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Abstract
This paper is an initial investigation into using knowledge-based
parameters in the field of statistical parametric speech synthesis
(SPSS). Utilizing the types of speech parameters used in the
Klatt Formant Synthesizer we present automatic techniquesfor
deriving such parameters from a speech database and building
a statistical parametric speech synthesizer from these derived
parameters. Although the work is exploratory, it shows promise
in using more speech production inspired parameterizations for
statistical speech synthesis.
Index Terms: statistical speech synthesis, Klatt formant syn-
thesizer.

1. Introduction
Over the last thirty years we have seen the advancement of
speech synthesis from hand crafted rule-driven formant synthe-
sis techniques [1]; controlled inventory concatenative synthe-
sis [2], (e.g. diphones), large inventory unit selection synthesis
[3], and the latest technology investigates statistical parametric
generation based techniques [4]. We can view this progression
as benefiting from improved machine learning modeling tech-
niques which have in turn been aided by the advancement in
computation power and increasing database sizes. One advan-
tage is that synthesis is now feasible in languages where little
phonetic or linguistic knowledge is available. Modeling tech-
niques are often sufficient to capture language properties such
that adequate synthesis is possible with sometimes only orthog-
raphy and audio of a reasonably small database [5].

However it is notable that the selection of parameterizations
for SPSS is still a hot research topic. There is substantial ac-
tive work on finding improved excitation modeling techniques
[6, 7, 8]. Although alternative spectral parameterizationis also
being studied (MFCCs vs LSF [9]) these are currently mostly
addressed at derived functions from FFTs. We wish to expand
that search to investigate parameterizations that are moretar-
geted to human speech. For our initial study we returned to the
earlier speech synthesis work of Dennis Klatt.

2. Klatt Formant Synthesis
Klatt Formant Synthesis [10] is a synthesis technique wherea
set of parameters are generated from text by rule from which
a waveform file is constructed from a cascade of modules to
give a resulting signal. The choice of parameters is based on
established theories of speech production and perception.They
include source features (like glottal sampling; pitch; measure-
ments of aspiration and frication) and vocal tract features(like
resonant nasal and formant frequencies, bandwidths and am-
plitudes). Though ground breaking at the time, the technique

required experts to construct such suitable values for suchpa-
rameters by hand in order to optimally produce human sound-
ing speech. With the advent improved computational resources,
both speed and space, techniques that automatically train from
recorded natural speech have prevailed as they can offer both
more natural synthesis, and can require less phonetic knowl-
edge of the language and speaker to create. However in re-
questioning the optimal parameterization for modern statistical
parametric speech synthesis we decided to re-visit the original
selection of Klatt Formant Parameters to see how they perform
in today’s statistical synthesis framework. In addition tousing
Klatt-like parameters in a statistically synthesizer, we must also
address the novel issue of automatically deriving these param-
eters for a large database of natural speech. We do not have
the expertise to do develop these parameters by hand or access
to the original MITalk to get expert aid. We therefore have de-
veloped our own initial techniques to derive Klatt-like features
directly from speech signals.

Broadly, Klatt parameters as described in [1] fall into three
categories – i) F0 and Formant parameters (amplitudes, fre-
quencies and bandwidths of the first6 formants and the nasal
formant), ii) quantified measures of articulatory features(am-
plitudes of aspiration, frication and nasality), and iii) Voicing
amplitude, Overall gain etc., A complete description of Klatt
features is presented in Appendix A. The following sections
describe the techniques used for extraction of these parameters.

2.1. Formant Parameters

We use theformantpackage from the ESPS toolkit [11] to ex-
tract the formant parameters. For each 50 second analysis win-
dow with a 5 millisecond shift, we get the frequency and the
bandwidth. We use theFFT program to compute the magni-
tude spectrum. The amplitude at the formant frequencies are
noted as the formant amplitudes. It is to be noted that there are
several practical considerations here like the kind of smooth-
ing window, the number of points in the FFT, window size/shift
etc. For the experiments here, we manually chose the param-
eters that best approximate the peaks on the spectra with the
extracted formant frequencies.

Figure 1 marks the formants on the FFT magnitude spec-
trum for a voiced segment of speech. The decision to extract
6 formants was merely practical, as the Klatt synthesizer soft-
ware we use expects6 formants. Also, human speech is fairly
well represented within the range of frequencies spanned by6
formants.



