Computational Semantics

Giving formalisms meaning

- □ Formal Representations
- \square Some logics:
 - First Order Predicate Logic
 - Lambda Caluclus
- □ Predicates, variables quantifiers
- □ Translating NL to LF
- □ Practical systems
- □ Some typical problems
- ☐ Anaphora and Discourse

Formal Representation

- □ An unambiguious representation
- \square That has a "semantics":
 - what does your formalism mean
- □ That covers what you want it cover:
 - (and only covers that space)

A semantic formalism

- \square An **ontology**:
 - the objects, and relations you with to talk about
- \square Axioms:
 - predicates ("truths") in your world
- □ Inference mechanism:
 - procedure to prove things in your world
- \square Good formalisms are:
 - sound everything that can be proved true is true
 - complete everything that is true can be proved

A semantic formalism: example

```
\square An ontology:
  - movie(X), actor(X), starredin(X,Y), directed(X,Y)
\square Axioms:
  - movie(StarWars),
  actor(HarrisonFord)
  - director(GeorgeLucas),
  - starredin(HarrisonFord,StarWars)
  - directed (George Lucas, Star Wars)
  - Forall X,Y,Z \operatorname{starredin}(X,Y) & \operatorname{directed}(Z,Y)
            \rightarrow directed(Z,X)
□ Inference mechanism:
  - is directed(GeorgeLucas, HarrisonFord) true?
  - how do you prove it.
```

Logics

- \square Boolean logics:
 - atomic axioms
- □ First Order Predicate Logic:
 - atoms plus predicates:
 - movie(StarWars)
 - variables and qauntifiers
- □ Higher Order Logics:
 - arguments may be predicates not just atoms
 - thinks(Alan, directed(Hitchcock, ThreeDaysoftheCondor))

First Order Predicate Logic

- \square atoms: a,b,c,...
- \square predicates: predA/2, predB/2, predC/1
- \square basic statements: predA(a,b), predB(b,c), predC(b)
- \square compound statements:
 - $-A \wedge B$
 - $-A \vee B$
 - $-\neg A$
 - $-A \rightarrow B \equiv \neg A \lor B$
- \Box quantifiers:
 - $-\forall XA$
 - $-\exists YA$

First Order Predicate Logic: semantics

Model theoretic semantics

- \square basic statements:
 - $-\operatorname{pred} A(a,b)$ is true if $[\![\operatorname{pred} A\]]^M([\![a\]]^M,[\![b\]]^M)$
- \square compound statements:
 - $-A \wedge B$ true if $[\![A]\!]^M$ and $[\![B]\!]^M$
 - $-A \vee B$ true if $[\![A]\!]^M$ or $[\![B]\!]^M$
 - $-\neg A$ true if A is false
 - $-A \to B$ true if $[\![A]\!]^M$ is false or $[\![B]\!]^M$
- \square quantifiers:
 - $-\forall XA$ is true if for all bindings of X in A, $[A]^M$ is true
 - $-\exists YA$ is true if there exists one binding of Y in A, such that $\llbracket A \rrbracket^M$ is true

Some examples

- $\square\ actor(HarisonFord)$
 - "Harison Ford is an actor"
- $\square \exists Xactor(X) \land director(X)$
 - "Someone is a actor and a directory"
- □ quantifier scope
 - $-\forall X\exists Y(man(X)\rightarrow woman(Y)\wedge loves(X,Y))$
 - $-\exists Y \forall X (man(X) \rightarrow woman(Y) \land loves(X, Y))$

Semantics vs Calculus

- □ Semantics is meaning
 - Calculus is bunch of symbols
- □ Model Theoretic Semantics:
 - A symbol a
 - A mapping function $[\![a]\!]^M$ wrt to M
 - maps a to the bearded Scotsman himself

Words vs Formalism

- □ What is the meaning of "car"
 - how does it relate to "engine", "motor", "transport"
 - "Wordnet" type semantics
- □ Formalism
 - How do you translate syntatic structure
 - to semantic formalism
 - What are the structural problems

Quantifiers

- \square Forall X (\forall , "universal") and Exists X (\exists , "existential"):
 - $\forall X \exists Y \operatorname{actor}(X) \& \operatorname{movie}(Y) \& \operatorname{starredin}(X,Y)$
- □ Negation
 - -Not $\exists X$ actor(X)& movie(X)
- □ Few, Many, Some, less than three ...:
 - For Few X actor(X) & director(X)
- \square Don't need no quantifiers ... (?)
 - actor(X) & director(X)
 - but are they existential or universial

