A Basic Introduction to Game Theory

Avrim Blum

Game theory

- Field developed by economists to study social & economic interactions.
 - Wanted to understand why people behave the way they do in different economic situations. Effects of incentives. Rational explanation of behavior.

Game theory

- Field developed by economists to study social & economic interactions.
 - Wanted to understand why people behave the way they do in different economic situations. Effects of incentives. Rational explanation of behavior
- "Game" = interaction between parties with their own interests. Could be called "interaction theory".
- Big in CS for understanding large systems:
 - Internet routing, social networks, e-commerce
 - Problems like spam etc.

<u>Led to new subfield: Algorithmic</u> Game Theory

Theory and algorithms for systems of interacting agents, each with their own interests in mind.

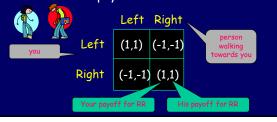
Game Theory: Setting

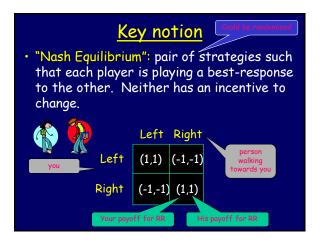
- · Have a collection of participants, or players.
- Each has a set of choices, or *strategies* for how to play/behave.
- Combined behavior results in payoffs (satisfaction level) for each player.

Most examples today will involve just 2 players (which will make them easier to picture, as will become clear in a moment...)

Example: walking on the sidewalk

- What side of sidewalk should I walk on?
- Two options for you (left or right). Same for person walking towards you.
- · Can describe payoffs in matrix:





Example: prisoner's dilemma Consider two companies deciding whether to install pollution controls. Imagine pollution controls cost \$4 but improve everyone's environment by \$3 control don't control control (2,2) (-1,3) for both, defecting is dominant strategy don't control (3,-1) (0,0) Well through like bare get good overall behavior.

Shooter can choose to shoot left or shoot right. Goalie can choose to dive left or dive right. If goalie guesses correctly, (s)he saves the day. If not, it's a goooccaacaall! Vice-versa for shooter. Left Right Goalie Left Goalie

Example: matching pennies / penalty shot

Right (0,0) (1,-1) Right (1,-1) (0,0) Each playing 50 (52) graphish is requisibility nium

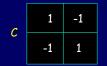
Nash (1950)

- Proved that if you allow randomized (mixed) strategies then every game has at least one equilibrium.
- I.e., a pair of (randomized) strategies that is stable in the sense that each is a best response to the other in terms of expected payoff.
- For this, and its implications, Nash received the Nobel prize.

Game theory terminology

- Rows and columns called pure strategies.
- · Randomized algs called mixed strategies.
- · Often describe in terms of 2 matrices R, C.

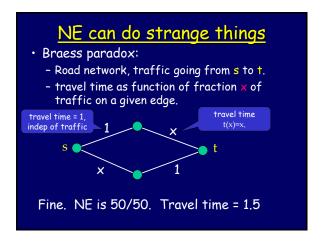
D	1	-1
R	-1	1

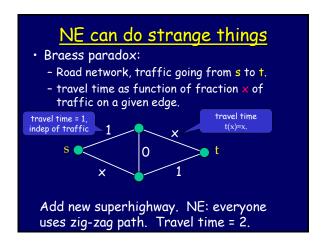


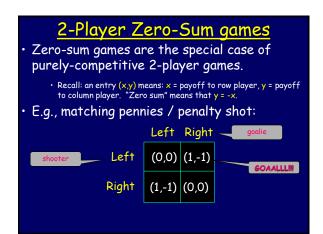
(p,q) is Nash equilib if $p^TRq \ge e_i^TRq \ \forall i$ and $p^TCq \ge p^TCe_j \ \forall j$.

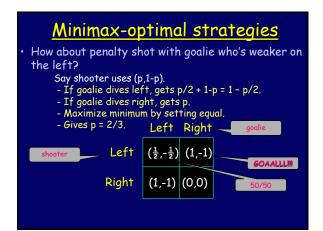
Basic facts

- (p,q) is NashEq if $p^TRq \ge e_i^TRq \ \forall i, \ p^TCq \ge p^TCe_j \ \forall j.$
- \Rightarrow for all i s.t. $p_i > 0$ we have $e_i^T Rq = max_i e_i^T Rq$
- \Rightarrow for all j s.t. q_j > 0 we have $p^TCe_j = \max_{j'} p^TCe_{j'}$









Minimax Theorem (von Neumann 1928)

- Every 2-player zero-sum game has a unique value V.
- Minimax optimal strategy for R guarantees
 R's expected gain at least V.
- Minimax optimal strategy for C guarantees
 C's expected loss at most V.

Counterintuitive: Means it doesn't hurt to publish your strategy if both players are optimal. (Borel had proved for symmetric 5x5 but thought was false for larger games)

$Nash \Rightarrow Minimax$

- Nash's theorem actually gives minimax thm as a corollary.
 - Pick some NE and let V = value to row player in that equilibrium.
 - Since it's a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
 - So, they're each playing minimax optimal.

$Nash \Rightarrow Minimax$

- On the other hand, for minimax, also have very constructive, algorithmic arguments:
 - Can solve for minimax optimum using linear programming in time poly(n) (n = size of game)
 - Have adaptive procedures that in repeated play guarantee to approach/beat best fixed strategy in hindsight
- But for Nash, no efficient procedures to find: NP-hard to find equilib with special properties, PPAD-hard just to find one.

