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Abstract. This paper explores how different synthetic speech systems
can be understood in a noisy environment that resembles radio noise.
This work is motivated by a need for intelligible speech in noisy environ-
ments such as emergency response and disaster notification. We discuss
prior work done on listening tasks as well as speech in noise. We analyze
three different speech synthesizers in three different noise settings. We
measure quantitatively the intelligibility of each synthesizer in each noise
setting based on human performance on a listening task. Finally, treat-
ing the synthesizer and its generated audio as a black box, we present
how word level and sentence level input choices can lead to increased or
decreased listener error rates for synthesized speech.
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1 Introduction

Synthetic speech systems have undergone a great deal of research in the past
years. Other research efforts have attempted to predict the intelligibility of dif-
ferent synthesizers in different settings [16,17]. However, to the author’s best
knowledge, all work in this area has been done from the perspective of improv-
ing synthesized audio [9,11], rather than the synthesizer inputs themselves.

This paper aims to determine if intelligibility can be predicted from the
content fed to the synthesizer. In this work we explore how to predict if certain
words and sentences will be understood by users and how these predictions can
be used to formulate or reformulate a sentence for speech in a noisy environment.
This is done by treating the synthesizer as a black box and measuring only the
inputs and the outputs.

Our work is specifically motivated by automated disaster response. Much
work has been done using artificial intelligence to handle emergency and disaster
situations [7,8]. The integration of speech is a necessary and natural expansion
of this research. We foresee speech systems needing to operate in noisy envi-
ronments where synthetic speech may be broadcast over a radio frequency or
near rescue equipment. Both present multiple different issues regarding types of
noise. In this work, we use the noisy environment of a radio channel as a test
bed for intelligibility.
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2 Related Work

Several works have explored multiple different types of noise and multiple differ-
ent types of speech [16,17]. There are two relevant concepts within the field that
are at play in this work: the field of speech in noise and the work surrounding
listening tests.

2.1 Speech in Noise

The intelligibility of speech in noise is the measure of how well audio - containing
either natural or synthetic speech - can be understood in a noisy environment. A
noisy environment can range from the chatter of a restaurant [16] to the sounds
of helicopters and the battlefield [18]. In all of these environments a listener may
confuse or misinterpret speech because of noise.

In past works, authors have shown several key concepts. First, when measur-
ing the kinds of errors list listeners make, [12] has shown that while keyword error
rate (KER) may be a more accurate measure, simple word error rate (WER)
follows KER closely and is less time intensive to calculate. As such, we use WER
for our measurements. At the same time, [19] has shown that there are instances
where there are disparities between WER and other metrics, such as concept
error rate. We see in our data that WER tends to follow concept error rate.

2.2 Listening Tests

Listening tests are a common way to evaluate the intelligibility of a voice
[10,13,15]. Compared to automated methods and metrics, human evaluation
is traditionally regarded as the most effective method for evaluation. As a result
Listening tests have been used to evaluate synthesizers and intelligibility of both
synthetic and natural speech in noise.

3 Experimentation

We explore the effect of three different types of noise on three different synthe-
sizers. This is in an attempt to understand the how humans understand different
synthesizers generally, as opposed to possibly overfitting to one synthesizer or
one noise setting.

3.1 Structure

We asked English speaking listeners who over eighteen years old to transcribe
audio from a series of thirty different audio files. These audio files were generated
by selecting random sentences from the Smart-Home dataset [14] and having one
of three different synthesizers generate an associated audio file then one of three
different noise levels was applied to the audio. The result was captured and
stored for the listening task. This was done thirty times for each listening task,



Towards Improving Intelligibility of Black-Box Speech Synthesizers in Noise 369

resulting in thirty unique audio files for each listener per task. While our research
is motivated by emergency/disaster response use case, we selected this dataset
because it has a demonstrably diverse vocabulary that would, in theory, lend
itself well to determining the intelligibility of various words. During the initial
stages of this research we did explore other datasets, including one of radio
traffic, between emergency medical services (EMS) Personnel and their dispatch
center, but found that it was not lexically diverse enough for the purposes of
this research.

