
1886th ISCA Workshop on Speech Synthesis, Bonn, Germany, August 22-24, 2007

Text Processing for Text-to-SpeechSystems in Indian Languages

Anand Arokia Raj 1, Tanuja Sarkar 1, Satish Chandra Pammi 1,
Santhosh Yuvaraj 1, Mohit Bansal 2, Kishore Prahallad1 3, Alan W Black3

1 InternationalInstitute of InformationTechnology, Hyderabad, India.
2 Indian Institute of Technology, Kanpur, India.

3Language TechnologiesInstitute,Carnegie Mellon University, Pittsburgh, USA.
skishore@cs.cmu.edu, awb@cs.cmu.edu

Abstract
To build a natural soundingspeech synthesissystem, it is essen-
tial that the text processing component produce an appropriate
sequence of phonemic units correspondingto an arbitrary input
text. In this paper we discuss our efforts in addressingthe issues
of Font-to-Aksharamapping, pronunciationrules for Aksharas,
text normalizationin the context of building text-to-speechsys-
tems in Indian languages.

1. Introduction
The objective of a text to speechsystemis to convert an arbitrary
given text into a correspondingspoken waveform. Text process-
ing and speech generationare two main componentsof a text to
speech system. The objective of the text processing component
is to process the given input text and produce appropriate se-
quence of phonemic units. These phonemic units are realized
by the speech generation component either by synthesis from
parametersor by selection of a unit from a large speech corpus.
For natural sounding speech synthesis, it is essential that the
text processing component produce an appropriate sequence of
phonemic units correspondingto an arbitrary input text.

One of the question often asked by end-users is why we
don’t have TTS systems for all or many of the 23 official Indian
languages. What are the complexities: Is it because the syn-
thesis technology isn’t matured enough to be able to build for
any language or is it because of the non-existence of speech
databases in Indian languages?. Unfortunately, for a decade
the core speech generationtechnologyi.e., generationof speech
from a phonemic sequence has largely been automated due to
unit selection techniques [1]. With the introduction of statisti-
cal parametric speech synthesis techniques, it is much easier to
build a voice in a language with fewer sentences and a smaller
speech corpus [2] [3].

It is difficult to convince an end-user that the input to a
TTS system is not a phonemic sequence but rather the raw
text as available in news websites, blogs, documents etc which
contain the required text in font-encodings, native scripts and
non-standard words such as addresses, numbers, currency etc.
The majority of the issues are associated in building a TTS
for a new language is associated with handling of real-world
text [4]. Current state-of-art TTS system in English and other
well-researched languages use such rich set of linguistic re-
sources such as word-sense disambiguation,morphological an-
alyzer, Part-of-Speech tagging, letter-to-sound rules, syllabifi-
cation, stress-patterns in one form or the other to build a text
processing component of a TTS system. However for minority
languages(which are not well researchedor do not have enough

linguistic resources), it involves several complexities starting
from accumulation of text corpora in digital and processable
format. Linguistic components are not available in such rich
fashion for all languages of the world. In practical world, mi-
nority languages includingsome of the Indian languagesdo not
have that luxury of assuming some or any of the linguisticcom-
ponents.

The purpose of this paper is to describe our efforts at IIIT
Hyderabad to build a generic framework for build text process-
ing modules and linguistic resources which could be extended
to all of the Indian languages with minimal efforts and time.
Our approach is to make use of minimal language informa-
tion (i.e., informationavailable with an average educated native
speakers), take the aid of acoustic data and machine learning
techniques [5]. In this paper we summarize some of our ef-
forts in this directionbut mainly for font identification,Font-to-
Akshara conversion, pronunciation rules for Aksharas and text
normalization.

2. Nature of Indian Language Scripts
The scripts in Indian languageshave originatedfrom the ancient
Brahmi script. The basic units of the writingsystem are referred
to as Aksharas. The properties of Aksharas are as follows: (1)
An Akshara is an orthographicrepresentationof a speech sound
in an Indian language; (2) Aksharas are syllabic in nature; (3)
The typical forms of Akshara are V, CV, CCV and CCCV, thus
have a generalizedform of C*V.

