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ABSTRACT

We summarize the accomplishments of a multi-disciplinary
workshop exploring the computational and scientific issues
surrounding the discovery of linguistic units (subwords and
words) in a language without orthography. We study the re-
placement of orthographic transcriptions by images and/or
translated text in a well-resourced language to help unsuper-
vised discovery from raw speech.

Index Terms— unwritten languages, multi-modal data,
unsupervised unit discovery, image retrieval, machine trans-
lation.

1. INTRODUCTION

To develop speech and language technology (SLT) large
amounts of annotated data are required. However, for many
languages in the world, not enough speech data is available,
or these lack the annotations needed to train an ASR system
[1]. Moreover, an estimated half of the human languages do
not have an orthography, and many others do not use it in a
consistent fashion. This represents millions of potential users
that as yet cannot be served by speech technologies. As any
human 4-year-old demonstrates, however, it is theoretically
possible to learn a language communication system before
learning to read and write, from raw sensory signals and with
only limited human supervision.
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Recently, different approaches have been proposed to
build ASR systems for such low-resource languages. One
strand of research focuses on discovering the linguistic units
of the low-resource language from the raw speech data, while
assuming no other information about the language is avail-
able, and using these to build ASR systems (zero resource
approach; e.g., [2, 3, 4, 5, 6]). Another strand of research
focuses on building ASR systems using speech data from
multiple languages, thus trying to create universal or cross-
lingual ASR systems [7, 8, 9, 10]. Children though, when
learning a language, also have information besides the audi-
tory input available, primarily in the visual modality. This
has led to a new strand of research which uses visual infor-
mation, from images, to discover word-like units from the
speech signal using speech-image associations [11, 12, 13].
The “Speaking Rosetta” project at the 2017 Frederick Jelinek
Memorial Summer Workshop, which took place at Carnegie
Mellon University, Pittsburgh, pushed this idea further by
using multi-modal datasets that not only include images, but
also include translations in a high-resource language. This is
an interesting extension as parallel data between speech from
an unwritten language and translations of that speech signal
in another language can easily be collected [14].

This paper summarizes the accomplishments of the multidis-
ciplinary “Speaking Rosetta” workshop which explored the
computational and scientific issues surrounding the discovery
of linguistic units (subwords and words) in a language without
orthography, through replacing the orthographic transcrip-
tions typically used for training an ASR system by images
and/or translations in a well-resourced language. The fo-
cus of the project was on discovering intermediate symbolic
units and investigating their role in building SLT systems.
We concentrated on 4 tasks: two with symbolic units (unit
discovery and speech synthesis) and two end-to-end tasks
without the need for explicit symbolic units (speech2image
and speech2translation).
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Fig. 1. Functional blocks of the “Speaking Rosetta” project

2. OVERVIEW OF “SPEAKING ROSETTA”

Figure 1 shows a visual representation of the end-to-end sys-
tems, and structure, of the Rosetta project. The unit discovery
strand (see Section 3.1) focused on discovering ’acoustic
units’ in the form of articulatory features or (pseudo) phones
from raw speech. These acoustic units were used to build
speech synthesis systems (Section 3.2), to transform the
speech input into symbolic units (pseudo words or pseudo
phones) and these units were used for several end-to-end
tasks. The end-to-end tasks (see Section 4) used an encoder-
decoder framework to translate speech or retrieve images
from speech. Alignment/attention models were taken advan-
tage of. Two of these end-to-end tasks are highlighted below:
speech to translation and speech to image retrieval.

2.1. Databases

Five multi- and unimodal databases were used. The Mboshi
(Bantu language spoken in Congo-Brazzavile) corpus1 con-
sists of 5k speech utterances (approximately 4 hours of
speech) in Mboshi aligned to French text. The data set also
contains linguists’ transcriptions in Mboshi in the form of a
non-standard graphemic form close to the language phonol-
ogy [1, 15].

The FlickR-real speech database is a tri-modal (speech,
translated text, images) corpus. The FlickR corpus contains 5
different natural language text captions (obtained using Ama-
zon Mechanical Turk; AMT) for each of 8000 images cap-
tured from the FlickR photo sharing website. AMT was also
used by [16] to obtain 40K spoken versions of the captions.
We augmented this corpus by adding Japanese translations

1The dataset will be made available for free by ELRA; its current version
is online at: https://github.com/besacier/mboshi-french-parallel-corpus

(Google MT) for all 40K captions, as well as Japanese tok-
enization.

