Homework is due in class (on paper) on the due date.

- 1. Make a Piazza comment related to Chapter 2 if you have not done so yet.
- 2. Make a Piazza comment related to Chapter 3 if you have not done so yet.
- 3. Suppose matrix A is a database of restaurant ratings: each row is a person, each column is a restaurant, and a_{ij} represents how much person i likes restaurant j. What might \mathbf{v}_1 represent? What about \mathbf{u}_1 ? How about the gap $\sigma_1 \sigma_2$? (There are multiple reasonable answers here).

For this specific question, feel free to combine with question 2 and either post your thoughts or comment on someone else's thoughts, or post thoughts about what \mathbf{v}_2 , \mathbf{u}_2 might represent, etc. You could also read up and make a post about how one might do SVD when A has missing entries (not all people have ranked all the restaurants).

4. Consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 2 \\ 1 & -2 \\ -1 & -2 \end{bmatrix}$$

- (a) Run the power method starting from $x = \binom{1}{1}$ for k = 3 steps. What does this give as an estimate of \mathbf{v}_1 ?
- (b) What actually are the \mathbf{v}_i 's, σ_i 's, and \mathbf{u}_i 's? It may be easiest to do this by computing the eigenvectors of $B = A^T A$.
- 5. Prove that \mathbf{u}_1 is the first singular vector for A^T (let's assume $\sigma_1 > \sigma_2$ so we can say "the" instead of "a"). Hint: we know the power method applied to $C = AA^T$ will approach the first singular vector of A^T if it approaches any fixed vector at all.
- 6. Consider a set S of n points in R^d whose center of mass is the origin. As we have been discussing in class, the first singular vector (for a matrix in which each of these points is a row) gives the line through the origin that minimizes the sum of squared distances of all the points in S to that line. What if we allowed lines not through the origin? Here we will prove that such lines don't help. Specifically, for any line ℓ , the line ℓ' parallel to ℓ that goes through the origin is at least as good.

Formally, fix some line ℓ . Let **b** be the point on ℓ closest to the origin and let **v** be a unit length vector parallel to ℓ . Mathematically, we have $\ell = \{\mathbf{b} + \lambda \mathbf{v} : \lambda \in R\}$ (convince yourself of this fact before going on). Let $\ell' = \{\lambda \mathbf{v} : \lambda \in R\}$ be the line parallel to ℓ that goes through the origin.

- (a) Explain why for any point \mathbf{x} , its squared distance to ℓ' is $||\mathbf{x}||^2 (\mathbf{v} \cdot \mathbf{x})^2$.
- (b) What is the analogous formula for distance squared of a point \mathbf{x} to ℓ ?
- (c) Now prove the theorem: prove that the sum of squared distances of points in S to ℓ' is less than or equal to the sum of squared distances of points in S to ℓ . Be clear where you use the fact that the center of mass of S is the origin.