Natural Language and Semantics

- ☐ HarrisonFord starred in StarWars.
 - starredin(HarrisonFord,StarWars)
- □ Who starred in StarWars and IndiannaJones.
 - $-\exists X \text{ starredin}(X, \text{StarWars}) \& \text{ starredin}(X, \text{IndiannaJones})$
- □ Which actor and director starred in StarWars
 - $\exists X \operatorname{starredin}(X,\operatorname{StarWars}) \& \operatorname{actor}(X) \& \operatorname{director}(X)$
- \square what does "and" mean:
 - Which actors and directors starred in StarWars
 - $\exists X \operatorname{starredin}(X, \operatorname{StarWars}) \& \operatorname{actor}(X) \& \operatorname{director}(X)$
 - Which men and women starred in StarWars
 - $\exists X \operatorname{starredin}(X, \operatorname{StarWars}) \& \operatorname{man}(X) \& \operatorname{woman}(X)$
 - $-\exists X \operatorname{starredin}(X,\operatorname{StarWars}) \& (\operatorname{man}(X) \operatorname{or woman}(X))$

Quantifier scope

A seat was available for every passenger

A toll free number was available for every customer

A secretary phoned up each director

A letter was sent to each customer

Every man loves a woman
who works at the candy store
Every 5 minutes a man gets knocked down
and he is not too happy about it

Quantifier scope

- □ Quantifiers can have different scope:
 - Every man loves a woman
 - $\forall X (man(X) \& \exists Y woman(Y) \rightarrow loves(X,Y)$
 - $-\exists Y (woman(Y) \& \forall X man(X) \rightarrow loves(X,Y)$
 - Every man is searching for a needle
- \square Can explicitly find the alternatives:
 - or can preserve the ambiguity
- □ Some scopes are equivalent
- \square Some scopes imply others

Compositionality

The meaning of an utterance is a function of the meaning of its parts.

```
S -> NP VP
sem_of(S) = compose(sem_of(NP), sem_of(VP)).
Before we had
sem_of(NP) ->
   np(X,man(X),Scope,every(X,man(X) --> Scope)).
sem_of(VP) ->
   vp(X, walk(X)).
Composition
sentence(For) -->
    noun_phrase(X,Scope,For),
    verb_phrase(X,Scope).
```

Lambda Calculus

Better to have a representation for abstractions in our SRL and have a uniform composition function.

Verb phrase "walks" $\rightsquigarrow \lambda x[walk(x)]$

Noun phrase "John" \sim j

Sentence composition

 $\lambda x[walk(x)](j) \leadsto walk(j)$

Lambda calculus

```
\begin{array}{c} {\rm Syntax} \\ \lambda \ {\rm VAR} \ {\rm TERM} \end{array}
```

Semantics ???

Composition: lambda application $\lambda x [walk(x)](j)$ is equivalent to walk(j)

Beta-reduction reducing lambda expression plus argument to normal form

Application and Reduction

$$\lambda x[walk(x)](j) \leadsto \\ walk(j)$$

$$\lambda x \lambda y [like(x,y)](j) \rightsquigarrow \\ \lambda y [like(j,y)]$$

$$\begin{array}{c} \lambda x \lambda y [like(x,y)](j)(m) \leadsto \\ like(j,y)] \end{array}$$

$$\lambda P[\forall x P(x)](\lambda y [walk(y)]) \rightsquigarrow \\ \forall x \lambda y [walk(y)](x) \\ \forall x [walk(x)]$$

Anaphora

- \square pronouns and other references (definites)
- □ Anaphora (general term and preceding referent):
 - The man came in. He sat down
 - My laptop broke. The machine went on fire.
- □ Cataphora (future reference)
 - That he had no money worried John
- □ Exophora
 - It is raining.
 - I went to talk yesterday, he was boring.

