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Abstract. This paper describes the Mountain language generation
system, which is designed as a domain-independent, machine translation-
based approach to generate utterances for use within a spoken dialog sys-
tem. We describe the method used to train the generation engine from
a corpus of in-domain human responses, and show typical output of the
Mountain system. The results of our initial evaluation suggest this ap-
proach can be a viable method of language generation. We also discuss
potential applications where this approach is likely to be most useful, as
well as planned improvements to the system and future research using
Mountain.

1 Introduction

Recent years have seen noticeable improvement in dialog systems, but even
state-of-the-art systems still have limitations. Improvements in speech recog-
nition and dialog management have made it possible to have more natural
interactions, but frequently the potential of dialog systems to have truly nat-
ural conversations will be held back by their rudimentary language genera-
tion components. This observation is not new, having been noticed for years
[Rambow et al., 2001,Chambers and Allen, 2004], but continues to be an issue.

Templates and canned text, because they are conceptually simple and require
minimal expertise to write, are still one of the most commonly encountered meth-
ods of language generation in dialog systems. They are far more frequently seen
than more state-of-the-art language generation systems, which tend to require a
linguistics expert to be able to use effectively. This is despite the drawbacks of
using templates, such as generally unnatural and repetitive output, significant
creation cost, and a lack of portability between applications. Efforts to provide
more varied template output [Oh and Rudnicky, 2000] have been able to reduce
the perceived repetition, but the end result is still noticeably different from nat-
ural, human-generated output. Further, as the number and complexity of the
templates increases, they become increasingly more expensive to design, create,
and maintain.

The motivation for this work is to allow for spoken dialog systems with
more human-like output than templates are typically capable of achieving, while
maintaining the general simplicity of creating a typical template-based system.



Some users of spoken dialog systems will interact with a system using a human
metaphor [Edlund et al., 2006], and these users expect human-like responses.
For such users, the quality of the dialog system they are interacting with in part
depends on how natural its responses are [Edlund et al., 2008].

2 Background

2.1 Approach

Because language generation for dialog systems has several key differences from
general text generation, as discussed in [Horacek, 2003], we feel a dialog system
should have language generation that is tailored for its needs. In particular, for
many dialog platforms, including the Olympus framework [Bohus et al., 2007],
generation is primarily only for realizing natural language surface forms that
correspond to some internal state; often this is referred to as tactical generation.
In practical terms, what is done is to convert the machine’s representation of
the dialog state into fluent and natural-sounding sentences. If one thinks of
the dialog state representations as a highly structured (and possibly simplistic)
language, then this task can be viewed as a translation problem, where the goal
is to translate from the highly structured internal language of states to fluent
and natural English (or any other language) sentences.

What is then required is a parallel data set, so that a mapping between the
internal “language” and the natural surface forms can be learned. Unlike some
other advanced NLG systems, we are not concerned with any significant amount
of linguistic details, such as part of speech, agreement, or semantic relations,
among others, in our input data. While these can clearly be helpful in producing
high-quality output, there are significant costs for systems that require a high
level of linguistic expertise or detailed annotation to be able to use; not all
developers of dialog systems will be able to devote resources to have an expert
design and annotate corpora for their generation module. Therefore, one of the
considerations in our approach is that its implementation require only similar
developer skills as writing templates.

Since most dialog applications exist within a known domain – that is, they
do not have fully open-ended conversations – the set of things that can be talked
about is closed, if possibly large. Thus, for tasks whose domain can be covered
with a template-based system, it should also be possible to create a reasonably-
sized parallel training corpus.

2.2 Related Work

There has been increasing interest in applying machine learning to spoken dialog
research. Nearly all of the typical components of a dialog system have had some
effort made to use machine learning to improve them; these are nicely summa-
rized in [Lemon and Pietquin, 2007]. It seems, though, that trainable language
generation for dialog has seen comparatively less work than other modules like
ASR, dialog management, and related areas like user simulation.



