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Abstract

For segmenting a speech database, using a family of acoustic
models provides multiple estimates of each boundary point.
This is more robust than a single estimate because by taking
consensus values, large labeling errors are less prevalent in the
synthesis catalog, which improves the resulting voice. This
paper describes HMM-based segmentation in which up to 500
related models are applied to each wavefile. In a listening test
of twelve utterances, human judges preferred the proposed
technique over the baseline by a tally of 6 to 2, with 4 ties.

1. Introduction

In a unit selection speech synthesizer, one crucial determiner
of voice quality is the accuracy of the underlying units, i.e. the
segmentation of recorded speech into phonemes. Elements
that are mislabeled or have inaccurate boundary times will
taint speech with unnatural prosody, awkward timing, and
sometimes mispronounced words. Overcoming this problem
traditionally requires laborious hand correction of the unit
catalog since automatically derived labels are seldom precise.

In [1] we demonstrated that dynamic time warping
(DTW) is a technique capable of high accuracy, but is prone
to large errors when the alignment run awry. This paper
concentrates on outlier identification and correction afforded
by the alternate approach of HMM-based modeling. Our
choice is motivated by the observation – as has emerged from
listening tests – that one big mistake has greater impact on an
utterance's perceived quality than several smaller ones.

Our underlying mechanism for segmentation is the
technique of forced alignment using Gaussian mixture
models. But instead of using one acoustic model to generate a
single estimate of label boundaries, in our approach we create
a “family” or set of related models, and use these to provide
multiple estimates. Units with low variance in their estimates
can be treated with high-confidence, and vice versa. 

Given enough estimates of each unit's boundary points,
taking the average (or median) value is a simple and effective
way of avoiding drastic inaccuracies. While we lack a large
hand-corrected corpus to serve as ground truth, the listening
tests presented in Section 3 demonstrate a measurable
improvement in voice quality. Section 2 elaborates our
approach where N (the number of acoustic models in the
family, hence number of label estimates) exceeds 500. 

Such a “heavy duty” attack is novel to this work but is not
something to recommend for the casual user. Thus, one
specific goal is to save others the computational burden that
we have undertaken to explore. In the Festvox [2] voice
building toolkit – which we support and employ – training
acoustic models for automatic labeling is by far the most time
consuming step. Our aim, in a future release, is to include

prebuilt models (along with appropriate parameter settings)
that have been validated to work well in most cases, at least
for English. This would reduce voice building times by a
factor of ten, not including the savings of hand correction.

2. Segmenting Speech for Synthesis

An inherent problem of segmentation techniques – whether
HMM or DTW-based – is that the program is normally
applied with only one parameter setting and yields only single
point estimates. An advantage of applying a family of acoustic
models is that each segment acquires multiple estimates, and
that these results can be combined into hypotheses that are
more robust. This section introduced our test data, explains the
experimental setup and compares results.

2.1. The CMU ARCTIC Speech Databases

“CMU Arctic” is a collection of studio-recorded, single
speaker English databases created with the goal of supporting
speech synthesis research. An Arctic database is a reading of
the Arctic prompt set by a speaker in a specified style of
delivery. The prompt set contains about forty thousand
phonemes and about 1150 utterances selected from a 168K
utterance corpus [3]. The source text is derived from out-of-
copyright novels and short stories.

Where possible, audio is recorded at 16-bit 32 kHz along
with a simultaneous EGG signal. The audio and EGG
recordings are packaged with phonetic labels, pitchmark files,
and related data required to deploy a Festival unit selection
voice. These releases use the standard scripts present in
Festvox 2.0 to create unit selection voices. They serve as a
baseline build for comparison. 

Currently, four voices have been released, 3 male and 1
female. These are referred to by the names awb, bdl, jmk (all
male), and slt (female). A fourth male voice, rms, is now
under preparation. It is the subject of this study, and is the
material we are using to benchmark potential improvements.

2.2. Acoustic Training and Forced Alignment

In [1] we compared phone alignment using a dynamic time
warping algorithm to that of HMM-based acoustic modeling,
in particular, using the SphinxTrain tool [4]. The primary
conclusion drawn was that SphinxTrain is not as accurate as
DTW, overall, but is also less prone to large mistakes. It is
thus the preferred choice for automated builds.