The shape of an Akshara depends on its composition of
consonants and the vowel, and sequence of the consonants. In
defining the shape of an Akshara, one of the consonantsymbols
acts as pivotal symbol (referred to as semi-full form). Depend-
ing on the context, an Akshara can have a complex shape with
other consonant and vowel symbols being placed on top, be-
low, before, after or sometimes surrounding the pivotal symbol
(referred to as half-form).

Thus to render an Akshara, a set of semi-full or half-forms
have to be rendered, which in turn are rendered using a set of
basic shapes referred to as glyphs. Often a semi-full form or
half-formis rendered using two or more glyphs, thus there is no
one-to-one correspondencebetween glyphs of a font and semi-
full or half-forms[6].

2.1. Convergence and Divergence

There are 23 official languages of India, and all of them ex-
cept English and Urdu share a common phonetic base, i.e., they
share a common set of speech sounds. While all of these lan-
guages share a common phonetic base, some of the languages



1896th ISCA Workshop on Speech Synthesis, Bonn, Germany, August 22-24, 2007

such as Hindi, Marathi and Nepali also share a common script
known as Devanagari. But languages such as Telugu, Kannada
and Tamil have their own scripts.

The property that makes these languages separate can be
attributed to the phonotactics in each of these languages rather
than the scripts and speech sounds. phonotactics is the permis-
sible combinationsof phones that can co-occur in a language.

2.2. Digital Storage of Indian Language Scripts

There is a chaos as far as the text in Indian languages in elec-
tronic form is concerned. Neither can one exchange the notes
in Indian languages as conveniently as in English language, nor
can one performsearcheasilyon texts in Indian languagesavail-
able over the web. This is because the texts are being stored in
ASCII font dependent glyph codes as opposed to Unicode.

The glyph coding schemes are typicallydifferent for differ-
ent languages and within a language there could exists several
font-typeswith their own glyph codes (as many as major news-
portals in a language). To view the websites hosting the content
in a particular font-type,these fonts have to be installedon local
machine. As this was the technology existed before the era of
Unicode and hence a lot of electronic data in Indian languages
were made and available in that form [7].

2.3. Need for Handling Font-Data

The text available in a font-encoding (or font-type) is referred
to as font-data. While Unicode based news-portals and web-
pages are increasing, there are two main reasons to deal with
ASCII based font-data: 1) Given that there are 23 official In-
dian languages,and the amountof data available in ASCII based
font-encodingsis much larger than the text content available in
Unicode format, 2) If a TTS system has to read the text from
a ASCII font based website then the TTS system should au-
tomatically identify the font-type and process the font-data to
generate speech.

2.4. A Phonetic TransliterationScheme for Digital storage
of Indian Language Scripts

To handle diversified storage formats of scripts of Indian lan-
guages such as ASCII based fonts, ISCII (Indian Standard code
for Information Interchange) and Unicode etc, it is useful and
becomes necessary to use a meta-storageformat.

A transliterationscheme maps the Aksharas of Indian lan-
guages onto English alphabets and it could serve as meta-
storage format for text-data. Since Aksharas in Indian lan-
guages are orthographic represent of speech sound, and they
have a common phonetic base, it is suggested to have a pho-
netic transliterationscheme such as IT3 [8] [6]. Thus when the
font-data is converted into IT3, it essentially turns the whole
effort into font-to-Aksharaconversion.

3. Identificationof Font-Type
Given a document we often need to identify the font-type, and
sometimes a document can contain the data encoded in differ-
ent font-types. Then the task would boil down to identifyingthe
font-type for each line or for each word. In this paper, we pro-
pose the use of TF-IDF approach for identificationof font-type.
The term frequency - inverse document frequency (TF-IDF)ap-
proach is used to weigh each glyph-sequence in the font-data
according to how unique it is. In other words, the TF-IDF ap-
proach captures the relevancy among glyph-sequenceand font-

type. In this approach, the term refers to a ’glyph’ and the docu-
ment refers to the font-data of a particular ’font-type’. Here the
glyph-sequencecould mean a single glyph or ’current and next’
glyph or ’previous, current and next’ glyph etc.

