
3 Best-Fit Subspaces and Singular Value Decompo-

sition (SVD)

Think of the rows of an n × d matrix A as n data points in a d-dimensional space
and consider the problem of finding the best k-dimensional subspace with respect to the
set of points. Here best means minimize the sum of the squares of the perpendicular dis-
tances of the points to the subspace. We begin with a special case where the subspace is
1-dimensional, namely a line through the origin. The best fitting k-dimensional subspace
is found by repeated applications of the best fitting line algorithm, each time finding the
best fitting line perpendicular to the subspace found so far. When k reaches the rank
of the matrix, a decomposition of the matrix, called the Singular Value Decomposition
(SVD), is obtained from the best fitting lines.

The singular value decomposition of a matrix A is the factorization of A into the
product of three matrices, A = UDV T , where the columns of U and V are orthonormal
and the matrix D is diagonal with positive real entries. In many applications, a data
matrix A is close to a low rank matrix and a low rank approximation to A is desired. The
singular value decomposition of A gives the best rank k approximation to A, for any k .

The singular value decomposition is defined for all matrices, whereas the more com-
monly used eigenvector decomposition requires the matrix A be square and certain other
conditions on the matrix to ensure orthogonality of the eigenvectors. In contrast, the
columns of V in the singular value decomposition, called the right-singular vectors of A,
always form an orthonormal set with no assumptions on A. The columns of U are called
the left-singular vectors and they also form an orthonormal set. A simple consequence
of the orthonormality is that for a square and invertible matrix A, the inverse of A is
V D−1UT .

Project a point ai = (ai1, ai2, . . . , aid) onto a line through the origin. Then

a2i1 + a2i2 + · · ·+ a2id = (length of projection)2 + (distance of point to line)2 .

See Figure 3.1. Thus

(distance of point to line)2 = a2i1 + a2i2 + · · ·+ a2id − (length of projection)2 .

Since
n
∑

i=1

(a2i1 + a2i2 + · · ·+ a2id) is a constant independent of the line, minimizing the sum

of the squares of the distances to the line is equivalent to maximizing the sum of the
squares of the lengths of the projections onto the line. Similarly for best-fit subspaces,
maximizing the sum of the squared lengths of the projections onto the subspace minimizes
the sum of squared distances to the subspace.

Thus, there are two interpretations of the best-fit subspace. The first is that it min-
imizes the sum of squared distances of the data points to it. This interpretation and its
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Figure 3.1: The projection of the point xi onto the line through the origin in the direction
of v.

use are akin to the notion of least-squares fit from calculus. But there is a difference. Here
the perpendicular distance to the line or subspace is minimized, whereas, in the calculus
notion, given n pairs (x1, y1), (x2, y2), . . . , (xn, yn), one finds a line l = {(x, y)|y = mx+ b}
minimizing the vertical distance of the points to it, namely,

∑n
i=1

(yi −mxi − b)2.

The second interpretation of best-fit-subspace is that it maximizes the sum of projec-
tions squared of the data points on it. In some sense the subspace contains the maximum
content of data among all subspaces of the same dimension.

The reader may wonder why we minimize the sum of squared distances to the line.
We could alternatively have defined the best-fit line to be the one that minimizes the
sum of distances to the line. There are examples where this definition gives a different
answer than the line minimizing the sum of squared distances. The choice of the objective
function as the sum of squared distances seems arbitrary, but the square has many nice
mathematical properties. The first of these is the use of Pythagoras theorem to say that
minimizing the sum of squared distances is equivalent to maximizing the sum of squared
projections.

3.1 Singular Vectors

Consider the best fit line through the origin for the points determined by the rows of
A. Let v be a unit vector along this line. The length of the projection of ai, the i

th row of
A, onto v is |ai ·v| and the sum of length squared of the projections is |Av|2. The best fit
line is the one maximizing |Av|2 and hence minimizing the sum of the squared distances
of the points to the line.

With this in mind, define the first singular vector , v1, of A, which is a column vector,
as the vector defining the best fit line through the origin for the n points in d-space that
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are the rows of A. Thus
v1 = argmax

|v|=1

|Av|.

There may be a tie for the vector attaining the maximum and so technically we should
not use the article “the”. If there is a tie, arbitrarily pick one of the vectors and refer
to it as “the first singular vector” avoiding the more cumbersome “one of the the vectors
achieving the maximum”. We adopt this terminology for all uses of argmax .