Corpus- and statistically-based approaches to language generation, however,
have been around for some time now, though only recently have they been start-
ing to be applied to dialog NLG. These approaches are appealing due to their
ability to leverage machine learning as has been done for other NLP tasks, to
provide better results than typical approaches. The Nitrogen generation system
[Langkilde and Knight, 1998], for example, derived statistical information from
a corpus in order to rank and select grammar-generated surface forms. The work
by [Ratnaparkhi, 2000] describes a generation system that can be trained from
an annotated corpus, learning to produce surface forms using only a semantic
representation. [Marciniak and Strube, 2005] describe using a corpus annotated
with semantic and grammatical information, which is then used as a linguis-
tic knowledge base for generation. Amalgam [Corston-Oliver et al., 2002] uses
a similar classfication approach as Nitrogen, but takes logical forms as input.
Work by [Zhong and Stent, 2005] is more similar to our proposed approach, di-
rectly using unannotated data to learn surface realizations. Likewise, a similar
approach as we describe has used statistical translation methods for summariza-
tion and headline generation [Banko et al., 2000], with some degree of success.
Additionally, [Sripada et al., 2003] generated weather forecasts using a parallel
corpus of raw weather data and human-produced forecasts; following up this
work, [Belz, 2005] compares N-gram selection and treebank based methods of
statistical NLG in this domain.

Many of these approaches use significant amounts of linguistic knowledge (in
some cases from annotations, and in some cases trained from data) in order to
improve the natural language output they produce. The work we describe here
attempts to use a broadly similar method – automatically learning generation
output from a corpus of examples – but without any explicit linguistic annotation
of the corpus.

3 MOUNTAIN: Machine Translation NLG

We present Mountain, a machine translation approach for natural language
generation. In our implementation, we have used the Moses machine
translation system [Koehn et al., 2007], which makes use of the Giza++
[Och and Ney, 2003] translation model training toolkit and the SRILM
[Stolcke, 2002] language model toolkit. Though we have used Moses as the trans-
lation engine, because it and its support tools are freely available, nothing in the
approach for Mountain restricts us to this specific engine.

Mountain requires only a parallel corpus of states in an internal language
aligned with corresponding natural language surface forms. This parallel corpus
is used to train a translation model which is capable of translating from the
structured internal language to appropriate natural language. Additionally, the
natural language corpus is used to train a language model for the target language.
As described above, the internal language can be a structured representation of
the dialog state – what the dialog manager intends to convey to the user.

Once the models have been trained, Mountain uses the translation engine
to generate output utterances, given “sentences” from the internal language.
Moses uses the trained models to translate into the target natural language; the



Fig. 1. A partial example of the presented schedule.

resulting output is the best result from the translation engine. Because of the
way Moses works, the output may not only consist of examples lifted straight
from the training corpus, but can also combine several examples to form novel
sentences in the target language.

It should be noted that the entire process used by Mountain, from train-
ing to generation, does not require any specific linguistic analysis or domain
knowledge, and thus can be considered a domain-independent approach. In fact,
Mountain is also language-independent, provided the target language is able to
be used by the training tools (such as the tokenizer and language model trainer).

4 Training and Use of MOUNTAIN

4.1 Application

To demonstrate our generation approach, we chose a fairly simple, but reasonable
application: a scheduling task for a limited resource. In this case, the resource is a
tennis court, available to reserve for one-hour blocks throughout the day. We have
collected a corpus of human-generated responses in this domain. Given a schedule
showing the availability status of a tennis court for the week, people were asked to
answer questions from someone trying to reserve the court at various times. The
requests generally were to reserve the court for one hour out of a several hour
block by specifying a general time range (e.g. Wednesday afternoon, Monday
evening, etc.). These included examples where the court was available for the
entire range, only for part of the time, and where it was completely unavailable.
Responders were told to answer naturally, as if someone had said to them, “I
want to play on <day-time range>, what time can I reserve a court for?” Figure 1
shows an excerpt from an example schedule. Though trivial, this interaction can
easily be seen as part of a larger spoken dialog application.



Fig. 2. Histogram of ratings given to the collected corpus.

4.2 Corpus

The collected corpus consists of about 800 responses, which are labeled with in-
formation about the specific schedule situation they describe. That information,
which can be thought of as a dialog manager state that would be passed to an
NLG module, is effectively an internal language. Thus, this corpus is, in fact, an
aligned, parallel bilingual data set, defining equivalent English surface forms for
the internal language. Sentences in the internal language consist of 3 tokens: a
code corresponding to the day, a code corresponding to the time period, and a
string that represents the court availability during that time. Example sentences
include “111111 d2 t3” and “001110 d5 t1”.

