deadlock and memory leak freedom,
consider pure memory leaks and pure deadlocks:
e A pure memory leak is one in which we have a set S of channels, such that all endpoints of
the channels in S are held by the buffers of channels in the same set S.
e A pure deadlock is a set S of both threads and channels with empty buffers, such that all
threads in S are blocked on one of the channels in the set S, and all of the endpoints of the
channels in S are held by threads in the set S.

In general, we can have a mixed partial deadlock/leak situation that is neither a pure memory
leak nor a pure deadlock. Intuitively, a partial deadlock and memory leak is a set S of threads and
channels such that all threads in S are blocked on one of the channels in S, and all endpoints of
channels in S are held by threads and channels in S. To make this formal, we define the set of
vertices refs(z ) (v) C Vthat a vertex v references.

Definition 6.1. We let refsz ) (Thread(i)) = {Chan(a’) | channel literal #(a’, t) occurs in e;},
and refsz 5y (Chan(a)) = {Chan(a’) | channel literal #(a’, t) occurs in h(#(a,0)) or h(#(a,1))}.

With this function at hand, we can define partial deadlock and memory leak freedom.

Definition 6.2 (Partial deadlock/leak). Given a configuration (€, h), a subset S C V of the threads
and channels is in a partial deadlock/leak if the following conditions hold:
(1) We have @ C S C active(e, h) (see Definition 3.1 for the definition of active).
(2) For all threads Thread(i) € S, the expression e; cannot step in the heap h.
(3) If Thread(i) € S and blocked ) (Thread(i), Chan(a)), then Chan(a) € S (see Definition 3.2
for the definition of blocked).
(4) If Chan(a) € S and Chan(a) € refszj)(v), then v € S.

Definition 6.3 (Partial deadlock/leak freedom). A configuration (g, h) is deadlock/leak free if no
S C Vis in a partial deadlock/leak in (&, h).

In order to prove that well-formed configurations have no partial deadlock/leak, we prove another
property that we call full reachability, which we show to be equivalent to partial deadlock/leak
freedom. Full reachability has the advantage that it can be proved directly using waiting induction.
It takes inspiration from the notion of reachability used in garbage collection and memory manage-
ment, namely that data is said to be reachable if it can be reached by transitively following pointers,
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starting from any thread’s stack frames. Memory leak freedom can then be stated as: all data in the
configuration is reachable, i.e., there is never any leaked memory. To incorporate deadlock freedom
into this, we strengthen the definition of reachability to only start from stack frames of threads that
can step. However, if a thread T1 is blocked on channel C, and the other endpoint of C is held by
still running thread T2, then data held by T1 should also be considered transitively reachable: even
though this data is held by a thread that (currently) cannot step, further interaction of T2 with the
channel C may unblock T1. We formalize this using the following inductive definition:

Definition 6.4 (Reachability). We inductively define the vertices that are reachable in (€, h):

(1) Thread(i) is reachable if either
o the expression e; can step in the heap h, or
e there exists an a such that blocked ; ) (Thread(i), Chan(a)) and Chan(a) is reachable.
(2) Chan(a) is reachable if there exists a reachable v such that Chan(a) € refs gy (v).
It is important that reachability is an inductive definition—a coinductive definition would trivially
consider all cycles to be reachable.

Definition 6.5 (Full reachability). A configuration (€, k) is fully reachable if all v € active(é, h) are
reachable in (€, h).

We show equivalence of partial deadlock/leak freedom and full reachability:
Theorem 6.2. A configuration (€, h) is deadlock/leak free if and only if it is fully reachable.

For (=), we show that none of the objects in a deadlock/leak are reachable, and for (&), we
show that the set of all non-reachable objects is a deadlock/leak.

Theorem 6.3 (Full reachability). Ifwf(é, h), then (€, h) is fully reachable.

This proof goes by waiting induction and closely resembles the global progress proof in §3.6. By
using the equivalence between full reachability and partial deadlock/leak freedom, we also obtain
that a partial deadlock/leak cannot occur, and can re-prove global progress using reachability.