To build a document for each font-type, a web-site for
each font-typewas manually identifiedand around 0.12 million
unique words were crawled for each of the font-type. The set of
unique words for each font-type are referred to as a document
representing the particular font-type. Thus given N documents
(each representing a font-type), we considered three different
terms namely, a single glyph or current and next glyph or pre-
vious, current and next glyph. For each term a TF-IDF weight
was obtained as follows: (i) Calculate the term frequency for
the glyph-sequence: The number of times that glyph-sequence
occurred divided by the total number of glyph-sequences in
that specific document. (ii) Calculate document frequency: In
how many different documents (font-types)that specific glyph-
sequence has occurred. (iii) Calculate inverse document fre-
quency of the term and take logarithm of inverse document fre-
quency.

To identify the font-type of a given test font-data, the
steps involved are as follows: 1) Generate the terms (glyph-
sequences)of the test font-data2) Compute the relevancy scores
of the terms and for each of the document (font-type) using
the corresponding TF-IDF weights of the terms 3) The test
font-databelongs to the document (font-type)which producesa
maximum relevancy score.

The performance of TF-IDF approach for identification of
font-type was evaluated on 1000 unique sentences and words
per font-type. We have added English data as also one of
the testing set, and is referred to as English-text. The perfor-
mance of font-type identification system using different terms
single glyph, current and next glyphs, previous, current and
next glyphs are shown in Table 1, Table 2 and Table 3 respec-
tively and it could be observed that the use of previous, current
and next glyphsas a term provided an accuracy of 100% in iden-
tification of font-type even at the word level.

Table 1: Performanceof Single glyph based font models
Font Name Sentence-Level Word-Level

Amarujala (Hindi) 100% 100%
Jagran (Hindi) 100% 100%

Webdunia (Hindi) 100% 0.1%
SHREE-TEL (Telugu) 100% 7.3%

Eenadu (Telugu) 0% 0.2%
Vaarttha (Telugu) 100% 29.1%

Elango Panchali (Tamil) 100% 93%
Amudham (Tamil) 100% 100%

SHREE-TAM (Tamil) 100% 3.7%
English-text 0% 0%

4. Font-to-AksharaMapping
Font-data conversion can be defined as converting the font en-
coded data into Aksharasrepresentedusing phonetic translitera-
tion scheme such as IT3. As we already mentioned that Aksha-
ras are split into glyphs of a font, and hence a conversion from
font-data has essentially to deal with glyphs and model how a
sequenceof glyphs are merged to form an Akshara. As there ex-
ist many fonts in Indian languages, we have designed a generic
framework has been designed for the conversion of font-data. It



1906th ISCA Workshop on Speech Synthesis, Bonn, Germany, August 22-24, 2007

Table 2: Performanceof current and next glyph based font mod-
els

Font Name Sentence-Level Word-Level
Amarujala (Hindi) 100% 100%

Jagran (Hindi) 100% 100%
Webdunia (Hindi) 100% 100%

SHREE-TEL (Telugu) 100% 100%
Eenadu (Telugu) 100% 100%
Vaarttha (Telugu) 100% 100%

Elango Panchali (Tamil) 100% 100%
Amudham (Tamil) 100% 100%

SHREE-TAM (Tamil) 100% 100%
English-text 100% 96.3%

Table 3: Performance of previous, current and next based font
models

Font Name Sentence-Level Word-Level
Amarujala (Hindi) 100% 100%

Jagran (Hindi) 100% 100%
Webdunia (Hindi) 100% 100%

SHREE-TEL (Telugu) 100% 100%
Eenadu (Telugu) 100% 100%
Vaarttha (Telugu) 100% 100%

Elango Panchali (Tamil) 100% 100%
Amudham (Tamil) 100% 100%

SHREE-TAM (Tamil) 100% 100%
English-text 100% 100%

has two phases, in the first phase we are building the base-map
table for a given font-type and in the second phase forming and
ordering the assimilationrules for a specific language.

4.1. Building a Base-Map Table for a Font-type

The base-map table provides the mapping basic between the
glyphs of the font-type to the Aksharas represented in IT3
transliteration scheme. The novelty in our mapping was that
the shape of a glyph was also included in building this mapping
table. The shape of a glyph is dictated by whether it is rendered
as pivotal consonant, or on top, bottom, left or right of the piv-
otal consonant. Thus the pivotal glyphs were appended with 0
(for full characters such as e, ka) or 1 (for half consonants such
as k1, p1), ’2’ for glyphs occur at left hand side of a basic char-
acter (ex: i2, r2), ’3’ for glyphs occur at right hand side of a
basic character (ex: au3, y3), ’4’ for glyphs occur at top of a
basic character (ex: ai4, r4) and ’5’ for glyphs occur at bottom
of a basic character (ex: u5, t5).

