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Abstract
Subphonetic  discovery  through  segmental  clustering  is  a
central step in building a corpus-based synthesizer. To help
decide what clustering algorithm to use we employed merge-
and-split tests on English fricatives. Compared to reference of
2%, Gaussian EM achieved a misclassification rate of 6%, K-
means 10%, while predictive CART trees performed poorly.

1. Introduction
Consider the problem of creating a speech synthesizer capable
of multiple-dialects,  e.g. a single voice able to speak all the
major dialects of North America or of the British Isles. This
ability does not yet exist. It requires a degree of control not
currently  available,  and  challenges  the  common practice  of
basing  a  system on conventional phoneme sets.  To support
multiple dialects in a single system, one must build on top of a
more fine-grained set of elementary sounds. 

The question arises: which elementary sounds to adopt as
fundamental?  Which  accented  phonemes,  allophones,  and
subphonetic  units are  most distinguishing –– hence  useful?
Since this  question has no ready-made  answer,  the  general
solution  is  that  some  form  of  unsupervised  learning  is
required to discover these elements, followed by testing in a
functioning system. Listening tests  are critical  to reveal the
effects of increasing unit granularity on coverage.

Two preliminary questions need to be addressed. Namely,
what clustering algorithm to employ, and how do you know it
is performing well? One solution is to construct new test sets
from prior labeled data. Specifically, we merge many pairs of
distinct fricatives – such a /s/ and /z/ – measuring how well
various  clustering  algorithms  perform  at  separation.  Our
evaluation suite comprises 28 merge-and-split tests.

This paper investigates 3 types of  algorithms: standard
K-means  (using  the  open  source  program  pyCluster  [1]),
CART tree clustering (using the open source program wagon
[2]), and dual-Gaussian EM with full covariance matrices (re-
implemented for  this  investigation).  An  upper  bound  on
performance is provided by a set  of eight reference  models
trained with knowledge of the actual phoneme identities.  We
find that Gaussian EM achieves an error rate of 6%, while the
best  K-means result  is  slightly  over  10%.  Furthermore,  the
consonant confusion matrices are generally compatible with
human perceptual tests. These findings support and guide our
agenda for extending acoustic discovery down a notch to the
subphonetic level.

2. Related Work
The unsupervised discovery of elemental units of speech for
corpus-bases TTS is an unexplored area. Precedents do exist
for improving ASR performance using automatically  derived
sub-word  units  [3]  along  with  a  derived  lexicon  [4]  (with
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 results).  Multi-lingual speech recognition systems are
based on a superset of phonemes [5]. If one of the target
ages suffers from a paucity of data, it is necessary to map
ls from a source language rich in resources. Doing this
atically requires a distance measure for cross-language
me  comparison.  In  the  work  of  [6]  the  phonemes  of
ans are mapped onto English, then cross-adapted.

aving a metric that  can measure the distance between
 models is useful for dialect classification [7,8] and is

tially applicable to multi-lingual TTS (where currently
me mappings are assigned by hand [9]). One measure
as  proved  fruitful  for  establishing  distances  between
me classes is the Bhattacharyya distance [10,11]. 
r a TTS system, it is not enough to derive subphonetic

 One must also be able to predict the appropriate class
the  input  text.  In  Festival,  this  task  is  delegated  to
fication and Regression Trees  (CARTs) [2,12].  Since
s tackle the larger, joint problem of predictive acoustic

ring, an adequate solution here immediately solves the
of our problem. But, such a gift is not forthcoming.
 Section 3 we discuss the  shortcomings of  predictive
ring.  Section  4  lays  out  a  framework  of  possible
aches. Results and discussion follow in Section 5. 

. Shortcomings of Predictive Clustering
nally, Festival unit selection voices are phoneme-based.
is  true  in  the  sense  that  words  in  the  pronunciation
nary  are  described using symbols recognizable  as IPA
mes.  Down  in  the  details,  though,  units  are  selected
subphonetic  clusters  that  are  roughly  equivalent  to
onic  subtypes.  These  subphonetic  clusters are  learned
data and represented as CART trees. Why then not use
miliar Edinburgh speech tool wagon?
ne shortcoming  is  that  wagon tackles  the  problem of
tive  clustering.  In  predictive  clustering  each  unit  is
ted  with  a  set  of  predictees  ––  e.g.  the  surrounding
tic  context  including  syllable  structure,  phoneme
es,  Fo  pattern,  etc.  These  predictees  are  searched  for
ng points (organized in a yes-no decision tree) that best
n acoustic  differences  between units.  This  makes the
ring dependent on the predictive value of the feature set.
atural  acoustic  separation  is  not  predictable  from the
ble features then the clusters cannot be found.
 second  shortcoming  is  that  wagon is  designed  to

ate balanced trees, which won't always match the data.
xample in the single speaker database  rms_arctic [13]
are  279 instances  of  /jh/ and 37 instances  of  /zh/.  If
are merged and split into two clusters,  the results are
 balanced  –  as  shown  in  the  top  half  of  Table  1  –
g to  a  large  classification error  of  127/266 = 47.7%.
aximum error in a two-class problem is 50%.)