Two different types of listening tasks were performed: one to generate training
data and another for testing data. In the training task forty-five listeners listened
to 450 different audio files. Each file was labeled by three different listeners. In
the testing task a fifty listened to 150 different audio files. Each file was labeled by
ten different listeners. These two different tasks were done so that the test data
would be the most representative of the behavior of users in a noisy environment.

3.2 Synthesizers

We used three different synthesizers for our experimentation: the E-Speak Syn-
thesizer [5], the Flite Synthesizer [1], and the Google Synthesizer [6]. All syn-
thesizers used an English-speaking male voice, but these three synthesizers each
have their own specific settings.

E-Speak. We used the E-Speak Synthesizer with primarily the default settings.
We specified two unique settings when generating our sound files: the use of the
en voice which corresponds to an English speaking male and the use of a voice
speed of level 120 (down from 175). This was done to better align the speeds of
the voices of the different synthesizers.

Flite. We used the CMU Flite (Festival Lite) synthesizer with the default set-
tings. We specified that the synthesizer must use the cmu us eey.flitevox voice
that came prepackaged with the standard release of Flite.

Google. We used the Google Text to Speech system defined within the Python
gTTS module. We specified that the synthesizer must use the en−us voice that
came with the release of gTTS. All other settings were left at default values.

3.3 Noise

We used three different noise levels each consisting of three different filters
applied at different values. First we impose an ambient noise filter designed
to replicate radio static. For this filter, we take the original sound and at each
time step sample a value from a random normal distribution centered at the
original sound. The standard deviation of this normal distribution was varied
at each noise level. Next we perform a low pass filter with a variable threshold.
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Finally we perform and high pass filter with a variable threshold. Varying the
parameters to these three different filters provide several knobs we can turn to
increase or decrease the noise within the audio files. We make no claim about
how well these different filters replicate the noise present on a radio channel, as
that can vary based on the radio manufacturer, the frequency used, and the type
of system in use. We only state that this noise is subjectively similar to that of
an active radio channel. Further work would be required to determine the best
noise filters needed to replicate each specific radio channel.

We chose three different noise settings that would be presented to users.
These noise settings were not intended to be ranked by difficulty, but were
intended to represent three distinct kinds of noise that could cause a listener
to make transcription errors. We believe that the reasons why certain noise set-
tings are more likely to cause listening errors are out of scope of this work and
could be the subject for further research.

Noise Level 1. Random noise filter standard deviation: 0.3; Low pass frequency
cutoff: 300.0 Hz; High pass frequency cutoff: 2500.0.

Noise Level 2. Random noise filter standard deviation: 0.4; Low pass frequency
cutoff: 400.0 Hz; High pass frequency cutoff: 2000.0.

Noise Level 3. Random noise filter standard deviation: 0.5; Low pass frequency
cutoff: 500.0 Hz; High pass frequency cutoff: 1500.0.

4 Listening Test Results

We presented users with different audio files and recorded their precision/word
error rate. We include the complete breakdown of user performance below in
Table 1. For all experiments we segment the data based on both synthesizer and
noise level. We collected approximately fifty different sentences at each different
noise level and synthesizer combination for training and approximately sixteen
different sentences at each noise level for testing.

Table 1. Precision (1.0 - WER) of word level transcription per noise and synthesizer
on the training data.

Transcription precision score Noise level 1 Noise level 2 Noise level 3 Average

Espeak 0.227 0.196 0.242 0.222

Flite 0.346 0.375 0.343 0.355

Google 0.542 0.639 0.559 0.580

Average 0.372 0.403 0.381
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4.1 Listening Test Results Discussion

Table 1 demonstrates the word error rates of the different synthesizers and noise
levels. We see a clear trend among the different synthesizers that the highest
performing synthesizer was the Google synthesizer, followed by Flite, and finally
by ESpeak. These results indicate that the quality of the synthesizer plays a role
in its intelligibility in noise.

Empirically, it appears that Noise Setting 2 is the most intelligible noise
setting, followed by Setting 3, and then Setting 1. It should be noted that results
for settings 1 and 3 are very similar and differ somewhat. At the same time
there does appear to be some variation between the different synthesizers. While
Noise Setting 2 is the least intelligible for Espeak, it is the most intelligible for
Google. From this observation, we can conclude that the intelligibility of a given
synthesizer in a given noise setting depends primarily on the synthesizer and not
on the noise setting. We make no claim regarding why certain noise settings are
more intelligible than others, we believe this to be an avenue of further research.

