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ABSTRACT

Most current prosodic modeling techniques are concerned
with variation within the sentence. With the improvement
of local prosodic variation modeling in techniques like unit
selection, we would like to address issues of wider context
in producing appropriate synthetic output. A common ex-
perience found in unit selection synthesis is that a sentence
that sounds natural in isolation does not sound so natural
when embedded in a wider context, because it has inappro-
priate prosody.

This work presents the careful design and creation of a
speech database designed to capture significant super-senten-
tial prosodic variation. It was designed specifically to allow
our own investigations into a notion of “prominence” which
we define as a hidden variable that can contribute to surface
level prosodic realisation (duration, F0 and power). The
background that led up to the construction of this database
and our previous attempts to capture prominence are also
described.

1. BACKGROUND

With the improvement in speech synthesis quality using unit
selection concatenative techniques [1], [2], we have seen a
corresponding improvement in prosody. However with that
improvement we have also seen a move away from explicit
prosodic control in synthesis. Most, though not all such
techniques, depend on “target” costs to find the most appro-
priate prosodic and phonetic context from which to select
units and do no more than simply smooth prosody when
reconstructing the signal. In previous methods, such as di-
phone synthesis, it was necessary to construct more explicit
models for F0, duration etc. These models had to be im-
posed on the concatenated signal in order to have more than
a monotone.

In the design of the Facts and Fables database we wished
to have substantial examples of prosodic influence over more
than just isolated sentences. For the most part, unit selection
synthesis can produce clear, natural sounding synthesis for
isolated sentences, but when they are embedded in a larger

context, be that a dialog system or longer prose, the limita-
tions in prosodic continuity become clear.

Specifically, it has often been hypothesized that there
is some underlying form of “prominence” used to generate
human speech that is realized in duration, pitch and power.
The exact nature (and the exact name) of this phenomenon,
changes from researcher to researcher, sometimes being re-
ferred to as “focus”, “expressiveness” etc. In our work with
the StoryTeller project [3], which is intended to look at gen-
erating expressive synthetic speech within the domain of
telling children’s stories, we are interested in speech syn-
thesis that produces a much wider range of prosodic and
spectral variation than is usually found in current systems.
Within this framework, we are examining how the promi-
nence factor affects these prosodic features (e.g. F0, dura-
tion and power) above the immediate intonational phrase.
Thus we assume stress (that which is lexically defined in
English) and accents (e.g. as defined in ToBI or other in-
tonational labeling systems), but are interested in modeling
prosodic variation beyond these basic local aspects. Using
the correlation between prominence and these acoustic fea-
tures, we hope to improve the modeling of these features
with a model of prominence.

We are aware that there are probably more definitions of
“prominence” than there are researchers in the area. Con-
tinuing that trend we will define “prominence” as the factor
that affects F0, duration and power. Within the framework
we are working in, the Festival Speech Synthesis System
[4], we have a number of factors that can be used to con-
tribute to the prediction of F0, duration and power. Stress
(for English), we assume is lexically defined. Accents, in
the abstract sense of ToBI [5] or Tilt [6], are syllable aligned.
Depending on the exact instantiation, accents may be dif-
ferentiated into types as in ToBI labels, or undifferentiated.
These are typically predicted by some stochastic process,
most often in our case CART, based on local word and struc-
tural features. In our case, no super-sentential features are
used.

In this work we assigned the role of prominence to the
factors that lie outside the immediate context. Our initial
investigations came from a rule-driven approach to promi-



nence which, although we felt was interesting, used a num-
ber of hand-specified factors that we believe would be better
trained from data.

2. PROMINENCE PREDICTION BY RULE

Our initial word prominence model used simple vocabulary
statistics and shallow parsing. We considered two types
of words in a narrative text: ’topic’ words, and ’modifier’
words. Our hypothesis here was that prominent words in a
passage tended to be one of these two types.