Unbalanced populations are always problematic, but high
error rates persists even when the initial class sizes are nearly
equal. The bottom half of Table 1 shows the case of /ch-sh/.
Instead of clean separation there is large overlap between the
clusters  (/sh/  is  split  evenly),  with  a  classification  error  of
253/543 = 46.6%. Such high error rates suggest trying non-
predictive clustering algorithms.

phone CL1 CL2 Total
JH 114 115 229
ZH 24 13 37

Total 138 128 268
CH 91 127 218
SH 163 162 325

Total 254 289 543
Table 1. Confusion matrix of two merge-split tests using

wagon. Incorrect classification cells are highlighted. 

4. Acoustic Distance Measures
Before running a classification algorithm several key options
need defining. First is the tuple of features used to describe a
frame of  speech.  This  defines  an  embedding feature  space
which must have an assigned metric,  allowing the distance
between two points to be computed. The feature space may
also undergo a data-dependent coordinate transformation. 

Because a  metric  applies  to  a  pair  of  points  in  the
embedding space and speech is a trajectory (a sequence of
vectors), the distance computation must be extended to deal
with  trajectories  of  unequal  lengths.  Comparing  a  pair  of
trajectories requires some form of time alignment.

4.1. Feature vectors and embedding spaces

We explored five feature vector variants,  all related to  the
conventional  specification:  12-dimensional  fixed  width mel
frequency cepstral coefficients,  derived from a 24 filterbank
power spectrum with coverage up to 16 kHz, with 10 ms step
size between frames, a Hamming window of 25 ms, and pre-
emphasis of 1-0.97z-1. Voicing (in item 3) is a binary feature.

1. cepstral coefficients, 12-D.
2. cepstral coefficients + log power, 13-D.
3. cepstral coefficients + log power and voicing, 14-D.
4. cepstral coefficients + deltas, 24-D.
5. original log spectrum filterbank output, 24-D.

4.2. Coordinate space transformations

With  speech  data  positioned  in  an  embedding  space,  the
simplest thing is to leave the vectors untouched. However, it
is  often  advantageous to  transform  the  points  into  a  new
coordinate system. Principal components analysis  is  a data-
driven way to find a linear transformation that shifts, rotates,
rescales, and orders the coordinate axes in way such that they
are maximally aligned with the data's distribution [14,15]. If
X is an dxn data matrix with mean μ and covariance Σ=XXt,
then the new representation is Y = P(X-μ), with the rows of P
being  the  principal  components  of  X.  Also  known  as  the
Karhunen-Loéve  transformation,  the  principal  components
are eigenvectors of the covariance matrix  Σ. Transforming X
to  Y diagonalizes  the data's  covariance,  which can then be
normalized so that the variance along each axis is unity.

The  transformation P can be simplified to be a diagonal
matrix  that  rescales  the  axes  of  X independently,  without
rotation. We use the term Zscale transformation to describe
the  multi-dimensional  extension  of  the  z-score.  If  the  data
component along one dimension xi has mean μi and variance
σi, then yi = (xi – μi) / σi.
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 given random variable X the usual preferred choice for
ring  the  distance  between  two  vectors  is  the

lanobis distance.  This  is  equivalent  to  the  Euclidean
 applied to the space Y after undergoing PCA. 

ecause of the extra flexibility provided by the software
yCluster, we ran K-means clustering under six different
s,  including Manhattan distance and four correlation-

 measures. Given two vectors x and y:
Euclidean distance.
Manhattan distance.
unentered correlation.
centered correlation.
absolute uncentered corr.
absolute correlation.

ector extension

-means algorithm available in pyCluster is capable of
ing  fixed  length  time  sequences  of  scalar quantities.
 speech frames are vectors, this is a problem. One way
ercome  this  limitation is  to  concatenate L  frames  to
 a new single vector of  length DxL, V = (x11, x12,... x1D,
 xLD).  This  vector  extension  procedure  does  not  alter
attan distances, but does alter Euclidean distances.