Corollary 6.3.1 (Partial deadlock/leak freedom). If wf(&, h), then (€, k) is deadlock/leak free.
Corollary 6.3.2 (Global progress’). If wf(¢, h) and active(é, h) # 0, then (&, h) can step.

The proof of Corollary 6.3.2 uses Theorem 6.3, which gives that active objects are reachable.
We then find a thread that can step by straightforward induction on the reachability predicate.
Alternatively, we can go via Corollary 6.3.1: if none of the threads can step, then the set of all active
threads and channels is a deadlock/leak.

Combined with the proofs that the initial configuration p of well-typed program satisfies wf(p),
and that wf(p) is preserved by the operational semantics (§3.5), we obtain partial deadlock/leak
freedom, full reachability, and global progress for any well-typed program.

7 MECHANIZATION IN COQ

Using the Coq proof assistant [Coq Team 2021] we have mechanized the generic connectivity
graph method and its concrete instantiation to our session-typed language. Our mechanization
starts with a library for undirected graphs and their acyclicity described in Jacobs et al. [2021].
On top of this, we build a library for connectivity graphs and waiting induction (§4). We combine
connectivity graphs with separation logic (§3.3) to define the generic well-formedness predicate
and the separation logic local transformation lemmas (§5). We instantiate our library by formalizing
the language from §2 with its extensions from §6. This involves defining the syntax, type system,
and operational semantics. For the language-specific parts of our deadlock and leak freedom proof,
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we define the run-time type system (§3.3) and the local well-formedness condition (§3.4). We then
prove preservation using our local transformation rules in separation logic (§3.5), and progress
using our principle of waiting induction (§3.6). We have also mechanized all the extensions (§6),
including unrestricted types (§6.1), equi-recursive types (§6.2), and the theorems about reachability
and partial deadlock/leak freedom (§6.3).

Line counts. The parametric connectivity graph library is 4999 LOC, the language definition is
451 LOC, and the language-specific deadlock and leak freedom proofs are 1688 LOC.

External dependencies and Coq features that we use. We use the std++ extended standard library for
its results on data structures like lists and finite maps [Cog-std++ Team 2021]. We use the Iris Proof
Mode for tactics-based separation logic proofs [Krebbers et al. 2017, 2018]. To represent recursive
types (§6.2), we use the technique by Gay et al. [2020] based on coinductive types combined with
Coq’s generalized rewriting mechanism to reason up to the congruence = [Sozeau 2009].

Archive and GitHub repository. An archive of the Coq mechanization can be found at Jacobs et al.
[2021], and the most recent version at https://github.com/julesjacobs/cgraphs.

8 RELATED WORK

Session types. The line of works most closely related to ours are derivatives of Wadler [2012]’s GV,
a linear functional language with session types inspired by Gay and Vasconcelos [2010]. Whereas
Gay and Vasconcelos’s calculus does not enjoy the property of deadlock freedom, Wadler’s GV and
its derivatives [Lindley and Morris 2015, 2016b, 2017; Fowler et al. 2019, 2021] do. For Wadler’s
GV, deadlock freedom follows from its translation to CP (Classical Processes) Wadler [2012], for
which deadlock freedom holds by cut elimination. Lindley and Morris [2015] then concretize
the progress statement by introducing the definition of a deadlocked configuration and proving
deadlock freedom using a small-step operational semantics. They also give translations between
GV and CP and show that both directions of the translation preserve reductions, unlike previous
translations from GV to CP. Subsequently, Lindley and Morris [2015]’s GV has been extended
to support least and greatest fixed points [Lindley and Morris 2016b], exceptions [Fowler et al.
2019], and polymorphism [Lindley and Morris 2017]. A recent extension of GV [Fowler et al.
2021] moreover simplifies GV’s meta theory by making process equivalence type preserving. The
extension adopts the idea of a hypersequent [Avron 1991] from [Montesi and Peressotti 2018; Kokke
et al. 2019], yielding Hypersequent GV (HGV).