4.2. Forming AssimilationRules

In the conversion process the above explained basic-mapping
table will be used as the seed. A well defined and ordered
set of assimilation rules have to be formed for each and every
language. Assimilation is the process of merging two or more
glyphs and generating a valid single character. This assimilation
happens at different levels and our observation across many lan-
guages was that the firing of following assimilation rules were
universally applicable. The rules are:(i) Modifier Modification,
(ii) Language Preprocessing, (iii) Consonant Assimilation, (iv)
Maatra Assimilation, (v) Consonant-Vowel Assimilation, (vi)
Vowel-Maatra Assimilation, (vii) Consonants Clustering and

(viii) Schwa Deletion.
The Modifier Modificationis the process where the charac-

ters get modified because of the language modifiers like virama
and nukta (ka + virama = k1). The Language Preprocessing
step deals with some language specific processing like (aa3 +
i3 = ri in Tamil) and (r4 moves in front of the previous first full
consonant in Hindi). The Consonant Assimilation is known as
getting merged two or more consonantglyphs and forms a valid
single consonant like (d1 + h5 = dh1 in Telugu). The Maatra
Assimilation is known as getting merged two or more maatra
glyphs and forms a valid single maatra like (aa3 + e4 = o3 in
Hindi). The Consonant-Vowel Assimilationis known as getting
merged two or more consonant and vowel glyphs and forms a
valid single consonant like (e + a4 + u5 = pu in Telugu). The
Vowel-Maatra Assimilation is known as getting merged two or
more vowel and maatra glyphs and forms a valid single vowel
like (a + aa3 = aa in Hindi). The ConsonantClusteringin known
as merging the half consonant which usually occurs at the bot-
tom of a full consonant to that full consonant like (la + l5 = lla
in Hindi). The Schwa Deletion is deleting the inherent vowel
’a’ from a full consonant in necessary places like (ka + ii3 =
kii).

4.3. Testing and Evaluation

The evaluation on these font converters is carried out in two
phases. We picked up three different font-types for training or
forming the assimilationrules and one new font-typefor testing
per language. In the first phase for the selected three font-types
the assimilation rules are formed and refined. In the second
phase we chose a new font-type and built the base-map table
only and used the existing converter without any modifications.
We have taken 500 unique words per font-type and generated
the conversion output. The evaluation results in Table 4 show
that the font converter performs consistently even for a new
font-type. So it is only sufficient to provide the base-map table
for a new font-type to get a good conversion results. The issue
of Font-to-Aksharamapping has been attempted in [7] and [9]
but we believe that our framework is a generic one which could
easily be extended to a new font-type with > 99% conversion
accuracy.

5. Building PronunciationModels For
Aksharas

Having converted the font-data into Aksharas, the next step is
to obtain appropriate pronunciation for each of the Aksharas.
As noted earlier, Aksharas are orthographic representation of
speech sounds and it is commonly believed or quoted that there
is direct correspondence between what is written and what is
spoken in Indian languages, however, there is no one-to-one
correspondence between what is written and what is spoken.
Often some of the sounds are deleted such as Schwa deletion
in Hindi. Schwa is the default short vowel /a/which is associ-
ated with a consonant, and often it is deleted to aid in faster
pronunciation of a word. Similarly there exists exceptions for
Bengali and Tamil. There are attempts to model these excep-
tions in the form of the rules, however, they are often met with
limited success or they use linguistic resources such as Morph
analyzer. Such linguisticresourcesmay not always be available
for minority languages. Thus we had built a framework based
on machine learning techniqueswhere pronunciationof Aksha-
ras could be modeled using machine learning techniques and
using a small set of supervised training data.