5 Predictive Results

We make intelligibility predictions at the sentence level and the word level. At
the sentence level, a model could estimate which paraphrasings are most likely
to be understood by listeners. At the word level a model could rank synonyms
of specific words so that they are more likely to be understood. At both levels
of granularity we explore the application of point-wise and pair-wise ranking
for estimating intelligibility. While list-wise reranking is an obvious extension to
this work, we do not have enough sentence level, or word level data to make list-
wise reranking models feasible. We present the results of this predictive exercise
below.

Work in this field often uses metrics such as the DAU metric [3] or the
Glimpse proportion measure [2] to attempt to model intelligibility. These metrics
are based off the audio features of your synthesizer. Since we attempt to predict
intelligibility based on non-audio features these metrics are out of the scope of
this work.

5.1 Sentence Level Intelligibility Prediction

At the sentence level, we try to determine if one sentence is more intelligible
than another. We explore this in two ways: first, we trained a machine learning
model to estimate the average word error rate of a given sentence, and second,
we trained a pair-wise reranking model to attempt to determine if one particular
sentence is more intelligible than another.

Sentence Level Word Error Rate Estimation. At the sentence level we
attempt to train a machine learning model to predict the average word error
rate of a given sentence. In order to do this, we construct a feature vector that
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contains a number of sentence level features. We trained a simple linear model
with sigmoid activation. We found that we achieved the best results when using
simple models. We used several different features to estimate the word error
rate of a sentence but few were effective given the low amount of data. Our
features included average word rank, average word length, sentence length, word
count, and percent of unique characters. We define word rank as the ranked
position of a term, based on how frequently that term appears in the Corpus of
Contemporary American English [4]. We define word length as the length of a
particular word in characters. We define average word rank and average word
length as the average of these respective values. Other features were explored
but eventually discarded. The results of this model on the test set are presented
in Table 2.

Table 2. Performance of our linear error estimator for sentence level error estimation.

Point wise reranking - sentences

Synthesizer Noise level MSE (Test) Spearman’s R (Test)

Espeak 1 0.0227 0.2258

Espeak 2 0.0256 −0.3728

Espeak 3 0.0311 −0.4650

Flite 1 0.0477 −0.1225

Flite 2 0.0451 0.4621

Flite 3 0.0587 −0.1863

Google 1 0.0505 0.1176

Google 2 0.0915 −0.2943

Google 3 0.0701 0.0662

Pair-Wise Sentence Reranking. We constructed a linear model with tanh
activation to estimate which sentence is the most intelligible. We do this by
feeding one feature representation of each sentence into the linear model. The
model then estimate if the first sentence is more intelligible (labeled +1), the
second sentence is more intelligible (labeled −1), or if the intelligibility of the
sentences are equal (labeled 0). We then train this linear model and evaluate it
on the test set. The results of this evaluation are presented in Table 3.

5.2 Word Level Intelligibility Prediction

At the sentence level we are attempting to estimate which words would be most
intelligible, either on their own, or when compared to another word. For use in
a real world setting the models discussed here could be used to estimate the
intelligibility of synonyms of different words in a sentence so as to maximize the
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Table 3. Performance of our linear pair-wise sentence level reranking model.

Pair wise reranking - sentence

Synthesizer Noise level MSE (Test) MSE variance (Test)

Espeak 1 0.3441 0.1211

Espeak 2 0.5960 0.1217

Espeak 3 0.4641 0.2591

Flite 1 0.7074 0.1496

Flite 2 0.3979 0.351

Flite 3 0.6095 0.3688

Google 1 0.6679 0.1638

Google 2 0.4076 0.1440

Google 3 0.5080 0.1966

intelligibility of a sentence overall. As a result, estimating which words are going
to be the most intelligible is an obvious initial step to estimating the overall
intelligibility of a sentence, phrase, or other unit of speech.