Approximately 20 people provided responses to form this corpus, all of whom
were young adult, native speakers. Human responses to these requests were var-
ied, but generally consistent. For cases where no reservation could be made,
many responses used some form of the phrase “I’m sorry”. It is also interesting
to note that several responses offered suggestions for other similar reservations
that could be made instead.

Nearly one-quarter of the corpus has been scored by a human evaluator. In
keeping with the task design, the evaluator was shown a schedule and request,
along with the response from the corpus, which was presented as their co-worker’s
answer. They were then asked to rate that answer on a 5-point Likert scale, and
additionally provide their own answer to the request. Figure 2 shows a histogram
of the ratings. Most responses are rated well; however, a significant portion of
the corpus has a low score. This is likely due to errors made by the human
responders. For example, some responders misread the schedule and reversed
the availability (instead of all slots free, they responded as if all slots were full).

4.3 Training for Generation

To make the collected corpus more complete, we first make several fairly standard
modifications. Since it seems reasonable in this domain to have the output be
independent of the day-of-week – that is, a sentence used to describe a full court
on Monday afternoon can also be used for Thursday afternoon, changing only
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Fig. 3. The Mountain training process from initial parallel corpus to trained models.

the word for the day – we boosted the training data by cloning responses for
all 7 days, changing the day word in the sentence as appropriate. Additionally,
since the internal language uses a fixed token to correspond to particular days
(i.e., d3 = Wednesday), we added these translations directly to the bilingual
dictionary. Likewise, the tokens for time (i.e., t1 = morning) were similarly
added. The result is that the training corpus size is increased to about 4500
state-response pairs.

With the modified parallel corpus, we then train a translation model using the
Moses tools. The first step is to tokenize and case-normalize both the internal
and English training sentences. Due to the designed structure of the internal
language, the English tokenizer can be used for both sets of sentences. Once this
is complete, we train a trigram language model for the target language (English
in our case) using the SRILM tool. Finally, we train a phrase model using the
Moses toolkit, which produces the necessary phrase and reordering tables for
translation. This process is shown in Figure 3.

4.4 Output

Table 1 shows several example input-output pairs. Though several outputs have
come entirely from single examples in the training data, likely due to the presence
of these exact pairs in the parallel corpus, most of the outputs have combined

Table 1. Example output from the Mountain system

000000 d5 t3 friday evening is completely closed
100000 d2 t2 the only time available is noon
111111 d4 t1 the court is open all morning
111111 d1 t3 you can reserve a court anytime on monday evening
100011 d5 t3 six , ten or eleven
010011 d3 t2 you can reserve a court at 1pm , 4pm and 5pm on wednesday
011001 d4 t3 any time but 6 , 9 and 10
111011 d7 d2 afternoon except the 3pm block
111100 d1 t2 you can reserve a court is free anytime from noon until 3
110111 d6 t3 saturday evening . ooh , that



phrases from two or more examples, producing a novel English sentence unseen
in the training data. Overall, more than three quarters of the generated responses
are not present in the original corpus.

The examples in the table show the variety of ways availability can be ex-
pressed. Though the method we are using here generates the same response for a
particular input, similar but non-identical inputs can produce noticeable surface
variation – but similar semantics – in the resulting output. The source of this is
likely the variation present in the training corpus.

Though many of the generated responses are interesting and appropriate an-
swers, there are also responses that contain errors of varying severity. Some, like
the second-to-last example in the table, are relatively trivial with some grammat-
icality problems. These are obviously not ideal, though with appropriate prosody
when spoken, they could be made to sound like a person’s natural, unplanned,
conversational response. Other errors, however, are more problematic, such as
the last example in the table. Here we see what appears to be a partial translation
failure, since the day and time are correctly rendered in the response; however,
the remaining important content information has been omitted. Minimizing or
eliminating these sorts of errors is crucial to the effectiveness of Mountain as
a generation method.

5 Evaluation of MOUNTAIN Generation

While an informal examination of Mountain output seems to show it is more
or less capable of generating acceptable responses (though with some errors),
it is clear that a more structured evaluation is required. How best to evaluate
language generation systems has been an unresolved question for some time now.
[Dale and Mellish, 1998] discussed many of the pertinent issues and dimensions,
of which we are most concerned with output assessment and application potential
– in particular, the notions of quality and accuracy, and possibly fluency as well.
However, our approach is also corpus-based and informed by machine translation;
BLEU score [Papineni et al., 2002] is a standard reported metric, and has been
used in some corpus-based NLG evaluation as well [Belz, 2005]. BLEU effectively
measures N-gram agreement between reference and test strings.