Like the GV derivatives, our language is a functional language with session-typed channels.
Our notion of a connectivity graph moreover bears a resemblance to HGV’s abstract process
structure (APS), introduced to reason about the forest structure of a process configuration. However,
whereas abstract process structures are defined over hyperenvironments and channel names, our
connectivity graph is parametric in its vertices, labels, and edges. More importantly, our connectivity
graph is at the core of a proof method for deadlock freedom, fully mechanized in Coq, that uses
separation logic and is parametric in its key results. Besides these conceptual differences, there are
various technical differences between our formalization and GV formalizations, and even among the
different GV variants (such as a synchronous versus an asynchronous semantics). Our formalization
uses a standard operational semantics whereas many GV variants use structural congruences and
binders for channnel names. In our graph, not only the threads but also channels are vertices, and
the edges are directed. Since reasoning about syntax up to equivalence (e.g., structural congruence
or a-equivalence) is cumbersome in a proof assistant like Coq, we believe that our operational
semantics is better suited for mechanization (and a flat heap and thread pool is perhaps closer
to how these structures are represented on real computers). Orthogonally, we do not tie channel
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closing to thread termination and instead allow close everywhere. As a result our language readily
accommodates a forest topology without the need for a special connective, such as mix as used by
Fowler et al. [2021].

More distantly, our language is related to Toninho et al. [2013]; Toninho [2015]’s language SILL,
which embeds session-typed processes into a functional core language via a contextual monad. The
language is based on the Curry-Howard correspondence established by Caires and Pfenning [2010]
between intuitionistic linear logic and session-typed 7-calculus. Deadlock freedom of SILL follows
thus as a consequence. Due to its modal separation, SILL does not allow mixing of functional
and session terms freely, in contrast to GV and our language. The seminal paper by Caires and
Pfenning [2010] and Toninho [2015]’s thesis spurred a series of derivatives, similarly to Wadler’s
CP and GV, accommodating, for example, polymorphism [Caires et al. 2013; Pérez et al. 2014],
work analysis [Das et al. 2018], and information flow control [Derakhshan et al. 2021]. Due to their
connection to intuitionistic linear logic, all these works guarantee deadlock freedom. However,
unlike ours, none of these deadlock freedom proofs have been mechanized in a proof assistant.

A derivative of SILL, SILLs [Balzer and Pfenning 2017], introduces a controlled form of aliasing
through a stratification of linear and shared session types with adjoint modalities [Pfenning
and Griffith 2015; Benton 1994; Reed 2009b] to support multiple-client scenarios. Whereas the
resulting language reclaims the expressiveness of the untyped asynchronous 7-calculus for session-
typed languages [Balzer et al. 2018], it also sacrifices deadlock freedom (which is rectified by
its successor SILLY [Balzer et al. 2019]). Recent extensions of classical linear logic session types
contribute another approach to softening the rigidity of linear session types to support multiple
client sessions and nondeterminism [Qian et al. 2021] and memory cells and nondeterministic
updates [Rocha and Caires 2021], respectively. Whereas neither of these recent approaches reclaim
the full expressiveness of unrestricted sharing, they keep the logical foundation intact and thus
uphold deadlock freedom. However, none of these works have been mechanized in a proof assistant.

Prior to the development of logic-based session types [Caires and Pfenning 2010; Wadler 2012],
deadlock freedom in session-typed calculi [Vasconcelos 2012] was guaranteed only for processes
interacting on a single session—interleaving of blocking actions on different sessions could easily
result in deadlocks. To address limitations of classical binary session types, Honda et al. [2008]
introduced multiparty session types, where sessions are described by so-called global types that
capture the interactions between an arbitrary number of session participants. Given some well-
formedness constraints, global types can ensure that a collection of processes correctly implement
the global behavior in a deadlock-free way. However, these global type-based approaches do not
ensure deadlock freedom in the presence of higher-order channels, interleaved sessions, dynamic
channel creation, or dynamic thread creation. To remedy the deficiency various extensions at
increasing degrees of complexity were introduced. For example, Bettini et al. [2008] and Coppo et al.
[2016] track usage orders among interleaved multiparty sessions, ruling out cyclic dependencies but
also restricting recursion. Our approach instead supports higher-order channels, general recursion,
and deadlock freedom solely using a linear type system, by restricting to binary sessions.