Word Error Rate Estimation. Working at the word level we have access to
significantly more data. Here we trained a machine learning model to attempt
to estimate the WER of a particular word in a given sentence. This is different
from the sentence level task of the same name because we have features for the
word, but also features for the context of the word (eg. the surrounding words).

We construct a linear model with sigmoid activation to attempt estimate
the error. We used several different word level features regarding the words
themselves, and their surrounding contexts. Our word level features included:
word rank, percent of vowels in the word, percent of consonants in the word,
length of the word, and the percent of unique characters in the word. We define
word rank in the same manner described in Sect. 5.1. Our context level features
included: the same word level features for both the previous and next word, the
length of total number of words in the sentence, and the number of total unique
words in the sentence. The results of this evaluation can be found in Table 4.

Pair-Wise Word Reranking. To perform pairwise reranking, we changed the
layout of our model slightly. We now pass two times the number of features to
our model, one for the first word and one for the second word. The word level
features that are fed to the model are similar as in the above section, but they
have had the features regarding sentence context removed, and contain only
features regarding the neighboring words. Like the sentence pair wise reranking
schema the model then has to estimate if the first word is more intelligible
(labeled +1), the second sentence is more intelligible (labeled −1), or if the
intelligibility of the sentences are equal (labeled 0). We trained this linear model
and evaluated it on the test set. The results are presented in Table 5.
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Table 4. Performance of our linear error estimator for word level error estimation.

Point wise reranking - words

Synthesizer Noise level MSE (Test) Spearman’s R (Test)

Espeak 1 0.0429 −0.2516

Espeak 2 0.0426 0.0676

Espeak 3 0.0318 −0.1120

Flite 1 0.0932 −0.1612

Flite 2 0.1032 0.1346

Flite 3 0.0468 −0.1589

Google 1 0.0902 0.2173

Google 2 0.1182 0.3114

Google 3 0.0801 0.0178

Table 5. Performance of our linear pair-wise word level reranking model.

Pair wise reranking - words

Synthesizer Noise level MSE (Test) MSE variance (Test)

Espeak 1 0.1946 0.1151

Espeak 2 0.1546 0.0901

Espeak 3 0.1610 0.0959

Flite 1 0.1896 0.0972

Flite 2 0.2022 0.1167

Flite 3 0.2009 0.1052

Google 1 0.1783 0.0941

Google 2 0.1794 0.1031

Google 3 0.1840 0.1076

6 Results Discussion

From our data, we can see that the sentence level error estimation and pair-wise
reranking methods are ineffective at the current data scale. For the Spearman’s
correlation we can see that there is no consistent behavior between the different
error models. In the case of the pair-wise reranking for sentences we still see
poor performance. Not only is the MSE fairly high for a problem like this, the
variance of the MSE is much larger than would be anticipated. We believe that
these are problems that could be solved with additional data, but at the moment
our models are not capable of performing this task at the sentence level.

For the word level point-wise reranking we can estimate intelligibility for
the Google synthesizer to some extent. This is indicated by the Spearman’s
correlation which is either positive or near zero. However, this is not the case for
other synthesizers. The pair-wise word ranking is more stable than the sentence
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level reranking. For all synthesizers and for all noise levels we see model behavior
indicative of estimating the correct word in a reranking context. At the same
time, the variances of the MSE are within a reasonable bound and upon closer
inspection we do not see a many outliers that could skew these results.

Based on our results and given the data that we have presented here, we find
that we are positively able to rerank individual terms based on lexical features
to estimate their intelligibility. Our results demonstrate that this methodology
works best in the pairwise reranking context for this particular data scale. We
believe that additional labeled data will improve performance.

7 Future Work

The most significant piece of future work is more data with intelligibility labels
for different noise settings and synthesizers. Additional evaluations on different
features and different models for predicting intelligibility on the lexical level
would be useful.

8 Conclusion

This work has explored the intelligibility of three different synthesizers in three
different noise settings. We have evaluated these synthesizers in these noise set-
tings on a human listening task and we have measured performance along metrics
that reflect intelligibility. Further we have explored methods that have shown
some predictive power regarding how predictable intelligibility is on a lexical
level. We show that even with limited data you are able to rerank words and
estimate which word will be more intelligible in a given context.
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