5.1 Automatic Evaluation: BLEU

To evaluate Mountain using BLEU, we used a held-out test set of about 120
responses from the collected corpus that were not part of the training process.
These responses were taken from throughout the corpus at various intervals –
approximately every eighth entry, to ensure the resulting test set was represen-
tative of the corpus and domain. The internal language half of this bilingual set
is used as input to Mountain to produce the test output; the English half of
the bilingual set is used as a reference. Individual N-gram scores for the default
Mountain system are as follows:

1-gram 2-gram 3-gram 4-gram 5-gram
0.3198 0.1022 0.0525 0.0300 0.0202



While it is not unusual to see scores decrease with larger N-grams, our default
system has a fairly steep dropoff. However, there are several potential areas
for improvement available to us. First, recall that the training corpus contains
some amount of error, as described in Section 4.2, and that some of the corpus
has been scored by human evaluators. We can use the scores to exclude some
responses from the training set, with the assumption being that removing poor
or incorrect responses will improve the resulting generation. We performed this
analysis using various exclusion thresholds; these results are shown in Table 2.
The training corpus for these systems includes only responses with ratings above
the indicated threshold, plus any unscored responses from the original corpus.

These results show clear improvement over the baseline system, with sta-
tistically significant improvement (p < 0.1) for all systems; values in bold are
significant with p < 0.05. Removing only the poorest examples from the training
data does not help as much as removing more – even some which were consid-
ered good by a human. However, once the threshold becomes too high, the BLEU
scores begin to decrease, likely due to a combination of data sparsity and the
well-rated examples being overwhelmed by unrated examples in the corpus. The
systems with thresholds of 2 and 3 show similar performance, though the lower
threshold is marginally superior with larger N-grams, and the higher threshold
is better with smaller N-grams. Because we are trying to generate sentences, we
feel this gives a small preference to the system with a threshold of 2.

We also investigated the effects of the model’s distortion limit on the resulting
output. Distortion limit refers to the amount of word reordering allowed when
translating source sentences to the target language. The default value in the
Moses training process is 6 – that is, words may appear up to 6 words away
from their source-language neighbor in the target language. Using our baseline
system, we examined values from 0 (no reordering) to 8, as well as unlimited
reordering. We found identical BLEU scores for systems with a limit ≥3, and
minimal differences (mostly less than .001) between systems with other values.
Though we had expected a performance effect as the distortion limit changed, our
results showed almost no impact whatsoever. Our original intuition was that a
higher distortion limit would improve results, due to the nature of our source and
target sentences: 3-token source sentences map to much longer target sentences.
We had thought that a distortion limit that was too low might cause some
correct (and possibly preferred) translations from being generated; however, this
does not seem to be the case. Additionally, varying the distortion limit with
our improved systems that excluded training data also showed no noticeable
difference.

Table 2. BLEU scores for systems with excluded training data based on human scoring

System 1-gram 2-gram 3-gram 4-gram 5-gram
Baseline 0.3198 0.1022 0.0525 0.0300 0.0202
Rating > 1 0.4376 0.1729 0.1079 0.0746 0.0597
Rating > 2 0.4491 0.1919 0.1169 0.0872 0.0747
Rating > 3 0.4742 0.1963 0.1212 0.0866 0.0722
Rating > 4 0.4596 0.1762 0.1023 0.0693 0.0611



Table 3. METEOR scores for systems with excluded training data

System Precision Recall f1 Total
Baseline 0.4225 0.2013 0.2727 0.1950
Rating > 1 0.4489 0.2097 0.2859 0.2028
Rating > 2 0.4533 0.2248 0.3009 0.2218
Rating > 3 0.4834 0.2148 0.2974 0.2146
Rating > 4 0.4481 0.2030 0.2794 0.1971

5.2 METEOR: A Different Automatic Measure

Though BLEU has been shown to be well-correlated to translation results, it
may not be the best metric to use for evaluating NLG output because it tends
to view output as a set of N-grams rather than sentences. This may be well
correlated to translation quality, but it seems possible that NLG quality may
have other dependencies. METEOR [Banerjee and Lavie, 2005] may be a useful
measure for our needs, as a translation metric that takes more sentence-level
information into account than BLEU.

