Homework is due in class (on paper) on the due date.

- 1. Piazza. Make a Piazza comment related to Chapter 7 if you have not done so yet.
- 2. **Heavy hitters.** Recall that in class we gave a streaming algorithm for counting frequent elements that used $O(k \log n + k \log m)$ space, and for each element $s \in \{1, \ldots, m\}$ produced an approximate count $\hat{f}_s \in [f_s n/(k+1), f_s]$ where f_s is the true count of the number of occurrences (frequency) of symbol s.

Here is a different, randomized approach that uses a bit more space. What we will do is choose $t = O(k \log k)$ random locations in the stream, i.e., t independent uniform random numbers $i_1, \ldots, i_t \in \{1, \ldots, n\}$. For each one, we record what we see there in the stream, and then count all subsequent copies of that element. E.g., if $i_1 = 37$ and we see a 3 there, we will count all 3's that we see from location 37 onward. This will be our estimate of the number of 3's in the stream. If multiple locations i_j have 3's in them, then our estimate \hat{f}_3 will just be the largest of the counts, i.e., the count from the smallest such i_j . If some element s is not seen in any of the locations i_j then our estimate \hat{f}_s is zero.

- (a) It is clear that our estimates \hat{f}_s satisfy $\hat{f}_s \leq f_s$ where f_s is the true frequency of symbol s. Argue that with high probability, for all s we will have $\hat{f}_s \geq f_s n/k$, so long as $t \geq ck \log k$ for sufficiently large constant c.
- (b) The above algorithm requires the ability to pick a random location in the stream. If we know n ahead of time, this is easy. What if we don't know n ahead of time? How can we implement the algorithm in that case? For this problem you can think of t = 1 (since you will just be replicating this for each counter).
- 3. **Sampling.** Recall that in the CUR decomposition of A, we need to pick rows and columns of A from a length-squared distribution. Specifically, we make r independent draws of row indices from a distribution where index i has probability proportional to the squared length of row i, and we make k independent draws of column indices from a distribution where index j has probability proportional to the squared length of columns j.

Suppose we are in the streaming model and the entries of A are arriving in an arbitrary order. Specifically, we are presented with a series of triples (i, j, A_{ij}) in some arbitrary order until all non-zero entries of A have been presented.

(a) Give a streaming algorithm that will select a single row index i of A from the correct distribution. The space used by your algorithm should only be logarithmic

- in n and m. (Your space may be linear in the number of bits b it takes to write down the largest single entry of A.)
- (b) Give a streaming algorithm that will select a single column index j of A from the correct distribution. (This will look very much like your algorithm for part (a)).
- (c) Say how to put these together (using a factor (r+s) more space) to select r rows and s columns.