Topic words describe the central ideas or objects in a
passage. An example is given below, where some possible
topic words are shown in boldface:

A frog’s eyes are on top of its head. They can
see in almost any direction. Most frogs leap far
with their long hind legs and catch insects with
their sticky tongues. Not all frogs are green:
some are yellow, black, or even red.

We estimated a set of topic words in a passage by select-
ing those words whose frequencies were much higher than
would be expected in a random sample of the same length
from a general corpus of English. Hence the topicality of
word w was defined by:

T (w) = logPb(w)− logPs(w)

Where logPs(W ) was the log probability of the word in
the current text and logPb(W ) was the log probability of
the word in the general background corpus. For our gen-
eral corpus, we used the written subset of the British Na-
tional Corpus (modified to use American spellings), which
is a sample of 80 million word occurrences having about
900,000 unique words, sampled from a mixture of genres
[7].

Given a set of topic words as derived above, we de-
fined a second word type: modifier words. These referred
to adjectives or other parts of speech that modified the topic
words, excluding very common articles like “the” and “a”.
The modifiers in the above example are shown in italics.
We found likely modifier words by first parsing the text
using a statistical parser [8]. From the parse, we selected
all multi-word noun phrases whose headwords were topic
words. Next, the first word of each of these phrases was
chosen as the corresponding modifier word for that phrase’s
topic word. This was a simplistic approximation but seemed
to give reasonable initial results.

If a word occurs more than once in a passage, two ef-
fects occur as the passage is read. First, the word becomes
more familiar as more context and explanation is gathered.
Second, if the word is a topic word, it becomes more im-
portant to distinguish between the various instances as they
occur, by giving more prominence to the modifier words. To
model these two effects, we introduced a very simple model

of word novelty, and its complement, redundancy. While
Fernald and Mazzie [9] found no, or only slight, decline in
pitch properties for the first two instances of a ’focus’ word
in adult speech patterns, we would also expect that further
repetition would greatly reduce word novelty. We therefore
modeled the decay in word novelty for topic words with a
sigmoid ’S’ curve.

In the context of our work, we choose to use the topi-
cality of the word as a feature in the modeling of prosodic
features such as F0, duration and power. We refer to this
feature as the Word Prominence Factor, or WPF.

3. BUILDING A UNIT-SELECTION VOICE USING
THE SOLE DATABASE

Given the above prominence model, we wanted to experi-
ment with techniques to try to learn the prominence relation
between words so the magnitudes in change of pitch could
be found from data rather than hand-specified.

There are not many available multi-sentence speech data-
bases which provide such prosodic data. However one we
are familiar with is from the University of Edinburgh SOLE
project [10]. That project was concerned with speech gen-
eration of user-targeted descriptions of jewelry in a mu-
seum. As part of that project, a database of jewelry descrip-
tion paragraphs was created and recorded by four different
speakers. The database consists of 79 paragraphs with 5939
total words. Three of the speakers were Scottish English
speakers, and one was an American English speaker.

We took the American English “ked” database and used
it to create a unit selection speech synthesizer using the stan-
dard methods described in [11]. As this database contains
long paragraphs, the standard forced alignment techniques
will not work, because the utterances are too long. As we
strive to provide automatic building tools for all our work,
the automatic segmentation and automatic alignment pro-
cess is something described in more detail in section 6.

4. PROMINENCE MODEL TRAINING

Although the prominence model described in section 2 is
based on well-grounded theories of prominence, it relies on
hand-written rules and definitions of how prominence varies
in text. We would prefer if we could learn such variations
from speech data thus being able to more easily deal with
speaker and style variations without requiring careful hand-
coding.

The SOLE-ked database, consisting of around 25,000
phonetic segments, was used to build prosodic models: F0,
duration and power models. In addition, we used the rule-
driven prominence value that was added to each word in the
database to determine whether that would improve perfor-
mance.

The results however were not very promising. Although
the Word Prominence Factor (WPF) feature did contribute



slightly to the F0 model and power model, it was not very
significant. We built both CART models and Linear Regres-
sion models, though the results were very similar. When we
reduced the number of features for prediction, the WPF fea-
ture became more important but this also reduced the over-
all score. The feature alone contributes between 10-30% of
variance but other features also covered much of that vari-
ance.