ime Alignment 

ormulas of section 4.3 require  that  units  x and  y are
 length. Vector sequences of unequal length need to be
modated through  time  alignment.  Two  variants  are
ic time warping (dtw) and linear time warping (ltw).

r  warping  maintains  a  proportional  ratio  between
s. If x has length m, and y length n,  then two frames  xi

 map onto each other when j = min (n, round(i x n / m)). 
he  well  known  technique  of  dynamic  time  warping
ishes a nonlinear mapping j=f(i) that minimizes the total
ost of matching x to  y.  DTW abstracts away variations
e pattern. It accommodates, at little extra cost, sections
honeme that are sped up or drawn out. In contrast, ltw
zes differences in the time curves, even when vectors
 identical  paths.  A  TTS  system  should  distinguish
 patterns  that  sound different,  which is  why Festival

tw when computing the distance matrix for clustering. 
gure  1  illustrates  linear  time  warping  between two
me  units,  projects  onto  the  first  two  cepstral
sions. Also shown is a rotated ellipse indicating a single
ian model for the data, and hence the PCA transform.

Figure 1.  Linear time warping between two unit
ajectories. The ellipse indicates the PCA coordinate
pace transformation  based on the phone class /zh/.

Red dots are feature frames of /zh/.

d=[x− yt x− y]1/2

d=∑∣xi− yi∣
d uc=∑ xi yi

d cc=∑ xi−i yi−i

d=∣d cc∣
d=∣d uc∣

Mel Cepstrum Dim 1
-12 -10 -8 -6 -4 -2 0

Prototype Phone and Scatter for /ZH/



4.6. Cluster center possibilities

There  are  three  possibilities for  the cluster centroid:  mean,
median,  and  medoid.  The  medoid  is  the  particular  unit  x
whose total distance to all other points is minimum. This has
a useful consequence. Because the medoid is determined by a
distance  cross-table,  it  is  not  necessary  to  know the actual
data  vectors.  Computing  mean  and  median  centroids,  by
contrast,  does require the  original values.  Like the  medoid,
the median will be a particular unit. The mean is a computed
point, somewhere in the embedding space. 

4.7. Comparison of model updating

The  modeling  framework  just  laid  out  is  helpful  for
comparing various clustering algorithms. As evaluated here:
1. wagon. Space is Zscale transformed according to the data

of merged phone pairs,  and then fixed.  Uses a distance
matrix only; cluster means are not explicitly updated. Is
based on linear time warping.

2. K-means. Space is PCA transformation of all speech data.
Cluster  means are updated with each iteration;  distance
metric is not. Is based on linear time warping. 

3. Gaussian EM. Space is PCA transformation of all speech
data. Both cluster mean and distance metric are updated
after each iteration (PCA). Time warping is not necessary.

4.8. Theoretical model separation

There  are  many measures of  probabilistic model separation
including K-L divergence and its symmetric counterpart, the
“information  radius.”  Another,  Bhattacharyya  distance  [15]
has been used extensively to obtain distances between single
Gaussian phone models of different languages [10,11]. Figure
2 compares this estimate to empirical measurements.

D=1
8
2−1

t [
12

2
]
−1

2−1
1
2

ln
∣1
2
12∣

∣1∣∣2∣

    (1)

The first term of eqn. 1 gives the model separability due to
differences  in  means,  relative  to  the  average  covariance,
while the second term accounts for differences between the
covariance matrices themselves.

5. Experimental Results
Instead of trying all possible phone pairs, we kept the number
manageable by examining the natural  grouping of alveolar-
region fricatives and affricatives: /th, dh, s, z, sh, zh, ch, jh/.
There  are  C(8,2)  =  28  pairwise  combinations.  The  speech
database studied here is rms_arctic, available online [13].

5.1. Oracle reference vs Gaussian EM

For  each  test  our  reference  point  is  a  pair  of  Gaussian
probability  density  models  with  full  covariance  matrices.
These are “oracle” models because they are trained using the
known class labels. The feature vectors are 12-D cepstra.

Though much simpler than a mixture-of-Gaussians HMM
model, the overall pair-wise phoneme classification errors is
small,  only  2.6%  and  6.0%.  Table  2  shows  the  error
percentages for 28 phone pair experiments. The oracle results
are in the upper triangle and the learned results in the lower
triangle. E.g. for /ch-sh/ the oracle models yield a total error
of 10.7% and in the learned models this increases to 12.7%. 