We used METEOR to score the same systems described in Section 5.1,
trained with some of the corpus data excluded. Results from the same test set,
showing precision, recall, f1, and total METEOR score, are in Table 3. As with
the BLEU scores, there is an improvement seen over the baseline system by
excluding training data, and this improvement decreases when the exclusion
threshold is too high. Likewise, the systems with thresholds of 2 and 3 are sim-
ilar, with the former system being marginally better in performance.

5.3 Human-scored Evaluation

However, the evaluation method still most often used for NLG systems is scoring
by a human evaluator, despite its expense. We performed a small scale evalua-
tion using 4 human evaluators, all young adult, native speakers. The evaluation
task was structured similarly to the corpus evaluation described in Section 4.3,

Fig. 4. Histogram of ratings for Mountain-generated responses.



Fig. 5. Per-person histogram of ratings for Mountain-generated responses. Each color
represents an individual evaluator.

substituting Mountain-generated output for the original human responses in
the corpus. Overall, the Mountain output has a lower average rating than the
human responses (3.1 compared to 3.4), but a broadly similar rating pattern.
Figure 4 shows a histogram of these ratings (compare to Figure 2 for human-
generated responses). The main difference is a much higher incidence of a poor
rating (1) for the machine-generated output, but similar rates for good (4) and
excellent (5) scores. This seems to indicate Mountain can generate output sim-
ilar in quality to human answers, but when it fails, it fails miserably.

The limited amount of human evaluation done precludes a formal exami-
nation of inter-person agreement. However, a per-person histogram (Figure 5)
shows similar rating patterns from each of the human evaluators. Future plans
for this work include a significantly larger-scale human evaluation, which should
give us a more complete subjective measure of the output quality.

6 Discussion

Our results show that Mountain is capable of generating natural, human-like
output. In the examples, the day name is frequently not present in the output.
Though a slot-filling generation system will typically fill in specific information
such as that, in a human-human conversation once the day has been established
it does not need to continue to be said. Mountain, because it is trained from a
natural corpus, is able to produce this sort of human-like output.

Compared to other NLG systems, Mountain is requires relatively little time
to set up. The largest and most expensive part is corpus collection; once the
training corpus is available, the training time itself is minimal. For the test ap-
plication described here, it was about 20 seconds, though a real application would
clearly require a larger training corpus. Still, for well-defined, and mostly closed-
vocabulary tasks – which most spoken dialog systems could be described as – the
training time should be measurable in minutes. The time required to generate
output is nearly instantaneous, or similar to a template-based system. Obtaining



a suitable training corpus is still expensive, though there are potential solutions.
Besides including responses from the system developers, which is similar in cost
and skill to template-writing, other data sources such as transcribed Wizard-of-
Oz interactions could be used. Potentially, any available human-human dialogs
for the application domain could also be included in the training corpus, as long
as they could be transcribed and annotated with the internal language.

As described in Section 3, the output of Mountain discussed in this work
was the single-best result from the translation engine. Though this can result
in reasonable generation for many inputs, it also means that an input will al-
ways have the same generated response, which will have the same repetitiveness
problems as template-based NLG. However, Moses can be configured to output
N-best lists of translation results, rather than a single-best result. If Mountain

instead selects its responses from the N-best list, that will provide more variation
in the resulting output, and possibly prevent a human listener from perceiving
it as unnaturally repetitive. Further investigation of this, including determining
an appropriate size for the list and evaluating user perception of the generation,
is planned.

Currently, Mountain’s biggest limitation is that its gross errors occur too
frequently for it to be used comfortably in a real application. To a certain extent
this can be explained by the approach still being relatively new – there are many
possible improvements that have not yet been attempted. However, it must be
solved before Mountain can be considered a viable generation system for dialog
applications. We have already considered several possibilities, including weight-
ing well-rated examples more heavily in the training data rather than just using
a simple threshold to exclude poorly-rated ones, increasing the “vocabulary” of
the internal language to reduce the complexity of mapping a single token to
long English phrases, as well as the obvious get-more-training-data approach.
We plan to implement these potential improvements as soon as possible. Addi-
tionally, Moses provides methods for tuning the translation model that we have
not yet done. This may provide the potential for improving the model, though
the relatively small vocabulary size in this domain may limit its effectiveness.

Finally, we would like to test Mountain in a new application with a “real”
dialog system. Since the method is domain-independent (as long as the inter-
nal language can be specified), it should be relatively simple to implement this
generation method for a new system.
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