In the default configuration, SphinxTrain uses a 5-state
topology for each phoneme with skips allowed between
alternates states. This configuration is recommended for clean
speech; in contrast, a 3-state topology without skip arcs is
more commonly used under noisy conditions. Speech is
processed into vectors of mel cepstral coefficients with a



fixed step size of 10 ms. The default Hamming window
framesize is 25.625 ms, or 410 samples at 16 kHz.
(Sometimes 400 samples are used for a window length of
exactly 25 ms.) This relatively broad window equals 2-3 pitch
periods for the average male voice. This, and the fact that
HMM models are not optimized for boundary accuracy,
explains why they cannot be expected to have high accuracy.
Using narrower window and step sizes may help, but none of
the Arctic voices have hand-corrected labels to serve as
reference set for detailed verification.

Unlike [5], which directly attempts to improve boundary
placement, the concentration of this work lies in outlier
reduction. Our approach is to apply multiple independent
acoustic models. The results of all the models can then be
averaged to yield a combined decision. This accomplishes
two things. First, it avoids the weakness of using one
particular parameter setting. Second, the variance of a given
unit's boundary times can be taken as a confidence measure.
This approach is more direct (though more expensive) that
that of [6], which does not build explicit alternate models. 

In its default configuration, Sphinx builds models
containing 6000 tied triphone states, or senomes as they have
come to be called. 

Training data

(hours of speech)

Number of Senomes

(recommended)
1-3 10-30 500-1000 5000-5500
4-6 30-60 1000-2500 5500-6000
6-8 60-100 2500-4000 6000-8000
8-10 100+ 4000-5000 8000

Table 1. Degree of state-tieing recommended for a given
amount of training speech. These are only rough guidelines.

Table 1 shows recommended settings for training acoustic
models to be used in a recognition task. Employing 6000
senomes for one hour of speech (the size of each Arctic
database) is probably excessive, producing models that are
highly voice-specific. Reducing the number of senomes to
500 is better for cross-labeling (using models from voice A to
label voice B), but too drastic for self-labeling.

We explored the issue of modeling detail empirically by
building separate models in size ranging from 100 to 6000
senomes, in steps of 100. Adding three more – of sizes 250,
750, and 1250 – increases the number to 63 acoustic models
per voice. To combat the prospect of over-fitting we also used
models from awb, bdl, and jmk to label rms wavefiles. And in
addition, each model was run in two modes: with context-
dependent triphones, and with context-independent
uniphones. (The behavior of ci-models does vary with the
number of senomes, particularly in the insertion of silence
phones.) Thus each each phone boundary has a maximum of
63x4x2=504 estimates on its position.

2.3. Labeling Discrepancies Between Models

Table 2 contains average discrepancies for labeling the
rms Arctic database, in milliseconds. The point of reference
in this table is 'rms-median' – the label set produced by using
rms acoustic models (self-segmentation) and taking the
median value of all 63 estimates. Included are comparisons to
the 6000 senome model, and to the average value. The results
show high consistency. Recalling that the frame step size is
10 ms, mean discrepancies of 1.38 and 1.45 ms are small.
Labels generated using other acoustic models gave an average
discrepancy that is larger, from 15 to 21 ms. 

Target Source Model

rms rms awb bdl jmk comb.
  average 1.45 17.87 16.74 15.11 8.81
  median 0 18.38 17.37 15.36 4.60
  default 1.38 21.43 19.63 17.41 ––

  average 3.54 15.54 14.51 14.36 7.61
  median 3.47 15.80 14.74 14.59 9.44
  default 3.57 15.81 14.87 14.92 ––

  accent american scottish american canadian mixed

Table 2. Average label discrepancy between rms_median and
other systems. The top half represent context-dependent
models and the lower half context-independent. The
combined model contains up to 252 estimates for each label,
whereas each of the others has 63 each. The default
configuration uses models with 6000 senomes. Times are in
milliseconds.

Results from non-rms voices are not as far away as we
initially suspected they might be. Estimates from the awb
models differ the most, likely due to the different underlying
accent, while the jmk models agree mostly closely. 

The combined model incorporates results from the four
voice families {rms, awb, bdl, jmk}. With an average
discrepancy of less than 10 ms (one frame step), between the
combined model and the default, one might not expect a
perceivable difference in the resulting voices. And yet, our
initial listening tests do indicate that combining labels from
multiple models does improve on the default build. We
hypothesize that this is due to mitigating the effects of bad
units in the unit selection catalog.