Table 2 (below). Phone pair classification errors. Oracle
models in upper triangle; learned models in lower

triangle. Notice that the smallest phone class /zh/ is
difficult to separate.
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CH DH JH S SH TH Z ZH
0.7 11.9 0.6 10.7 0 0.4 1.57

1.01 1.46 0.52 0 16.7 0.29 0
21.7 1.69 0.54 5.05 0 0.4 4.89
0.6 0.56 .54 0.46 0.22 12.8 0.85
12.7 0 5.23 0.52 0 0.45 10.2

0 30.4 0 0.22 0 0.08 0
0.49 .24 0.56 21.8 0.45 .08 0.66
20 34.6 38.7 5.99 11.9 0 3.79

igure 2. Empirical vs theoretical model separation
of oracle single Gaussian full covariance models.

omparison to perceptual experiments

 classic  consonants-in-noise  confusability experiments
ller and Nicely, they found that /th-dh/, /s-z/, and /sh-zh/
aximally  confusable pairs [16]. Since they did not test
ffricatives,  this  is  compatible  with  our  results.  The
-split  tests reveal that /th-dh/ and /s-z/ and /ch-jh/  are
ally  confusable pairs,  but  that  /sh-zh/  is  not:  /sh/  is

likely to be misclassified as /ch/; and /zh/ as /jh/. 
ater  experiments  by  Wang  and  Blinger  included
tives,  with  slightly  differing  results  [17].  Among the
phonemes considered  here,  they  found that  the  post-
ars coupled; i.e. /ch-sh/ and /jh-zh/ are confusable pairs.
gure 3 offers insight by plotting the model means. Grey
connect  natural  pairs  that  differ  only  in  the  voicing
e. Solid black lines point to the nearest model according
attacharyya  distance.  The  “distance  between  dots  on
” equals the Euclidean distance between model means
ted onto the first two cepstral coefficients. Inspection of
 3 reveals, for example, how /sh/ might “consider” /ch/

its closest neighbor, instead of the voiced twin /zh/.

ure 3. Centroids of phonemes projected onto the first
 cepstral dimensions. The gray lines connect unvoiced-

voiced pairs. Arrows show other confusabilities.
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5.3. K-Means classification accuracy

Because K-Means clustering does not  adaptively update
the cluster's covariance matrix, it should not perform as well
as 2-way Gaussian EM. This held true. We ran experiments
under many different configurations and recorded a best error
rate  of 10.1%. Table 3 helps answer the question of which
distance metric and centroid definition  is optimal in the K-
means algorithm configuration. 

Distance
Metric

Centroid Type
Mean Median Medoid

abs corr. 3752 4006 8677
abs uncntrd. corr. 3575 3734 8127

correlation 3672 3939 7734
uncentered corr. 3485 3635 6817

Euclidean 3389 3473 7878
Manhattan 3355 3559 8355

Total error count 21228 22346 47588
Table 3. K-Means separation using the same feature
vectors as in Table 2. There are 33166 units in the

database; the best result of 3355 wrong equals 10.1%.
The embedding space is 12-D PCA melcep.

This  shows that  the  best  definition of  a  cluster  centroid is
arithmetic mean, closely followed by median, with medoid a
distant third. This is just as well. Computation of the mean is
O(n), while the median is O(n log n), and the medoid is O(n2).

The best choice of distance metric is less clear, but does
favor  Manhattan  and  Euclidean  over  correlation-based
measures. Testing on datasets in which other feature vectors
are used – for example the 24-D filterbank output – confirms
this trend. 

Distance
Metric

Global Vector Space
Fbank 24 Zscale PCA

abs correlation 10440 11148 4013
abs uncntrd. corr. 8938 8416 3768

correlation 10447 10649 3890
uncentered corr. 8935 8325 3675

Euclidean 7622 7965 3592
Manhattan 7312 7259 3682

Total error count 53694 53762 22620
melcep 12 Zscale PCA

Compare to 58272 26583 21228
Table 4. K-Means separation in the 24 dimensional
filterbank vector space, as well as under Zscale and
PCA transformations. The best error rate is 10.8%.
The bottom row compares to 12-D cepstral vectors.

In  Table  4  we see  something interesting that  is  not  easily
explainable. Normalizing the data variance along each axis of
the original  vector space (applying a Zscale transformation)
helps in the cepstral domain, but does not help at all in the
filterbank domain.  Comparison to an analysis  that uses the
Fisher linear discriminant may prove clarifying.

6. Conclusion
Our  phoneme  pair  merge-and-split  experiments  reveal  that
Gaussian  EM (one  per  cluster)  performs  best.  K-Means  is
adequate when operating in PCA space, using mean centroids
and a Euclidean or Manhattan metric. CART trees didn't not
do well on blind separation. This deserves more investigation.