SPEECH-COCO-synthetic [17, 18] is an augmentation
of MSCOCO [19] which consists of 123,287 images with
five different descriptions per image. We generated speech
captions using text-to-speech (TTS) synthesis resulting in
616,767 spoken captions (more than 600h) paired with im-
ages. Disfluencies and speed perturbation were added to the
signal in order to make it sound more natural.

The How-To dataset is an English open domain in-
structional videos (uploaded by users with personal video
recorders) dataset of about 480 hours of speech. Each video
is broken down into short utterances of about 8-10 seconds
each. Transcriptions consist of summaries of what was spo-
ken. The cleanest 45 hours out of the 480 hours were used.

From the Spoken Dutch Corpus (CGN, [20]), 64 hours
of read speech were used.

2.2. Evaluation

The two types of task, i.e., linguistic unit discovery and end-
to-end, were evaluated using a battery of tests which include
qualitative measures, e.g., the MCD (see Section 3.2 [21])
and the ABX task (which compares the similarity between
discovered units and ground truth labels or between different
types of acoustic features; [22, 23]) for the evaluation of the
discovered units, and quantitative measures, such as BLEU
score, error rates, and word discovery metrics (see for more
details [24, 25]).

2.3. XNMT Toolkit

The end-to-end systems used during the project were built
using the neural machine translation toolkit XNMT [26],
which was greatly improved during the course of this project.
XNMT is a sequence-to-sequence neural network toolkit
which reads in a sequence of (variable-length) inputs, and
then generates a different sequence of (variable-length) out-
put. It consists of a library of standard components. The
library is designed so that existing components can be easily
re-arranged to run new experiments, and new components
can be easily added. Available components are categorized
as embedders (e.g., onehot, linear, and continuous vector em-
bedders), encoders (e.g., CNN, LSTM, and pyramidal LSTM
encoders), attention models (e.g., dot product, bilinear, and
MLP attention models), decoders (e.g., a RNN decoder ap-
plied to the state vector of the encoder), and error metrics
(e.g., BLEU, cross-entropy, word error rate).

3. TASKS WITH SYMBOLIC UNITS

3.1. Unit discovery

Three different unit discovery systems were implemented that
used out-of-domain languages to help unit discovery through
(almost) zero-shot adaptation.

In the unsupervised phoneme discovery - Bayesian
acoustic unit discovery (AUD) approach, pseudo-phones
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were generated from the AUD system of [3] with two major
modifications. First, the truncated Dirichlet process of [3]
was replaced by a symmetric Dirichlet distribution, which
provides a good and yet simple approximation of the Dirich-
let Process [27]. Second, to cope with larger databases, the
Variational Bayes Inference algorithm originally used in [3]
was replaced with the faster Stochastic Variational Bayes
Inference algorithm. Experiments showed that these modifi-
cations, while considerably speeding up the training, yielded
negligible drop in accuracy. Also, an extension of this model
was explored: the AUD model was embedded into a Varia-
tional Auto-Encoder leading to a specific case of the recently
developed Structured Variational Auto-Encoder model [28]2.

The universal articulatory features and phoneme in-
ventory discovery approach aimed at deriving phone-like
units using the setup presented in [29]. It consists of three
steps: 1) Detection of pseudo-phone boundaries 2) Extrac-
tion of language-universal articulatory features (AFs) for each
segment. 3) Clustering of the segments based on the extracted
AFs. Seven articulatory feature detectors using different net-
work architectures were trained using data from multiple
source languages, and evaluated cross-lingually. Results in-
dicated that the LSTM-based feature extractors showed an
improved multilingual performance compared to [29], but
they did not perform as good as their feed-forward neural
network based counterparts crosslingually. Using k-means,
segments were clustered based on the extracted AFs of each
segment. Estimating the number of classes k is an open
question for future research.