2.4. Average Label Variances

The combined model provides up to 504 estimates for each
label, in 10 ms precision. The qualifier “up to” is necessary.
In cross-segmentation sometimes the Viterbi algorithm that is
at the heart of forced alignment cannot successfully find a
path through the target waveform. This problem is endemic of
using acoustic models so finely tuned to a single voice that
state emission probabilities of the target become vanishingly
small. Such failed alignment is less of a problem when using
coarser acoustic models, i.e. with fewer senomes. This is one
argument in favor of parameter tuning.

Table 3 shows that when using all the models in
combination, 40% of labels have a standard deviation of less
than 10 ms; 70% less than 20 ms; and 90% less than 40 ms. A
segment with high variance – larger than 40 ms – does not
necessarily mean that the average, or median value is
inaccurate. It doesn't even mean that the default labels are
inaccurate. But it does indicate which segment boundaries are
hard to identify, in the sense that the various acoustic models
tend to disagree. The label variance can be used as a measure
of segmentation confidence.

Stdev Cumulative Stdev Cumulative

5 ms 7.9% 30 82.7
10 40.0 40 89.1
15 59.7 50 92.8
20 70.4 75 97.4
25 72.7 100 99.1

Table 3. Percentage of segments with stdev in label estimates
lower than a given time threshold. Values are for the joint
multi-voice model.



Figure 1 displays the distribution of segmentation variances
for each of the 40,000 units. The peak value is 8 ms, i.e. less
than one frame step. Figure 2 provides a close-up, comparing
the combined triphone model (N=252) to rms models alone. 

The inference drawn is that models from a single voice
tend to agree with each other tightly, at least for the samples
we have evaluated. Most of the models place the boundary of
a given phone in the same frame. A second peak between 4-5
ms is also evident in Figure 2. This corresponds to a set of
boundary estimates that are approximately split between
adjacent 10 ms frames. Such tight agreement, we believe, is
an effect of being over-trained to a particular voice. It should
not be taken to mean that average label accuracy is this low.
More likely, overall accuracy lies between 15 and 25 ms, as
suggested by Table 2.

Figure 1. Histogram of label standard deviations by
combining the results of each of the 4x63 acoustic models. 

Figure 2. Histograms of label standard deviations, comparing
the combined models to self-models (rms). The green curve is
the same as that in Figure 1. Note the break in vertical scale at
7000-16000.

2.5. Label Variances in a Waveform

The results of the previous section document overall trends.
Here we illustrate with a particular example. Figure 3 graphs
label variances for each segment of arctic_a0001, the first
prompt of the Arctic recording script. (“Author of the Danger
Trail, Philip Steels, etc.”) 

An interesting pattern is evident from visual inspection.
Label uncertainty is greatest at the utterance endpoints, at
1.5s into the waveform, and again at about 2.2s. These
correspond to boundaries between silence and speech, either
at the ends, or internally. This problem is how significant? If

the discrepancy occurred only at the transition from speech to
silence (e.g. the sequence /l pau f/ between the words “trail”
and “Philip”), it probably would not be severe. However, the
graph shows several large error bars occurring in succession,
indicating that the problem is not tightly contained. 

Figure 3. Label variances for the prompt arctic_a0001, using
the combined models. Time moves to the right with the dot
locating the segment's average end time. For visibility the
error bars are exaggerated to show 10x standard deviation.
The 35 phones of the utterance are stacked evenly from
bottom to top. The phone sequence is: /pau ao th er ah v dh ax
d ey n jh er t r ey l, f  ih l ax p s t iy l z, eh t s eh t er ax pau/.

2.6. Parameter Tuning

It is useful to ask which single model gives answers closest to
that of our family of models. Figure 4 plots the timing
differential between single rms models (auto-segmentation),
and that of the rms median label values. While not conclusive,
this curve suggests lowering the default parameter setting of
6000 senomes to around 3500.

Figure 4. Total label timing differences between singe rms
acoustic models and the mean of the entire set (N=63). 

3. Listening Tests

Listening tests are crucial to assessing the ultimate impact of
a proposed improvement to a synthesis system. Yet,
comprehensive listening tests are expensive and time
consuming to conduct, and relating the results back to low
level system operation is seldom straightforward. The large
amount work involved is justified when evaluating major new
releases. But for incremental explorations – such as this paper
– small scale tests are more suitable.
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Our test set consists of twelve utterances drawn from the
same source corpus from which the Arctic prompt set was
selected. The utterances are single sentences ranging from six
to thirteen words in length. They were selected on the basis of
having good diphone coverage, with an extra constraint: one
of the utterance's diphones must not appear in the Arctic
prompt set. (Arctic has good coverage, but it is not
exhaustive.) This condition ensures that each test prompt has
at least one “difficult bit.” There is an exception. One of the
test prompts duplicates a training prompt. We put this in to
include an example of very high quality synthesis, and to
verify that the concatenation algorithm is well behaved. Such
an example should be synthesized flawlessly by applying
units straight from the source prompt, in sequence. Note that
perfect reconstruction is not mathematically guaranteed; it is
simply the expected – and desired – result. 