Figure 1: First6 formants marked on the FFT spectrum

2.2. Nasality, Aspiration and Frication

Klatt’s original synthesizer proposes use of coefficients of
nasality, aspiration and frication. In this work, we use a dis-
criminative approach as described in [12] to find these features
in a signal. In [12], Gaussian mixture models (GMMs) are used
to find the likelihoods of these articulatory phenomena. We
build both positive and negative models for each phenomena
using features (e.g MFCC) from the training set. As the data
is already labeled with standard phonemes with a three state
HMM labeller we can make of this information to training the
models. We use only the frames labeled with the middle states
of the relevant phonemes, making the assumption that the first
and last states may cover transitions between the phonemes.A
positive state refers to when a characteristic is present (nasal-
ity, aspiration, and frication) and negative states refer to when
a characteristic is not present (non-nasality, non-aspiration, and
non-frication). When training the positive state GMMs, thefol-
lowing phonemes are used: nasality,n, m, ng; frication, f, hh,
s, sh, th, v, z, zh; and aspiration,hh. When training the neg-
ative states, all other phonemes not in these sets are used. In
addition, phonemes that bordered a positive state phoneme are
excluded from training the negative state GMM, so as to avoid
transitional effects (for example, a non-nasal phoneme maybe
colored with some nasality if it is next to a nasal phoneme, and
as such should not be used for training the non-nasal GMM).
Once these GMMs are trained, they are used to aid in both scor-
ing (i.e., how nasal a segment of speech is) and classification
(i.e., if a segment of speech is nasal or non-nasal). These “detec-
tors” can be used to output non-binary scores of these acoustic
events.

During the testing phase, each utterance is processed by
testing each short time feature sequence for each of the three
detectors. Each detector assigns a score of0 to a segment that is
detected to be in the negative state. A non-zero score is assigned
for positive classification of the events. The dynamic ranges of
these scores may scaled to correspond to the decibel ranges as
specified in original Klatt implementation. Each detector ad-
dresses two tasks: assigning the actual score and thresholding
all negative state features. Some detectors investigated are de-
scribed briefly below.

2.2.1. Maximum likelihood detector

This naı̈ve detector assigns the class with the higher likelihood
on the speech segment under consideration. Where theL+ and
L

−
are the likelihoods for the positive and negative states from

the respective GMM PDFs, the score is calculated as Eqn 1.
Note that a score of zero is assigned whenever the negative state
likelihood is greater than the positive state score, by threshold-
ing any scores that are negative or imaginary.

S = log10(L+ − L
−

+ 1) (1)

2.2.2. Bayes detector

The Bayes detector attempts to take into consideration the prior
probabilities for the positive or negative states (obtained from
the training data). The detector scores each test speech segment
such that

S = {
log(L+) P (+|x) > P (−|x)

0 P (+|x) < P (−|x)
(2)

Note that the likelihood from the GMMi is in the form
P (x|i). To getP (i|x), Bayes rule may be used to transform
the comparison betweenP (x|i) andP (x|j) to a comparison
betweenP (x|i)P (i) andP (x|j)P (j), wherei andj could as-
sume positive and negative states. Note that the prior probabili-
ties weight our decision.

2.2.3. Linear Discriminant Analysis

An LDA detector is developed to separate the GMM outputs of
the positive and negative states. Here, the score output is the
same as is found in Eqn 2, but the decision criteria are based on
whether LDA determines a test MCEP to be either from the pos-
itive or negative state. To determine a threshold to use for this
comparison, cross validation is done on the training data tode-
termine the optimal threshold to use to separate the two classes.
Two versions of this detector are tested ; one that uses all train-
ing data and one that used equal amounts of training data for
the positive and negative states (the latter made the detector’s
decision bias more fair.

Another detector is used that discounts the GMM scores.
Instead, LDA is applied to the features themselves. This essen-
tially projects a high dimensional vector into a single dimen-
sion. Cross validation is performed to obtain optimal thresholds
to distinguish the positive state from the negative state. Once
projected onto one dimension, instances falling in the negative
state are assigned a score of0 and positive state instances were
given a score based on a scoring function. Here, a Gaussian
scoring function was used, but this could easily be extended
with the use of different scoring functions and dimension ofthe
projected space.

These methods are tested on a development and training set
both in terms of error rates and cepstral distortion betweenthe
reference features and the resynthesized utterance’s features.
All other parameters in the Klatt synthesizer remain constant
during resynthesis. The naı̈ve detector performed the bestin
terms of error rates, but the LDA detector (equal training size)
based on MCEPs performed the best in terms of cepstral distor-
tion, and is our chosen method for our final implementation.
These results are shown in Table 1. It should be noted that
perceptually, it is difficult to notice a difference betweenthese
different methods, and as such all may be considered as good
detectors for current purposes.