1916th ISCA Workshop on Speech Synthesis, Bonn, Germany, August 22-24, 2007

Table 4: Performance results for font conversion in Indian lan-
guages

Language Font Name Training/Testing Accuracy
Hindi Amarujala Training 99.2%

Jagran Training 99.4%
Naidunia Training 98.8%
Webdunia Training 99.4%
Chanakya Testing 99.8%

Marathi Shree Pudhari Training 100%
Shree Dev Training 99.8%
TTYogesh Training 99.6%
Shusha Testing 99.6%

Telugu Eenadu Training 93%
Vaartha Training 92%
Hemalatha Training 93%
TeluguFont Testing 94%

Tamil Elango Valluvan Training 100%
Shree Tam Training 99.6%
Elango Panchali Training 99.8%
Tboomis Testing 100%

Kannada Shree Kan Training 99.8%
TTNandi Training 99.4%
BRH Kannada Training 99.6%
BRH Vijay Testing 99.6%

Malayalam Revathi Training 100%
Karthika Training 99.4%
Thoolika Training 99.8%
ShreeMal Testing 99.6%

Gujarati Krishna Training 99.6%
Krishnaweb Training 99.4%
Gopika Training 99.2%
Divya Testing 99.4%

5.1. Creation of Data-set

Given the input word list with the correspondingpronunciations
in terms of phones, feature vectors were extracted for training
the pronunciationmodel at the phone level. About 12200 sen-
tences in IT3 format were used to collect the training data, for
building the pronunciationmodel in Hindi. These sentenceshad
about 26000 unique words, which were used to extract around
32800 feature vectors. Different sets of feature vectors to ex-
perimenton the selectionof features. As for Bengali and Tamil,
5000 words with corresponding pronunciations were used for
obtaining about 9000 feature vectors.

5.2. Use of ContextualFeatures

Contextual features refers to the neighbor phones in a definite
window-size/level. Using the contextual features, experiments
were performedfor various Contextual Levels (CL). A decision
forest was built for each phone to model its pronunciation. A
decision forest is a set of decision trees built using overlapping
but different sub-sets of the training data and it employs a ma-
jority voting scheme on individual prediction of different trees

to predict the pronunciation of a phone. Table 5 shows the re-
sults of pronunciationmodel for Hindi, Bengali and Tamil using
various level of contextual features. We found that that a con-
text level of 4 (i.e., 4 phones to the left and 4 phones to the right)
was sufficient to model the pronunciation and moving beyond
the level of 4, the performancewas degraded.

Table 5: PronunciationModel with Contextual features
Languages Context Level

2 3 4 6
Hindi 90.24% 91.44% 91.78% 91.61%

Bengali 82.77% 84.48% 84.56% 83.56%
Tamil 98.16% 98.24% 98.10% 98.05%

5.3. Acoustic-Phoneticand Syllabic Features

Acousticphoneticfeatures lists the articulatorypropertiesof the
consonants and the vowels. Typically vowels are characterized
by the front, back, mid position of the tongue while consonants
are characterizedby manner and place of articulationand voic-
ing and nasalization features. Syllabic features indicate where
a particular syllable is of type CV or CCV, or CVC etc. The
performance of the pronunciation model for Hindi, Tamil and
Bengali using syllabicand acoustic-phoneticfeaturesof the cur-
rent and neighboring phones are shown in Table 6 and Table
7 respectively. We found that the use of syllabic or acoustic-
phonetic features didn’t show any significant improvement than
that of contextual features for Hindi, Tamil and Bengali.

A rule based algorithm for Hindi LTS is given in [10]. To
compareour resultswith the rule-basedalgorithm,we have used
the same algorithmwith out morphologicalanalyzer on our test
data set. We found that the performanceof pronunciationmodel
using rule-basedtechniquewas 88.17%. while the decision for-
est model in Table 6 was providing an accuracy of 92.29%.

Table 6: PronunciationModel with Syllabic features
Feature Sets Languages

Hindi Bengali Tamil
Syl Struct. of Cur. Phone 92.29% 82.41% 98.31%
Syl Struct. of all Phones 91.61% 67.56% 98.27%

Table 7: PronunciationModel with Acoustic-Phoneticfeatures
Feature Sets Languages

Hindi Bengali Tamil
Acoustic Phonetic 89.73% 84.78% 98.18%

+ Syl Struct. of Curr. Phone 89.73% 81.21% 98.17%
+ Syl Struct. of all Phones 91.09% 69.33% 98.13%