The value σ1 (A) = |Av1| is called the first singular value of A. Note that σ2
1 =

n
∑

i=1

(ai · v1)
2 is the sum of the squares of the projections of the points to the line deter-

mined by v1.

If the data points were all either on a line or close to a line, v1 would give the direction
of that line. It is possible that data points are not close to one line, but lie close to a
2-dimensional plane or more generally a low dimensional affine space. A widely applied
technique called Principal Component Analysis (PCA) indeed deals with such situations
using singular vectors. How do we find the best-fit 2-dimensional plane or more generally
the k-dimensional affine space?

The greedy approach to find the best fit 2-dimensional subspace for a matrix A, takes
v1 as the first basis vector for the 2-dimensional subspace and finds the best 2-dimensional
subspace containing v1. The fact that we are using the sum of squared distances helps.
For every 2-dimensional subspace containing v1, the sum of squared lengths of the pro-
jections onto the subspace equals the sum of squared projections onto v1 plus the sum
of squared projections along a vector perpendicular to v1 in the subspace. Thus, instead
of looking for the best 2-dimensional subspace containing v1, look for a unit vector v2

perpendicular to v1 that maximizes |Av|2 among all such unit vectors. Using the same
greedy strategy to find the best three and higher dimensional subspaces, define v3,v4, . . .
in a similar manner. This is captured in the following definitions.

The second singular vector , v2, is defined by the best fit line perpendicular to v1.

v2 = argmax
v⊥v1

|v|=1

|Av|

The value σ2 (A) = |Av2| is called the second singular value of A. The third singular
vector v3 and third singular value are defined similarly by

v3 = argmax
v⊥v1,v2

|v|=1

|Av|

and
σ3(A) = |Av3|,
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and so on. The process stops when we have found singular vectors v1,v2, . . . ,vr, singular
values σ1, σ2, . . . , σr, and

max
v⊥v1,v2,...,vr

|v|=1

|Av| = 0.

There is no apriori guarantee that the greedy algorithm gives the best fit. But, in
fact, the greedy algorithm does work and yields the best-fit subspaces of every dimension
as we will show. If instead of finding the v1 that maximized |Av| and then the best fit
2-dimensional subspace containing v1, we had found the best fit 2-dimensional subspace,
we might have done better. This is not the case. We give a simple proof that the greedy
algorithm indeed finds the best subspaces of every dimension.

Theorem 3.1 Let A be an n × d matrix with singular vectors v1,v2, . . . ,vr. For 1 ≤
k ≤ r, let Vk be the subspace spanned by v1,v2, . . . ,vk. For each k, Vk is the best-fit
k-dimensional subspace for A.

Proof: The statement is obviously true for k = 1. For k = 2, let W be a best-fit 2-
dimensional subspace for A. For any orthonormal basis (w1,w2) of W , |Aw1|2 + |Aw2|2
is the sum of squared lengths of the projections of the rows of A onto W . Choose an
orthonormal basis (w1,w2) of W so that w2 is perpendicular to v1. If v1 is perpendicular
to W , any unit vector in W will do as w2. If not, choose w2 to be the unit vector in W
perpendicular to the projection of v1 onto W. This makes w2 perpendicular to v1. Since
v1 maximizes |Av|2, it follows that |Aw1|2 ≤ |Av1|2. Since v2 maximizes |Av|2 over all
v perpendicular to v1, |Aw2|2 ≤ |Av2|2. Thus

|Aw1|2 + |Aw2|2 ≤ |Av1|2 + |Av2|2.

Hence, V2 is at least as good as W and so is a best-fit 2-dimensional subspace.

For general k, proceed by induction. By the induction hypothesis, Vk−1 is a best-fit
k-1 dimensional subspace. Suppose W is a best-fit k-dimensional subspace. Choose an
orthonormal basis w1,w2, . . . ,wk of W so that wk is perpendicular to v1,v2, . . . ,vk−1.
Then

|Aw1|2 + |Aw2|2 + · · ·+ |Awk|2 ≤ |Av1|2 + |Av2|2 + · · ·+ |Avk−1|2 + |Awk|2

since Vk−1 is an optimal k -1 dimensional subspace. Since wk is perpendicular to
v1,v2, . . . ,vk−1, by the definition of vk, |Awk|2 ≤ |Avk|2. Thus

|Aw1|2 + |Aw2|2 + · · ·+ |Awk−1|2 + |Awk|2 ≤ |Av1|2 + |Av2|2 + · · ·+ |Avk−1|2 + |Avk|2,

proving that Vk is at least as good as W and hence is optimal.