We also tried the larger ARCTIC databases [12], using
the American English male speaker set bdl arctic. Again we
marked each word with the prominence algorithm. Then we
built F0, duration and power models, but found basically the
same result as with SOLE-ked. Although there was some
predictive capacity in the prominence feature it was not sig-
nificant, and other features covered the same variance.

The SOLE-ked database is not large, and the ARCTIC
database consists of isolated sentences; therefore neither
was ideal for the phenomena we wished to investigate. Thus
we decided to design, record and build our own database
that hopefully would allow us to build the models we wished.

5. CORPUS

In selecting and creating corpora for concatenative speech
synthesis, it is typical to have a set of at least hundreds or
even thousands of sentences for reading and recording [13]
[12]. These sentences are typically treated as independent
entities and recorded in separate files. Such corpora will not
suffice for our purposes, because we are investigating phe-
nomena that extend beyond sentence boundaries. Although
it may be possible to use a corpus such as the Boston Uni-
versity Radio News Corpus [14] after performing additional
labeling, we decided to create our own corpus. This gave
us more freedom to select the kind of text we wanted, and
will also enable us to freely release our corpus for other re-
searchers.

Initial candidate utterances for our corpus were selected
from two public domain sources from Project Gutenberg
[15]: Aesop’s Fables and the CIA World Factbook (2000).
Aesop’s Fables were included in their entirety, and numer-
ous paragraphs on the economics and politics of various
countries were selected from the CIA World Factbook.

The process of selecting paragraphs from this original
set took place in two stages. Ideally we would like data
that are easy to say. Humans are actually not very good at
reading text fluently without significant practice. Thus we
desired a set of data to record which did not contain par-
ticularly hard or ambiguous words to pronounce. We first
pruned the dataset to those stories for which all words were
contained within the CMUDICT dictionary [16], assuming
that such words would be relatively easy to pronounce, or at
least easier than words not found in that lexicon.

The second stage for selecting candidate stories was to
choose those that maximized phonetic coverage. We did
this by first converting the stories to phonetic strings using

our synthesizer front end then using a greedy selection of
stories that had maximal diphone coverage. This technique
was also used in the design of ARCTIC databases [12] and
the scripts are included in the FestVox distribution [11].

We did consider another level for selection, and that was
to select stories that might have the most varied prominence.
It is not immediately clear what that measure would be. We
did experiment with some possible measures. For exam-
ple, maximizing the delta WPF feature over the sentences.
However we were unsure of how to integrate that into the
selection method, and it was not clear whether our WPF
feature was the right thing to optimize, so we left that out of
the story selection process.

In total, there were 107 utterances, consisting of over
14,000 words. They were recorded by a male native speaker
of American English from a Midwest American region. The
recordings had a mean length of 45.4 seconds, and a stan-
dard deviation of 16.6 seconds. The shortest utterance was
14.3 seconds, and the longest was 117.8 seconds.

6. SEGMENTATION AND ALIGNMENT

In order to use these recordings for concatenative synthe-
sis, it was necessary to label units that would be used for
concatenation. Because manual labeling of such a corpus
is a time-consuming task, it is typical to at least partially
automate the process by using a speech recognition pro-
gram in forced alignment mode [17]. Such a program can
at least provide a first guess at the locations of phones in the
recordings. However, it has been our experience that such
a technique does not tend to work as well on longer utter-
ances. Because our corpus had paragraph and even multi-
ple paragraph length utterances instead of single sentence
utterances, we decided to investigate a few approaches to
automatically segment our audio and text files. If the result-
ing shorter segments were associated with the correct text,
then they could be used with a speech recognition program
in forced alignment mode with the hope of achieving better
labeling accuracy.