6. Normalizingof Non-StandardWords
Unrestrictedtexts include Standard Words (common words and
Proper Names) and Non-Standard Words (NSWs). Standard
Words have a specific pronunciation that can be phonetically
described either in a lexicon, using a disambiguation process-
ing to some extent, or by letter-to-sound rules. In the context of
TTS the problem is to decide how an automatic system should
pronounce a token; even before the pronunciationof a token, it



1926th ISCA Workshop on Speech Synthesis, Bonn, Germany, August 22-24, 2007

Table 8: Taxonomy of NSWs with examples
Category Description Examples
Addr Address 12/451

(house/streetno.) Janapath Road
Curr Currency Rs. 7635.42
Count Count of items 10 computers,

500 people
Date Date(to be expanded) 1/1/05, 1997-99
PhoneNo As sequence of digits 040 2300675
Pin As sequence of digits 208023
Score Cricket, tennis scores India 123/4,

sets 3-5 3-4 5-6
Time Time (to be expanded) 1.30, 10:45-12:30,

11.12.05, 1930 hrs
Units As decimal or number 10.5 kms, 98 %,

13.67 acres
NUM Default category

is important to identify the NSW-Category of a token. A typical
set of NSW-category and their examples are shown in Table 8.

6.1. Creation of Supervised Training Data

To build a training dataset, it typically requires a large man-
ual effort to annotate an example with the appropriate NSW-
category. For example, given a word corpus > 3M words
in Telugu, Tamil and Hindi, we extracted 150-500K sentences
containing an NSW. Annotating such huge set of examples
needs lots of time and effort. To minimize such effort, we used
a novel frequency based approach to create a representative ex-
ample set.

NSW techniques uses context information for disambigua-
tion with various window sizes, context information contains
a set of word like units which occurs in left and right side of
a NSW, and this information is to be considered as a features
characterizing a NSW. However, not of all context would be
useful, so we used a window size of 2 (left and right) as a default
and given to the pattern generator module. The pattern gener-
ator takes the four tokens (two to left and two to the right of
a NSW) and generates 15 patterns using all possible combina-
tions of 4(like examples, 0001, 0010, 0011, 0100, ., 111) where
1 represent presence of a token and 0 represent deletion of the
token. Given such 15 patterns for each example, these patterns
were sorted in the descendingorder of their frequency and based
on a threshold a set of patterns were choosen and given to a na-
tive speaker to annotate the NSW category. The user interface
was built such that if the native speaker couldn’t annotate the
NSW with the given pattern, then an extended context was pre-
sented to him at varying levels. Using the frequency based ap-
proach, we could reduce the training examples to around 1000-
1500 which a native could annotate within a couple of hours.
Having got the annotation done, we looked at level of context
the native speaker has used to annotate a NSW. We found less
than 10% of time the user has looked into a context information
more than a window size of two.

6.2. Performance of Base-line System

Using word level units and decision tree, we built a base-line
system to predict the category of a NSW. We have tested the
performanceof the system on a separatemanually prepareddata
obtained from a different source (web) referred to as Test-Set-1

Table 9: Performance of prediction of NSW-category Using
Word Level Features

Language % accuracy on % accuracy on
Training set TS1

Telugu 99.57% 63.52%
Hindi 99.80% 66.99%
Tamil 99.01% 55.42%

Table 10: Performance of prediction of NSW-category Using
Syllable level Features

Language % accuracy on % accuracy on Diff with
Training set TS1 base-line

Telugu 99.57% 91.00% 27.48%
Hindi 99.80% 82.80% 15.81%
Tamil 99.01% 87.20% 31.78%

(TS1). The results of prediction of NSW category on TS1 is
shown in Table 9.

The performance of the base-line system on TS1 is around
60%. After analyzing the errors made by the system, we found
that the errors are primarily due to new words found in the con-
text of NSW, and Indian languagesbeing rich in inflectionaland
derivative morphology, the roots of many of these words were
present in the training data. It suggests that we should use roots
of the context as the features to predict NSW-category, how-
ever, such approach needs morphological analyzers. Many of
the Indian languages fall into category of minority languages
where linguisticresourcesare scarce. Thus we wanted to inves-
tigate sub-word units such as syllables and their combinations
as features for predictionof NSW-category.