2.3. Other Parameters

Parameters like thegain, skewandaturb have been set empiri-
cally. The resynthesis is perceptually checked to sound as close
to the original speech as possible. The default values of the



TrueState Naı̈ve Bayes GMM LDA GMM LDAE MCEP LDA MCEP LDAE

Nasal 1.43% 3.40% 7.26% 19.90% 15.95% 4.79%
Non-Nasal 0.75% 0.40% 0.23% 0.40% 0.37% 1.41%
Fricative 3.78% 6.60% 20.38% 6.33% 12.62% 7.79%

Non-Fricative 5.00% 3.82% 6.80% 12.36% 7.05% 9.22%
Aspiration 3.01% 13.28% 63.66% 8.52% 89.47% 10.03%

Non-Aspiration 1.32% 0.21% 0.07% 4.00% 0.09% 15.89%
MCD mean 11.88 11.95 11.96 11.95 11.79 11.67

MCD variance 0.36 0.37 0.38 0.38 0.26 0.26

Table 1: Error rates on positive and negative examples.

program are used for the rest of the parameters. Wherever ap-
propriate, silence and unvoiced segments are set to zeros orde-
faults. In all default values were used for5 of the40 parameters
suggested by Klatt.

3. Synthesis Experiments
We used the Arcticrmsdatabase [13] for our experiments as it
offers one of clearest spoken standard American voice. We ex-
tracted the 40 parameters for each 5 ms frame in the databases
using the techniques described in the previous section. Thepa-
rameters were then used within our Clustergen Statistical Pa-
rameter Speech Synthesizer [14]. We effectively replaced the
MFCC features that we normally use with the Klatt Parameters.
Although Clustergen offers various options for which features
are used for clustering, and the option to build multiple mod-
els for different subsets of the parameter vectors, we used the
simplest option and clustered with all the parameters.

Figure 2: Schematic representation of Klatt-based synthesis [1]

In the following sections, we describe two experiments –
1) resynthesis of speech from extracted Klatt parameters and 2)

Synthesis of speech from unseen text based on Klatt parameter
based statistical speech synthesis.

3.1. Resynthesis

For resynthesis of these generated parameters we used [15],a
C implementation of Klatt’s original Fortran code. The Fig.2
illustrates the schematic representation of the Klatt synthesizer.
The input excitation is either an impulse train for voiced sounds
and noise for unvoiced sounds. This is input to aspiration, frica-
tion and resonators (corresponding to the formant resonances)
as illustrated in the Fig. 2.

The extracted Klatt features are used as input to the Klatt
synthesizer to reconstruct the speech signal. The results are en-
couraging with perceptually almost perfect resynthesis. Fig. 3
compares the spectra of original and synthesized portions of
a voiced segment. Evidently, the peaks align precisely in the
lower frequency regions. We are still investigating the attenua-
tion effect that is affecting the higher frequency ranges.
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Figure 3: Resynthesis vs original spectrum of 5ms speech seg-
ment of the phonemeeh

3.2. Text-to-Speech

To investigate the Klatt-parameter based Clustergen framework
for Text-to speech, we built CART trees of Klatt parameters
extracted for the speech database. The trees are clustered us-
ing the same contextual questions that are commonly used in
MCEP based voice building. A Klatt parameter tree is trained



for each of the three HMM states within a phoneme. At run-
time, the parameter vectors are generated using the duration,
F0 and the Klatt parameter trees. For synthesizing speech from
the predicted parameter file, we use the same C code used for
resynthesis. The models for duration and F0 are the same that
are built for the default voice (using MCEPs).

We compared the two voices built using MCEPs and Klatt
parameters. Since the same duration model is used for the
two voices, outputs are time-aligned. Appendix B shows the
spectrograms for a synthesized utterance of an unseen test sen-
tence using the two parametrizations. As evident from the spec-
tograms, Klatt parameters sufficiently model the spectral as-
pects of speech. Perceptually, the speech is completely intel-
ligible and listeners transcribed all the words in the sentence.
There is, however, the ‘processed’ quality to the synthesisthat
is quite distinct from MCEP based synthesis.

Predicted parameters can be post-processed based on the
identity of the underlying phoneme by merely increasing or de-
creasing its value as appropriate for the task (e.g, to make out-
put speech sound more ’nasal’ or ‘bursty’). This flexibilityis
unique to knowledge-based parametrizations, like the one we
presented in this work. For the example reported, we did not do
any post-processing on the predicted vectors except for smooth-
ing. We are currently working on objective comparisons of the
two parametrizations.