For this investigation we synthesized the set of twelve test
wavefiles under two conditions. First, using the default
procedure for creating the unit catalog (the 'old' set). And
second, using the average label times of the combined models
(new). We solicited twenty native speakers of American
English to render AB preference judgments for each test pair.
Testers were allowed to judge a close call as a “tie”. The
order of wavefiles A and B was randomized but the sequence
of pairs remained constant.

After finishing AB comparisons our testers were asked to
score each of the new wavefiles on a 5-point subjective scale,
with 5 meaning near-perfect. These results are cast against an
earlier pilot study in which ten listeners scored the old set of
wavefiles. Though such scores are not precisely calibrated
between judges, they are helpful for gaining insight into what
constitutes synthesis of acceptable quality.

Table 4 summarizes tester responses. Overall, in 6 of the
12 tests, listeners preferred the new results to the old. Two of
the cases was considered degraded. Four cases were ties. The
absolute scores suggest that the judges in the initial session
were generally more lenient than that of the current mix. See
for example the scoring of utterances 3, 5, and 12. This is not
unexpected. It is far easier for humans to weigh two
comparables than it is to be consistent on an absolute scale. 

If 1 point is awarded for a 'win', 0 for a 'loss', and half a
point for a 'tie', the new wavefiles received 65.8% of possible
points from the AB tests. At 95% confidence the performance
bounds are [60.3, 70.3] percent.

Utterance Preference Score

old tie new old (10) new (20)
1 1 1 18 4.2 4.7
2 8 12 2.3 2.6
3 3 1 16 3.1 3.2
4 7 5 8 2.9 3.0
5 6 7 7 3.7 3.5
6 4 16 3.3 3.6
7 13 2 5 4.6 3.3
8 8 10 2 3.4 3.2
9 4 8 8 3.1 3.1

10 3 17 4.4 4.9
11 2 9 9 3.0 2.8
12 2 14 4 3.0 2.3

Overall 2 4 6 3.42 3.33

Table 4. Results of listening tests. With the 5-point scores a
5 indicates “excellent – almost indistinguishable from real,” 1
indicates “poor – intelligible but unpleasant to listen to,” while
3 indicates “okay – but with definite defects.”

Our intent with the scoring results is to identify wavefiles
that serve as reference examples for each of the levels 1
through 5. Once identified, they will be used as calibration
points for future, more thorough listening evaluations.

One additional observation, not evident in Table 4, is
worth mentioning. In two test cases an incorrect word
pronunciation became correct in the new version, i.e. phone
substitution errors were fixed. This happened in utterances 1
and 6. The first contains the word “Brokaw” which changed
from /b r ow k uh/ to /b r ow k ao/; in 6 the word “suffering”
changed from /s ah f eh r ih ng/ (rhymes with 'air') to /s ah f er
ih ng/. Substitution errors are an occasional byproduct of
labeling errors. Erroneous boundary times sometimes result
from a mismatch between the phone identity presumed in the
transcript and the spoken realization. Removing outliers, as
our technique effectively does, helps subdue this problem.

4. Conclusions

This research demonstrates that applying a family-of-models
approach to the problem of segmentation does significantly
improve the resulting unit selection voice. In our listening
tests 6 of 12 utterances improved while only two worsened.
This improvement is due to using averaged segmental
boundaries. Our explanation is that this mutes the effect of
bad units that otherwise would populate the selection catalog.

Instead of using multiple estimates to revise label
boundaries, it is also feasible to remove units altogether.
Observe that a well designed unit selection catalog will
contain a surfeit of examples in each phoneme category. Up
to a point, units suspected of being bad don't have to be
corrected; instead, discarding them from the selection catalog
is a safe operation. We are currently conducting experiments
to discover how this strategy fares.

As for a result that can immediately be put to practice, our
experiments suggest reducing SphinxTrain's default
configuration of 6000 senomes down to around 3500. Future
releases of Festvox can be expected to adopt this change.
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