Our next step is to repeat this procedure for vowels and
other  consonant  groups.  Following  that,  examine  known
phonological rules of English such as described in [18]. This
will take us closer towards reliable subphonetic discovery.

This 
Found
Proce
new L
recom
autho
Natio

[1] d
S

[2] E
p

[3] B
o
T

[4] S
P
S
2

[5] S
S
o

[6] S
L
o

[7] M
B
I

[8] Y
S
R
B

[9] B
I
I
2

[10] M
B
P

[11] S
m
M
p

[12] B
U
P
6

[13] K
D
P

[14] S
w

[15] D
W

[16] M
C
A

[17] W
J

[18] L
J

7. Acknowledgments
work is in part supported by the US National  Science
ation  under  grant number  0415021  “SPICE:  Speech

ssing –– Interactive Creation and Evaluation Toolkit for
anguages.” Any opinions, findings, and conclusions or
mendations expressed in this material are those of the

rs  and  do  not  necessarily  reflect  the  views  of  the
nal Science Foundation.

8. References
e  Hoon,  M,  Imoto,  et  al.  Open  Source  Clustering
oftware, Bioinformatics, vol. 20(9): pp. 1453-54, 2004.
dinburgh  Speech  Tools  Library.  www.cstr.edu.ac.uk/
rojects/speech_tools.
acchiani, M. Speech Recognition System Design Based
n  Automatically  Derived  Units,  Ph.D.  dissertation,
echnical University of Eindhoven, 1994.
ingh, R., Raj, B., Stern, R. M. “Automatic Generation of
hone Sets and Lexical Transcriptions,” IEEE Trans. on
peech and Audio Processing, vol. 10(2), pp. 89-99, Feb.
002.
chultz, T.,  Waibel,  A. “Fast Bootstrapping of LVCSR
ystems with Multilingual Phoneme Sets,”  Proceedings
f the EuroSpeech, Rhodes, Greece, pp. 371-74, 1997.
ooful,  J.  Automated  Phoneme  Mapping  for  Cross-
anguage Speech Recognition, M.Eng Thesis, University
f Pretoria, 2004. 
iller, D., Trischitta, J. “Statistical Dialect Classification
ased  on  mean  Phonetic  Features,”  Proceedings  of

CSLP-1996, Philadelphia, USA, pp. 2025-27.
amamoto,  K.,  Nakaguwa,  S.  “Relationship  Among
peaking  Style,  Inter-Phoneme's  Distance  and  Speech
ecognition Performance,”  Proceedings of ICSLP-2000,
eijing, China.
adino,  L.,  Barolo,  C.,  Quazza,  S.  “Language

ndependent  phoneme  Mapping  for  Foreign  TTS,”  5th

SCA  Speech  Synthesis  Workshop,  Pittsburgh,  USA,
004, pp. 217-18.
ak,  B.,  Barnard,  E.  “Phone  Clustering  Using  the
hattacharyya  Distance,”  Proceedings  of  ICSLP-1996,
hiladelphia, USA, pp. 2005-8.
ooful, J.,  Botha, E.  “Comparison of Acoustic Distance
easure  for  Automatic  Cross-Language  Phoneme
apping,”  Proceedings of  ICSLP-2002,  Denver,  USA,

p. 521-24.
lack, A., Taylor,  P. “Automatically Clustering Similar
nits  for  Unit  Selection  in  Speech  Synthesis,”
roceedings  of  the  EuroSpeech,  Rhodes,  Greece,  pp.
01-4, 1997.
ominek, J. and Black, A. “The CMU ARCTIC Speech
atabases,”  5th  ISCA  Speech  Synthesis  Workshop,
ittsburgh, USA, 2004, pp. 223-24.
chlens, J.  A Tutorial on Principal Component Analysis,
ww.snl.salk.edu/~chlens/notes.html. 
uda, R., Hart, P., Stork, D. Pattern Classification, John
iley & Sons, 2001.
iller,  G.,  Nicely,  P.  “An  Analysis  of  Perceptual
onfusions among some English Consonants,” Journal of
coustical Society of America, vol 27(2), 1955.
ang, M., Bilger, R. “Consonant Confusions in Noise,”

ournal of Acoustical Society of America, vol 54(5), 1973.
adefoged,  P.  A Course in Phonetics,  Harcourt,  Brace,
ovanovich, 2001.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by John Kominek
	Also by Alan W. Black
	------------------------------

	lh689: 
	rh689: 
	pg689: 
	rf689: 
	lh690: 
	rh690: 
	pg690: 
	lh691: 
	rh691: 
	pg691: 
	lh692: 
	rh692: 
	pg692: 