Can use notion of minimax optimality to explain bluffing in poker

Simplified Poker (Kuhn 1950)

- · Two players A and B.
- Deck of 3 cards: 1,2,3.
- Players ante \$1.
- · Each player gets one card.
- A goes first. Can bet \$1 or pass.
 - If A bets, B can call or fold.
 - If A passes, B can bet \$1 or pass.
 - If B bets, A can call or fold.
- High card wins (if no folding). Max pot \$2.

- Two players A and B. 3 cards: 1,2,3.
- · Players ante \$1. Each player gets one card.
- A goes first. Can bet \$1 or pass.
 - If A bets, B can call or fold.
 - If A passes, B can bet \$1 or pass.
 - If B bets, A can call or fold.

Writing as a Matrix Game

- For a given card, A can decide to
 - · Pass but fold if B bets. [PassFold]
 - Pass but call if B bets. [PassCall]
 - Bet. [Bet]
- Similar set of choices for B.

<u>Can look at all strategies as a</u> <u>big matrix...</u>

[FP,FP,CB] [FP,CP,CB] [FB,FP,CB] [FB,CP,CB]

[PF,PF,PC]	0	0	-1/6	-1/6
[PF,PF,B]	0	1/6	-1/3	-1/6
[PF,PC,PC]	-1/6	0	0	1/6
[PF,PC,B]	-1/6	-1/6	1/6	1/6
_	-1/6	0	0	1/6
[B,PF,PC]	1/6	-1/3	0	-1/2
[B,PF,B]	1/6	-1/6	-1/6	-1/2
[B,PC,PC]	0	-1/2	1/3	-1/6
[B,PC,B]	0	-1/3	1/6	-1/6

And the minimax optimal

- · A: strategies are...
 - If hold 1, then 5/6 PassFold and 1/6 Bet.
 - If hold 2, then $\frac{1}{2}$ PassFold and $\frac{1}{2}$ PassCall.
 - If hold 3, then $\frac{1}{2}$ PassCall and $\frac{1}{2}$ Bet. Has both bluffing and underbidding...
- B
 - If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
 - If hold 2, then 2/3 FoldPass and 1/3 CallPass.
 - If hold 3, then CallBet

Minimax value of game is -1/18 to A.

How to prove existence of NE

- · Proof will be non-constructive.
- Notation:
 - Assume an nxn matrix.
 - Use $(p_1,...,p_n)$ to denote mixed strategy for row player, and $(q_1,...,q_n)$ to denote mixed strategy for column player.

Proof

- We'll start with Brouwer's fixed point theorem.
 - Let S be a bounded convex region in \mathbb{R}^n and let $f:S \to S$ be a continuous function.
 - Then there must exist $x \in S$ such that f(x)=x.
 - x is called a "fixed point" of f.
- Simple case: S is the interval [0,1].
- We will care about:
 - S = {(p,q): p,q are legal probability distributions on 1,...,n}. I.e., S = $simplex_n \times simplex_n$

Proof (cont)

- S = {(p,q): p,q are mixed strategies}.
- Want to define f(p,q) = (p',q') such that:
 - f is continuous. This means that changing p or q a little bit shouldn't cause p' or q' to change a lot.
 - Any fixed point of f is a Nash Equilibrium.
- · Then Brouwer will imply existence of NE.

Try #1

- What about f(p,q) = (p',q') where p' is best response to q, and q' is best response to p?
- Problem: not continuous:
 - E.g., penalty shot: If p = (0.51, 0.49) then q' = (1,0). If p = (0.49,0.51) then q' = (0,1).

	Left	Right
Left	(0,0)	(1,-1)
Right	(1,-1)	(0,0)

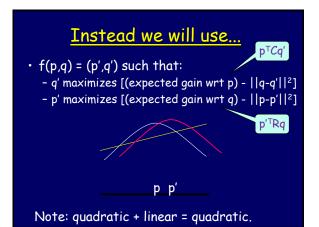
Try #1

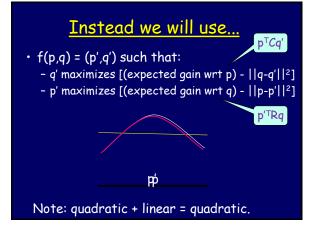
- What about f(p,q) = (p',q') where p' is best response to q, and q' is best response to p?
- Problem: not continuous:
 - E.g., penalty shot: If p = (0.51, 0.49) then q' = (1,0). If p = (0.49,0.51) then q' = (0,1).

<i>C</i> =	0	-1
	-1	0

Try #1

- What about f(p,q) = (p',q') where p' is best response to q, and q' is best response to p?
- Problem: also not necessarily well-defined:
 - E.g., if p = (0.5,0.5) then q' could be anything.





Instead we will use...

- f(p,q) = (p',q') such that:
 - q' maximizes [(expected gain wrt p) $||q-q'||^2$]
 - p' maximizes [(expected gain wrt g) ||p-p'||²]
- f is well-defined and continuous since quadratic has unique maximum and small change to p,q only moves this a little.
- Also fixed point = NE. (even if tiny incentive to move, will move little bit).
- So, that's it!

Algorithmic Game Theory

Algorithmic issues in game theory:

- Computing equilibria / approximate equilibria in different kinds of games
- Understanding quality of equilibria in loadbalancing, network-design, routing, machine scheduling...
- Analyzing dynamics of simple behaviors or adaptive (learning) algorithms: quality guarantees, convergence,...
- Design issues: constructing rules so that game will (ideally) have dominant-strategy equilibria with good properties.

End of Game Theory Intro