The cross-language definition of units approach [30]
uses linguistic knowledge of the low-resource language and
a semi-supervised training paradigm to build an ASR system
for a low-resource language through the adaptation of an ASR
system of a high-resource language. Crucially, phones that
are present in the low-resource language but not in the high-
resource language need to be created. This is done through
a linear extrapolation between existing acoustic units in the
high-resource ASR system’s soft-max layer after which the
acoustic units are iteratively retrained using all utterances or
only those that have the best score according to four different
criteria: ASR score, the MCD score from a TTS system (see
Section 3.2), translated text retrieval score, and their combi-
nation. The experiments showed that in order to train acoustic
units using self-labelled data, training utterances are needed
that capture multiple aspects of the speech signal.

3.2. “TTS without T”

Text-to-speech (TTS) technology was used to generate speech
from unit sequences, and to evaluate the quality of the discov-
ered unit inventories. Since this project concerns languages
without orthography, TTS systems need to be built using dis-
covered units rather than text (dubbed “TTS without T”). The

2The source code of both AUD models is available via
https://github.com/amdtkdev/amdtk

TTS system used is Clustergen [21]. Clustergen works well
with small corpora because it treats each frame of the train-
ing corpus as a training example, rather than each segment.
This makes it suitable for our low-resource scenario. The in-
put to Clustergen is a waveform file plus symbolic sequences
of “phones”; the output is a simple synthesizer and a Melcep-
stral distortion measure (MCD) [31] on held out data. MCD
measures the average distance between the log-spectra of the
synthetic and natural utterances, and has been demonstrated
to be an extremely sensitive measure of the perceived natural-
ness of speech utterances, e.g., an MCD difference between
two synthesis algorithms of 0.3 (on the same test corpus) is
usually perceptible by human listeners as a significant differ-
ence in perceived naturalness [21].

TTS was used to generate speech in two tasks. The
first task is a new speech technology task, which we call
image2speech [32]. Image2speech is similar to automatic
image captioning, but can reach people whose language
does not have a natural or easily used written form. The
image2speech pipeline consists of a VGG16 visual object
recognizer which converts each image into a sequence of
feature vectors. XNMT accepts image feature vectors as
inputs, and generates speech units as output, which were
then sent to the TTS. Four types of intermediate speech units
were tested: 1) L1-words and 2) L1-phones (generated us-
ing a same-language ASR, which provides an upper bound
performance); 3) L2-phones from the cross-language defini-
tion of units approach and 4) pseudo-phones generated using
AUD (see Section 3.1 for both). Results showed that the
image2speech system is able to generate a phone string that
is composed entirely of intelligible words, sequenced in an
intelligible and semantically reasonable sentence.

In the second task, a proof-of-concept foreign-text-2-
speech end-to-end system was build using XNMT which
translates French words (text) into Mboshi phones which
were either (1) true phones (2) or pseudo-phones obtained via
AUD (see Section 3.1). These phone sequences were then
sent to the TTS system. On a development set of 514 utter-
ances BLEU4 scores at the character level were of 31.95%
with true phones and 8.32% with pseudo-phones3.

3.3. Speech and image to text (and summarization)

The speech-and-image2text system uses multi-modal infor-
mation consisting of speech and videos to improve standard
(supervised) ASR (this approach is thus also useful for high-
resource languages). From the videos, object and scene fea-
tures are extracted and used to adapt a sequence-to-sequence
model (using the Pyramidal encoder by [33]) to the visual
features. Results showed that adding the visual features helps
the model convergence and guides the training in the earlier
epochs, compared to an HMM-DNN model. The sequence-
to-sequence model is able to jointly learn the audio visual

3TTS speech samples are available via https://github.com/JSALT-
Rosetta/Illustrations/blob/master/TTS/mboshi/
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System Prec Recall F
Segmental DTW Baseline [37] 31.9 13.8 19.3
Attention (fr-mb) 36.5 46.1 40.7
Attention (mb-fr) 36.3 46.6 40.8

Table 1. Speech-to-translation: Word boundary detection re-
sults (Mboshi5k corpus) from pseudo phones

features, the acoustic and language models, requires no extra
preprocessing for noisy data, does not require precomputed
alignments, and is efficient even with long utterances.