Separation logic. Separation logic [O'Hearn et al. 2001] is conventionally used in Hoare-style
program logics for proving functional correctness, while we use it to define and reason about
(run-time) typing judgments. In conventional separation logic, propositions are predicates over
heaps (possibly extended with permissions, ghost state, etc.), whereas we consider predicates over
the outgoing edges of a connectivity graph (which contain types instead of values). The idea of using
separation logic to define typing judgments for linear languages has been explored by Rouvoet et al.
[2020, 2021] in the context of intrinsically-typed programming in Agda. They present separation-
logic based programming abstractions to hide types of references in intrinsically-typed interpreters,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2021.



1:28 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers

and to hide types of labels in intrinsically-typed compilers. As a case study, Rouvoet et al. [2020]
use their abstractions to define an intrinsically-typed interpreter for a small session-typed language
that guarantees type safety by construction (but not deadlock or resource leak freedom).

Separation logic has also been used to define logical relation models of affine type systems. For
example, logical relations in the Iris separation logic [Jung et al. 2015, 2018b] have been used for
proving memory safety and data race freedom of Rust [Jung et al. 2018a], as well as type safety of
session types [Hinrichsen et al. 2021b]. To extend the logical-relations based approach to prove
deadlock freedom, a full-fledged separation logic that is capable of proving deadlock freedom is
needed. While separation logics and Hoare logics with support for deadlock freedom exist, e.g.,
[Hamin and Jacobs 2018; Le et al. 2013; Zhang et al. 2016], they use lock-orders, whose logical
expressivity is different from session types. Some separation logics have support for pointed-by
assertions [Kassios and Kritikos 2013], which can be used to reason about memory leak freedom.

Various extensions of separation logic that incorporate session-type based mechanisms to reason
about message-passing programs have been developed, e.g., Francalanza et al. [2011]; Lozes and
Villard [2012]; Craciun et al. [2015]; Oortwijn et al. [2016]; Hinrichsen et al. [2020, 2021a]. The
goal of these logics is different from ours—they are full-fledged Hoare logics aimed at proving
functional correctness instead of deadlock freedom. On the other hand, we use the assertion layer
of separation to hide bookkeeping in the definition of run-time typing judgments, and to describe
connectivity graph transformations in an abstract and generic way.

Mechanized results of session types. Thiemann [2019] proves type safety of a linear A-calculus
with session types that is inspired by GV. They do not prove deadlock or memory leak freedom.
Their mechanization involves an extensive amount of bookkeeping to keep track of resources.
Rouvoet et al. [2020] streamlined this approach via separation logic (see discussion above).

Hinrichsen et al. [2021b] prove type safety for a comprehensive session-typed language with
locks, subtyping and polymorphism using Iris in Coq. Their type system is affine, which means
that deadlocks are considered safe (their receive operation will spin if the buffer is empty). Their
proof is based is on logical relations instead of progress and preservation (see discussion above).

Tassarotti et al. [2017] prove correctness of a compiler for an affine session-typed language using
Iris in Coq. The operational semantics of their source language is similar to ours, while channels
are compiled to an implementation involving linked lists in the target. Their compiler is proved to
be termination preserving, so a target program deadlocks iff the source deadlocks.