Note that the n-vector Avi is a list of lengths with signs of the projections of the rows
of A onto vi. Think of |Avi| = σi(A) as the “component” of the matrix A along vi. For
this interpretation to make sense, it should be true that adding up the squares of the
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components of A along each of the vi gives the square of the “whole content of the matrix
A”. This is indeed the case and is the matrix analogy of decomposing a vector into its
components along orthogonal directions.

Consider one row, say aj, of A. Since v1,v2, . . . ,vr span the space of all rows of A,

aj · v = 0 for all v perpendicular to v1,v2, . . . ,vr. Thus, for each row aj,
r
∑

i=1

(aj · vi)
2 =

|aj|2. Summing over all rows j,

n
∑

j=1

|aj|2 =
n
∑

j=1

r
∑

i=1

(aj · vi)
2 =

r
∑

i=1

n
∑

j=1

(aj · vi)
2 =

r
∑

i=1

|Avi|2 =
r
∑

i=1

σ2

i (A).

But
n
∑

j=1

|aj|2 =
n
∑

j=1

d
∑

k=1

a2jk, the sum of squares of all the entries of A. Thus, the sum of

squares of the singular values of A is indeed the square of the “whole content of A”, i.e.,
the sum of squares of all the entries.

There is an important norm associated with this quantity, the Frobenius norm of A,
denoted ||A||F defined as

||A||F =

√

∑

j,k

a2jk.

Lemma 3.2 For any matrix A, the sum of squares of the singular values equals the square
of the Frobenius norm. That is,

∑

σ2
i (A) = ||A||2F .

Proof: By the preceding discussion.

The vectors v1,v2, . . . ,vr are called the right-singular vectors . The vectors Avi form
a fundamental set of vectors and we normalize them to length one by

ui =
1

σi(A)
Avi.

The vectors, u2, . . . ,ur are called the left-singular vectors. Later we will show that they
are orthogonal and ui maximizes |uTA| over all unit length u perpendicular to alluj, j < i.

3.2 Singular Value Decomposition (SVD)

Let A be an n× d matrix with singular vectors v1,v2, . . . ,vr and corresponding sin-
gular values σ1, σ2, . . . , σr. The left-singular vectors of A are ui =

1

σi

Avi where σiui is a
vector whose coordinates correspond to the projections of the rows of A onto vi. Each
σiuiv

T
i is a rank one matrix whose columns are weighted versions of σiui, weighted pro-

portional to the coordinates of vi.
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We will prove that A can be decomposed into a sum of rank one matrices as

A =
r
∑

i=1

σiuiv
T
i .

We first prove a simple lemma stating that two matrices A and B are identical if Av = Bv
for all v.

Lemma 3.3 Matrices A and B are identical if and only if for all vectors v, Av = Bv.

Proof: Clearly, if A = B then Av = Bv for all v. For the converse, suppose that
Av = Bv for all v. Let ei be the vector that is all zeros except for the ith component
which has value one. Now Aei is the ith column of A and thus A = B if for each i,
Aei = Bei.

Theorem 3.4 Let A be an n × d matrix with right-singular vectors v1,v2, . . . ,vr, left-
singular vectors u1,u2, . . . ,ur, and corresponding singular values σ1, σ2, . . . , σr. Then

A =
r
∑

i=1

σiuiv
T
i .

Proof: We first show that multiplying both A and
r
∑

i=1

σiuiv
T
i by vj results in quantity

Avj.
(

r
∑

i=1

σiuiv
T
i

)

vj = σjuj = Avj

Since any vector v can be expressed as a linear combination of the singular vectors

plus a vector perpendicular to the vi, Av =
r
∑

i=1

σiuiv
T
i v for all v and by Lemma 3.3,

A =
r
∑

i=1

σiuiv
T
i .