4. END-TO-END TASKS

4.1. Speech-to-translation

End-to-End speech translation, i.e., translation from raw
speech without any intermediate transcription [34, 35], is
attractive for language documentation, which often uses cor-
pora made of audio recordings aligned with their translation
in another language (no transcript in the source language)
[1, 14]. Here, XNMT was used to build end-to-end speech
translations systems on FlickR (English-to-Japanese) and
Mboshi-to-French. The obtained BLEU4 scores at the char-
acter level were 30.99% and 22.36% on the development sets
of FlickR and Mboshi, respectively. Although these results
are rather low for a pure translation task, these systems show
that end-to-end models are able to encode some regularities
in the speech signal in order to decode predictable sequences
of characters in a target language.

Secondly, an attention-based Neural Machine Translation
(NMT) model [36] was trained between phones in Mboshi
and text in French, while soft-alignment probability matri-
ces generated by the attention mechanism, were extracted.
These alignments were post-processed to segment a sequence
of symbols in Mboshi into words. While [36] applied their
method to true phones (gold phonemes transcribed by lin-
guists), here segmentation through attention from a pseudo-
phone sequence obtained using AUD (see Section 3.1) was
investigated. Table 1 shows that the word boundary detec-
tion results of the attention-based system outperformed those
of a pure speech-based baseline which used pair-matching
using locally sensitive hashing applied to PLP features and
then grouped pairs using graph clustering [37]. Moreover, a
reverse model (French-Mboshi) slightly improved word seg-
mentation compared to (Mboshi-French). Implementation of
a bilingual loss is probably an interesting future work.

4.2. Speech-to-Image

Speech-to-image is a relatively new task [11, 12, 13]. A
speech-to-image system learns to map images and speech
to the same embedding space, and retrieves an image using
spoken captions. While doing so, it uses multi-modal input
to discover speech units in an unsupervised manner, similar

Feature type R@1 R@5 R@10
Mel-filterbank 0.0096 0.047 0.0856
Multiling. Bottleneck 0.013 0.053 0.0994
AUD (one epoch) 0.0012 0.0044 0.0112
Cochleagram 0.0008 0.005 0.0104

Table 2. Speech-to-image retrieval results (Recall@N) for
the tested input speech features

to how children acquire their first language. Our speech-
to-image system (based on the implementation of [13]) was
implemented using XNMT. Four types of acoustic features
were compared: Mel-frequency Filterbanks (baseline, similar
to [16] but with added speaker-dependent mean-variance nor-
malization on the features before zero-padding/truncation),
the pseudo-phones generated by the AUD system [3] (which
were downsampled by a factor of 9 along the phone dimen-
sion to fit the input of the DNN), Multilingual Bottleneck
features (MBN), and Cochleagram Features generated by the
Resonant Tectorial Model developed by [38].

Table 2 shows the results for the four features evaluated
with Recall@N. The MBN feature is superior to all other
acoustic features, and shows over 1 percent improvement on
the Filterbank baseline for the recall@10 score.

5. CONCLUDING REMARKS

The “Speaking Rosetta” JSALT 2017 project laid the foun-
dation for a new research area “Unsupervised multi-modal
language acquisition”. It showed that it is possible to build
useful SLT systems without any textual resources in the lan-
guage for which the SLT is built, in a way that is similar
to that of how infants learn a language. 1) The “Speaking
Rosetta” project showed that zero-shot adaptation, i.e., unsu-
pervised learning of speech units, is possible, and can be im-
proved by using information extracted from well-resourced
languages. The discovered units are meaningful as shown
by their usefulness in upstream tasks such as word discovery,
image retrieval, and speech translation tasks. We have pre-
sented the first attempt to discover spoken term from speech
using an attention matrix; the performance of this approach
is better than all the baselines evaluated in the same condi-
tions. 2) TTS has proven to be a useful tool in the evalua-
tion of discovered units of different types, and can be used
to evaluate how well a particular set of units correlates with
acoustic features. “Units” we have tested include articula-
tory features, AUDs, and cross-language adapted phones. 3)
The unit-discovery and the end-to-end systems were success-
fully combined into several working proof-of-concept end-to-
end demos. 4) We showed that audio and video information
can be fused to improve speech summarization without going
through text. 5) Finally, a pipeline of metrics as well as dedi-
cated datasets were created to fuel reproducible researches in
this new emerging domain.
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