Anaphora resolution

- \square Some things easy, some *very* hard
 - may need complete world knowledge
- □ Introduce new referents in the discourse
 - candidates (male/female/inanimate)
- \square With pronouns and definites:
 - find likely candidate in context
 - most recent and matching attributes
 - may require complex relationships

Discourse and Dialog

- ☐ Tracking conversations:
- ☐ Tracking sub-dialogs:
- 1. Alfred and Zohar liked to play baseball.
- 2. They played it every day after school before dinner.
- 3. After their game, Alfred and Zohar had ice cream cones.
- 4. They tasted really good.
- 5. They were Italian and they often had sprinkles on
- 6. One day they met a man at the ice-cream parlour.
- 7. He told them that he had seen them playing.
- 8. He wanted them to play for his team.

 11-722, LTI, Carnegie Mellon

Donkeys

"Every man who owns a donkey beats it" "If a man owns a donkey, he beats it"

- \square possible translations
 - $\forall X ((man(X) \land \exists Y (donkey(Y) \land owns(X,Y))) \rightarrow beats(X,Y))$
 - mal-formed as final Y outside scope of $\exists Y$
 - $-\forall X\exists Y(man(X) \land donkey(Y) \land owns(X,Y)) \rightarrow beats(X,Y)$
 - true in model beats a least one of the donkeys he owns.
 - $-\exists Y \forall X ((man(X) \land donkey(Y) \land owns(X,Y)) \rightarrow beats(X,Y))$
 - A single donkey jointly owned
 - $\forall X \forall Y ((man(X) \land donkey(Y) \land owns(X,Y)) \rightarrow beats(X,Y))$
 - the most likely meaning

But the most likely meaning has a Universal for an indefinite

Discourse Representation Theory

Hans Kamp (1981)

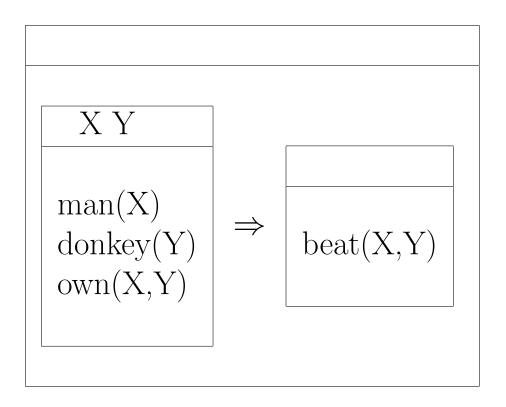
Johnson and Klein 1986 "Discourse, anaphora and parsing", COL-ING 86 (Bonn).

Kamp and Reyle 1993.

Discourse Representation Structure (DRS)

A man walks \sim

X


man(X) walk(X)

$\overline{}$		•		1
	- 1	ourse	mor	lzara
\Box	\perp	1900arsc	11101	α

□ Conditions

Indefinites in DRT

DRT offers a uniform treatment of indefinite NPs whether within the scope of a universal or not.

Summary Discourse Representation Theory

- □ Every in DRSs
 - \Rightarrow relation between sub-DRSs
- □ Accessibility of markers
- □ Donkey anaphora
- \square DRT offers a uniform treatment of indefinites,

Marrying Norwegians

- "Mary wants to marry a Norwegian"
- ☐ Mary knows who her future husband is and he is from Norway
 - $\exists X \exists Y (mary(X) \land norwegian(Y) \land wants_to_marry(X,Y)$
- ☐ Mary likes Norway and want so to live there so she want so marry someone, though doesn't know who, who is norwegian.
- □ "Mary wants to marry a millionaire"
- Need higher order semantics to represent this

Situation Semantics

Naming things

- □ All basic logics require grounding in semantics
- □ Meaning is defined for each part
- □ Cannot refer to themselves
- □ 'The set of all sets' (Russell)
 - cannot give a constructive definition
- \square Need to introduce:
 - fixed point semantics
 - Non-well founded set theory (Peter Aczel)
 - Antifoundation axiom

Other "famous" sentences

- \square John seeks a unicorn.
- □ John sees Mary walk and Bill walk or not walk.
- □ Colorless green ideas sleep furiously.
- □ Every representative of a company saw most samples.
- □ Mary gave her mother flowers and so did Jane.

Summary

- □ Semantic formalism
 - sound and complete
- □ Logic vs Calculus
- □ Words vs structure
- □ FOPL, Lambda Calculus
- □ Quantifiers and Scope
- □ Anaphora resolution:
 - find referents of pronouns and definites.