6.1. Acoustic Segmentation

The same acoustic segmentation process was used in all
alignment approaches. Each frame was classified as speech
or nonspeech by a two-state fully-connected Hidden Markov
Model (HMM) with Gaussian Mixture Model observations.
One hidden state corresponded to speech and the other to
nonspeech. The Gaussian Mixtures associated with each
state each consisted of two Gaussians with mixture coeffi-
cients. The observation vectors consisted of energy, twelve
melcepstral coefficients, and their first- and second-order
differences, for a total of 39 acoustic features. The model
was constructed using the Bayes Net Toolbox (BNT) [18].
It was trained on one 51.8 second utterance from the f2b
corpus from the Boston University Radio News Corpus [14]
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and tested on 54 utterances that were a total of 1359.59 sec-
onds. Frames were spaced 10ms apart, and widths from
20ms to 140ms were tested in increments of 20ms.

Although the model appeared to perform well in de-
tecting blocks of nonspeech between words that occurred
around a prosodic phrase break, it would also occasionally
classify intra-word frames as nonspeech. We suspect this
may be due to a similarity of acoustics in certain portions of
stop phones and inter-word pauses, but have not confirmed
this. Because the portions inside words that were classi-
fied as nonspeech tended to be significantly shorter than
prosodic phrase breaks, we experimented with a postpro-
cessing technique that went through the classifications and
forced the run lengths of each class to be above a certain
threshold. In other words, with a threshold of 12 frames
spaced every 10ms, each speech and nonspeech segment
had to last at least 120ms. Every threshold size from 1 to
25 was tried.

The best results on the f2b corpus test set were achieved
using a window width of 100ms with a threshold of 12 or
13 (speech and nonspeech regions were at least 120ms or
130ms because the frames were spaced 10ms apart). This
combination classified speech and nonspeech frames with
an accuracy of 96.2%. To put these figures in perspective,
it should be noted that 88.1% of the test set frames were in
speech segments, so a naive strategy of labeling everything
as speech would yield an accuracy of 88.1%. However, such
a strategy would be useless for selecting nonspeech frames
for splitting an audio file because none would be labeled
as nonspeech. The results of the trials involving different
window widths and different threshold lengths on the test
set from the f2b corpus are summarized in Figure 1.

Since this approach worked reasonably well for classi-
fying nonspeech frames in the f2b corpus, we decided to
use it as part of our strategy for the automatic acoustic seg-

mentation of our corpus. First, a Viterbi search was per-
formed on our corpus using the HMM with parameters de-
rived from the f2b corpus. This provided speech/nonspeech
labels for the frames in our corpus. Then we split the au-
dio files at the center nonspeech frame in each nonspeech
region. In practice, this worked fairly well. We did not
change any of the acoustic splits before attempting to split
the text. This is perhaps a bit surprising as we did not at-
tempt to train the model on our corpus, which was recorded
under different conditions with a different speaker, and also
because our model is much simpler than a typical segmen-
tation model for speech recognition that uses clustering and
Gaussian Mixture Models with many more Gaussians [19].
Perhaps the success occurred in part because of the simplic-
ity of the conditions. Recordings made for speech synthesis
usually have much less noise than those made for speech
recognition. As a result, it may be possible that a simpler
acoustic segmentation model would suffice for speech syn-
thesis. If that is true, there are numerous benefits to our
approach:

• The model may not have to be retrained for each new
synthetic voice that is created. Then acoustic segmen-
tation would require less work and knowledge.

• If it is necessary to retrain the model, it may be sim-
pler and faster than retraining a more complicated
acoustic segmentation model.

• Much less data may be necessary to train the model,
due to its relative simplicity. This is important, be-
cause acoustic data for speech synthesis is typically
collected only from a single person, and there is often
much less than for speech recognition.

6.2. Text Segmentation

After splitting the audio files into shorter files, it was nec-
essary to split the associated text. Four methods were used
to automatically split the text to match the acoustic splits.
In addition to information about the split locations, these
methods used duration and prosodic phrase break models
that were available through the Festival Speech Synthesis
System [20]. These models were derived from separate data
[21] from that used in this study, using the model described
in [22]. Thus it was not necessary to label a new training set
with duration and prosodic phrase break markings. In the
end, we found that hand correction was still necessary, but
some automatic approaches appeared promising.