Our experiments on POS-tagging on Hindi, Bengali and
Telugu using syllable-level units further provided evidence that
syllable level features could be used as alternative and a first-
order approximationof root of a word [11]. After initial set of
experiments to explore different possibilitiesof using syllable-
level features, we confined to a set of following three syllable
level features. They are: 1) F1: previous ten and next ten syl-
lables of a NSW, 2) F2: previous ten and next ten syllables and
onset of each syllables and 3) F3: Onset, vowel and coda of
previous ten and next ten syllables.

Using decision forest, the final predictionof NSW-category
is chosen based on voting on the outputs of the three decision
trees built using F1, F2 and F3. This strategy gets the results of
each decision tree and performs a majority voting to predict the
NSW-category. The performance of the decision forest based
system using syllable level features is shown in Table 10. We
found that the results of using syllable-level features for text
normalization performed significantly better than that of using
word-level features. This significantimprovement in the perfor-
mance is primarily due to syllables acting a first-order approx-
imation of roots of the context words and thus minimizing the
problem of unseen context. The final performance of the text
normalization system is further improved after using expander
module from 91.00%, 82.80% and 87.20% to 96.60%, 96.65%
and 93.38%for languagesTelugu, Hindi and Tamil respectively.

7. Conclusions
This paper explained the nature and difficulties associated with
building text processing components of TTS systems in In-
dian languages. We have discussed the relevancy of font-



1936th ISCA Workshop on Speech Synthesis, Bonn, Germany, August 22-24, 2007

identification and font-to-Akshara conversion and proposed a
TF-IDF based approach for font-identification. A novel ap-
proach of conversion from font-to-Akshara using the shapes
of the glyphs and the assimilation rules was explained. We
have also studied the performance of pronunciationmodels for
different features including contextual, syllabic and acoustic-
phonetic features. Finally we have shown that syllable-level
features could be used to build a text normalization system
whose performance is significantly better than the word-level
features.

8. References
[1] Hunt A.J. and Black A.W., “Unit selectionin a concatena-

tive speech synthesis system for a large speech database,”
in Proceedings of IEEE Int. Conf. Acoust., Speech, and
Signal Processing, 1996, pp. 373–376.

[2] Black A.W., Zen H., and Tokuda K., “Statisticalparamet-
ric speech synthesis,” in Proceedings of IEEE Int. Conf.
Acoust., Speech, and Signal Processing, Honolulu, USA,
2007.

[3] Zen H., Nose T., Yamagishi J., Sako S., Masuko T., Black
A.W., and Tokuda K., “The hmm-based speech synthe-
sis system version 2.0,” in Proc. of ISCA SSW6, Bonn,
Germany, 2007.

[4] Sproat R., Black A.W., Chen S., Kumar S., Ostendorf M.,
and Richards C., “Normalizationof non-standardwords,”
Computer Speech and Language, pp. 287–333, 2001.

[5] HaileMariam S. and Prahallad K., “Extraction of lin-
guistic information with the aid of acoustic data to build
speech systems,” in Proceedings of IEEE Int. Conf.
Acoust., Speech, and Signal Processing, Honolulu, USA,
2007.

[6] PrahalladL., PrahalladK., and GanapathirajuM., “A sim-
ple approach for building transliterationeditors for indian
languages,” Journal of Zhejiang University Science, vol.
6A, no. 11, pp. 1354–1361,2005.

[7] Garg H., Overcoming the Font and Script Barriers Among
Indian Languages, MS dissertation,InternationalInstitute
of InformationTechnology, Hyderabad, India, 2004.

[8] GanapathirajuM., BalakrishnanM., BalakrishnanN., and
Reddy R., “Om: One tool for many (Indian) languages,”
Journal of Zhejiang University Science, vol. 6A, no. 11,
pp. 1348–1353,2005.

[9] Khudanpur S. and Schafer C., “http://www.cs.jhu.edu
/ cschafer/ jhu devanagari cvt ver2.tar.gz,” 2003.

[10] Choudhury M., “Rule-based grapheme to phoneme map-
ping for hindi speech synthesis,” in 90th Indian Science
Congress of the InternationalSpeech CommunicationAs-
sociation (ISCA), Bangalore, India, 2003.

[11] S. Chandra Pammi and Prahallad K., “POS tagging and
chunkingusing decision forests,” in Proceedingsof Work-
shop on Shallow Parsing in South Asian Languages, IJ-
CAI, Hyderabad, India, 2007.