4. Discussion

The synthesis quality is fully understandable but has a “pro-
cessed” quality to it. Interestingly although the output speech
clearly contains the speaker identity of rms, the quality isalso
sounds like “DECtalk”. Thus it is clear that the Klatt parame-
ters introduce a particular type of speech distortion due tothe
parametric and resynthesis techniques.

We are aware that expertly highly-tuned Klatt parameters
can produce synthesis quality far beyond the quality that raw
text to speech can give, and hoped that our techniques might
help improve text-to-speech quality for Klatt-like formant syn-
thesis. But even our resynthesis quality is closer to TTS output
quality than we hoped. The resynthesis quality is not as good
as we hoped, suggesting there is still more work in improving
both the extraction of parameters and the method of resynthe-
sis. Ultimately in statistical speech synthesis there are three
constraints on the appropriateness of a set of parameters. First
they must be automatically derivable from data bases of natu-
ral speech; second the parameters must give rise to high quality
resynthesis; and finally the parameters must be predictablefrom
text.

5. Conclusion

In this paper, we revisit the classical knowledge based
parametrization of speech for use within the framework of sta-
tistical parametric speech synthesis. We present techniques for
extraction of these parameters directly from speech data. Ana-
lytical results are presented for resynthesis and text based mod-
eling/prediction of Klatt parameters. We intend to furtherim-
prove our parameter extraction and vocoding algorithms. We
are also investigating the use of Klatt-style parameters ina range
of speech applications like speech recognition, speaker identifi-
cation and voice conversion.
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A. A detailed list of Klatt Parameters
No. Parameter Description

1 f0 fundamental frequency (pitch) of the segment
2 av Amplitude of voicing for the cascade branch in dB, Range 0-70
3 f1 First formant frequency in the range 200-1300 Hz
4 b1 Cascade branch bandwidth of first formant in the range 40-1000 Hz
5 f2 Second formant frequency in the range 550 - 3000 Hz
6 b2 Cascade branch bandwidth of second formant in the range 40-1000 Hz
7 f3 Third formant frequency in the range 1200-4999 Hz
8 b3 Cascade branch bandwidth of third formant in the range 40-1000 Hz
9 f4 Fourth formant frequency in 1200-4999 Hz
10 b4 Cascade branch bandwidth of fourth formant in the range 40-1000 Hz
11 f5 Fifth formant frequency in the range 1200-4999 Hz
12 b5 Cascade branch bandwidth of fifth formant in the range 40-1000 Hz
13 f6 Sixth formant frequency in the range 1200-4999 Hz
14 b6 Cascade branch bandwidth of sixth formant in the range 40-2000 Hz
15 fnz Frequency of the nasal zero in the range 248-528 Hz (cascade branch only)
16 bnz Bandwidth of the nasal zero in the range 40-1000 Hz (cascade branch only)
17 Fnp (default 200) Frequency of the nasal pole in the range 248-528 Hz (constant)
18 Bnp (default 30) Bandwidth of the nasal pole in the range 40-1000Hz (constant)
19 asp Amplitude of aspiration 0-70 dB
20 Kopen (default 40) Open quotient of voicing waveform, range 0-60
21 Aturb (default 0) Amplitude of turbulence 0-80 dB, simulates breathy quality
22 tilt (default 0) Voicing spectral tilt in dB, range 0-24
23 af Amplitude of frication in dB, range 0-80 (parallel branch)
24 Skew (default 0) Spectral Skew - skewness of alternate periods, range 0-40
25 a1 Amplitude of first formant in the parallel branch, in 0-80 dB
26 b1p Bandwidth of the first formant in the parallel branch, in Hz
27 a2 Amplitude of parallel branch second formant
28 b2p Bandwidth of parallel branch second formant
29 a3 Amplitude of parallel branch third formant
30 b3p Bandwidth of parallel branch third formant
31 a4 Amplitude of parallel branch fourth formant
32 b4p Bandwidth of parallel branch fourth formant
33 a5 Amplitude of parallel branch fifth formant
34 b5p Bandwidth of parallel branch fifth formant
35 a6 Amplitude of parallel branch sixth formant
36 b6p Bandwidth of parallel branch sixth formant
37 anp Amplitude of the parallel branch nasal formant
38 ab Amplitude of bypass frication in dB, 0-80.
39 avp Amplitude of voicing for the parallel branch, 0-70 dB.
40 Gain (default 80) Overall gain in dB range 0-80.

B. A comparison of Klatt/MCEP parameter based TTS

Figure 4: Synthesized example from MCEP(above) and Klatt(below) parameters for sentence“His immaculate appearance was gone.”