6.2.1. HMM Based on Duration and Break Models

The first method for splitting the text used a HMM that was
constructed based on both the duration and prosodic break
models. Average lengths for the words in the text were
taken from the duration model, and probabilities of breaks
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occurring after each word in the text were taken from the
prosodic phrase break model. These quantities were in turn
used to derive transition probabilities for a HMM with bi-
nary speech/nonspeech observations for each frame. The
speech/nonspeech observations used in this method were
the ones predicted by the acoustic segmentation step (with
initial nonspeech frames removed). The HMM is depicted
in Figure 2.

The model probabilities were set as follows:

• Prior probabilities were set to force the HMM to start
in the first word node.

• Word nodes could only emit speech frames, while
break nodes could only emit nonspeech frames.

• The pi probabilities were determined by setting them
to pi = li/(li + 1), where li was the expected word
length, linearly scaled based on the number of speech
frames in the utterance.

• The bi probabilities were the break likelihoods.

This model is described further in [23].

6.2.2. Linear Duration Scaling

The second method used the duration model, but did not use
the prosodic phrase break model. For each utterance, the av-
erage durations for the words in the text were multiplied by
a constant so the resulting duration estimates would sum to
the true length of the recorded utterance. Then the locations
of the acoustic splits were used to select text words by in-
cluding all words whose proposed ending times fell between
the splits.

6.2.3. Linear Duration Scaling on Speech Frames

The third method was essentially the same as the second
method, but instead of scaling the word duration predictions
to fill the entire length of the recorded utterance, frames
classified as nonspeech by the acoustic segmentation step
were not counted. This attempted to compensate for initial
and final silences resulting from the recording process, and
also adjusted the amount of speech between acoustic splits.

6.2.4. Local Adjustment Based on Break Model

The fourth method was an adjustment applied to the third
method. After results were obtained by the third method,
probabilities from the break model were checked for the
currently proposed break location and the two adjacent lo-
cations. The break was set to the highest scoring location of
the three.

6.2.5. Discussion

The results for the text segmentation methods were as fol-
lows:

Method Correct Total Accuracy

HMM 7265 14079 51.60%
Lin. Scaling 10560 14079 75.01%
Lin. Speech Only 12414 14079 88.17%
Lin. Speech Break 12302 14079 87.38%

Here, a word is considered correct if it is placed in the
text for the same subutterance in which it was spoken.

Although the acoustic segmentation was reasonably suc-
cessful, the accompanying text segmentation still required
hand correction. Out of the four methods, linear duration
scaling only using frames classified as speech performed
the best. The performance of the HMM method was disap-
pointing, especially considering that it had performed fairly
well in predicting which words were followed by prosodic
phrase breaks in the f2b corpus in a separate experiment. It
appears that although the technique is reasonable at predict-
ing which words precede splits, it has difficulty correctly
associating these potential splits to the actual locations of
the splits. When this technique makes an error, it appears
to favor associating an entire phrase to the wrong acoustic
segment as opposed to the other techniques which often as-
sociate fewer words to the wrong acoustic segment when
they make an error.

It should be noted that the lengths of the utterances may
be related to the relative success of the linear duration scal-
ing methods, which partially rely on the consistency of the
speaker’s rate. Further investigation would be necessary to
determine whether these techniques apply to longer utter-
ances, where there is more opportunity for the speaking rate
to vary. Also, because we did not retrain the duration mod-
els, we are relying on the speaker using relative word dura-
tions that are similar to the model.

7. CONCLUSIONS

Although we constructed what we feel is a much more suit-
able database for investigating prominence, we have not yet
exploited it fully. Our database is named Facts and Fables
and is available at http://www.festvox.org/cmu faf/. In ad-
dition to continuing our experiments with automatic seg-
mentation, a technique that we feel is necessary before oth-
ers may be able to easily build their own versions of the



database, we also need to experiment with better ways to
model prominence.
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