More distantly, there also exist various mechanized results involving 7-calculus. Goto et al. [2016]
prove type safety for a -calculus with a polymorphic session type system in Coq. Their type system
allows dropping channels, and hence does not enjoy deadlock nor memory leak freedom. Ciccone
and Padovani [2020] mechanize dependent binary session session types by embedding them into a
r-calculus in Agda. They prove subject reduction (i.e., preservation) and that typing is preserved
by structural congruence. Neither deadlock freedom nor leak freedom is proved. Castro-Perez
et al. [2020] present a framework for locally-nameless representations of 7-calculus in Coq. They
use their framework to prove subject reduction (i.e., preservation) of a type system for binary
session types. Neither deadlock freedom nor leak freedom is proved. Their framework is used
by Castro-Perez et al. [2021] to mechanize a DSL for multiparty communication in Coq based on
asynchronous multiparty session types. They prove deadlock freedom w.r.t. a global type, but do
not prove deadlock freedom in the presence of higher-order channels, interleaved sessions, dynamic
channel creation, or dynamic thread creation.

Gay et al. [2020] study various notions of duality in Agda, and show that distribution laws for
duality over the recursion operator are unsound. Unlike the other mechanized results discussed so
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far, they focus on the static instead of dynamic semantics of session types. We have adapted their
approach of using coinductive types for mechanizing general recursive session types (see §7).
More distantly related are mechanized versions of cut elimination of linear logic [Reed 2009a;
Chaudhuri et al. 2019], which by Curry-Howard relates to deadlock freedom of intuitionistic
session types. The authors were incentivized by mistakes in various existing, non-mechanized
proofs. However, whereas a cut elimination proof concerns a logical inference system only, our
proof of deadlock freedom encompasses a typed programming language with operational semantics,
requiring us to reason not only about its statics but also it execution semantics. Moreover, our
language includes features such as recursive types (§6.2) that break cut elimination.
Mechanization results, lastly, also exist for choreographic languages [Montesi 2021]. Cruz-Filipe
et al. [2021a] mechanize choreography compilation in Coq for the choreographic language Core
Choreographies (CC) introduced by Cruz-Filipe et al. [2021b]. CC supports recursion and its
semantics has been formalized in Coq by Cruz-Filipe et al. [2021b]. Key results of the formalization
include determinism, confluence, and deadlock-freedom by design as well as Turing completeness.

Process calculi. The addition of channel usage information to types in a concurrent, message-
passing setting was pioneered by Kobayashi [1997]; Igarashi and Kobayashi [1997]; Kobayashi
et al. [1999], who applied the idea to deadlock prevention in the 7-calculus and later to more
general properties [Igarashi and Kobayashi 2001, 2004], giving rise to a generic system that can be
instantiated to produce a variety of concrete typing disciplines for the zz-calculus. Typically, types
are augmented with abstract data that pertain to the relative ordering of channel actions, with
the type system ensuring that the transitive closure of such orderings forms a strict partial order,
ensuring deadlock-freedom (i.e., communication succeeds unless a process diverges). Building on
this, Kobayashi [2002] proposed type systems that ensure a stronger property, dubbed lock freedom
(i.e., communication always succeeds), and variants that are amenable to type inference [Kobayashi
et al. 2000]. Kobayashi [2006] extended this latter system to more accurately account for recursive
processes while preserving the existence of a type inference algorithm. Kobayashi-style type
systems have also been readily adopted for session-typed languages [Dardha and Gay 2018; Balzer
et al. 2019].

9 FUTURE WORK

We have used our connectivity graph method to give a mechanized proof of deadlock and memory-
leak freedom for binary session types. We expect that our method can be used for other session-
typed languages. Since connectivity graph are not restricted to two incoming edges per channel
(but can have any number of them), we would like to explore languages that go beyond binary
communication. In particular, it would be interesting to design a version of multiparty session
types that supports dynamic thread and channel creation, and higher order channels, but still
enjoys global progress from typing in a manner similar to binary session types (i.e., without
additional mechanisms such as orders or priorities). Second, we would like to explore whether
other concurrency mechanisms such as locks and barriers could be handled by our method.
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