The decomposition A =
∑

i σiuiv
T
i is called the singular value decomposition, SVD, of

A. In matrix notation A = UDV T where the columns of U and V consist of the left and
right-singular vectors, respectively, and D is a diagonal matrix whose diagonal entries are
the singular values of A. To see that A = UDV T , observe that each σiuiv

T
i is a rank one

matrix and A =
∑

i σiuiv
T
i is a sum of rank one matrices. Each σiuiv

T
i , term contributes

σiujivik to the jkth element of A. Thus, ajk =
∑

i σiujiuik which is correct.

For any matrix A, the sequence of singular values is unique and if the singular val-
ues are all distinct, then the sequence of singular vectors is unique also. When some
set of singular values are equal, the corresponding singular vectors span some subspace.
Any set of orthonormal vectors spanning this subspace can be used as the singular vectors.

72



A

n× d

U

n× r

D

r × r

V T

r × d

=

Figure 3.2: The SVD decomposition of an n× d matrix.

3.3 Best Rank k Approximations

Let A be an n× d matrix and let

A =
r
∑

i=1

σiuiv
T
i

be the SVD of A. For k ∈ {1, 2, . . . , r}, let

Ak =
k
∑

i=1

σiuiv
T
i

be the sum truncated after k terms. It is clear that Ak has rank k. It is also the case
that Ak is the best rank k approximation to A, where error is measured in Frobenius norm.

To show that Ak is the best rank k approximation to A when error is measured by
the Frobenius norm, we first show that the rows of A−Ak are the projections of the rows
of A onto the subspace Vk spanned by the first k singular vectors of A. This implies that
||A− Ak||2F equals the sum of squared distances of the rows of A to the subspace Vk.

Lemma 3.5 Let Vk be the subspace spanned by the first k singular vectors of A. The
rows of Ak are the projections of the rows of A onto the subspace Vk.

Proof: Let a be an arbitrary row vector. Since the vi are orthonormal, the projection

of the vector a onto Vk is given by
k
∑

i=1

(a · vi)vi
T . Thus, the matrix whose rows are the

projections of the rows of A onto Vk is given by
k
∑

i=1

Aviv
T
i . This last expression simplifies

to
k
∑

i=1

Avivi
T =

k
∑

i=1

σiuivi
T = Ak.
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Thus, the rows of Ak are the projections of the rows of A onto the subspace Vk.

We next show that if B is a rank k matrix minimizing ||A − B||2F among all rank
k matrices, that each row of B must be the projection of the corresponding row of A
onto the space spanned by rows of B. This implies that ||A−B||2F is the sum of squared
distances of rows of A to the space spanned by the rows of B. Since the space spanned by
the rows of B is a k dimensional subspace and since the subspace spanned by the first k
singular vectors minimizes the sum of squared distances over all k-dimensional subspaces,
it must be that ‖A− Ak‖F ≤ ‖A− B‖F .

Theorem 3.6 For any matrix B of rank at most k

‖A− Ak‖F ≤ ‖A− B‖F

Proof: Let B minimize ‖A− B‖2F among all rank k or less matrices. Let V be the space
spanned by the rows of B. The dimension of V is at most k. Since B minimizes ‖A− B‖2F ,
it must be that each row of B is the projection of the corresponding row of A onto V ,
otherwise replacing the row of B with the projection of the corresponding row of A onto
V does not change V and hence the rank of B but would reduce ‖A− B‖2F . Since now
each row of B is the projection of the corresponding row of A, it follows that ‖A− B‖2F
is the sum of squared distances of rows of A to V . By Theorem 3.1, Ak minimizes the
sum of squared distance of rows of A to any k-dimensional subspace. It follows that
‖A− Ak‖F ≤ ‖A− B‖F .

There is another matrix norm, called the 2-norm, that is of interest. To motivate,
consider the example of a document-term matrix A. Suppose we have a large database
of documents which form the rows of an n × d matrix A. There are d terms and each
document is a d-vector with one component per term which is the number of occurrences
of the term in the document. We are allowed to “preprocess” A. After the preprocessing,
we receive queries. Each query x is an d-vector specifying how important each term is
to the query. The desired answer is a n-vector which gives the similarity (dot product)
of the query to each document in the database, namely, the “matrix-vector” product,
Ax. Query time should be much less than processing time, one answers many queries
for the data base. Näively, it would take O(nd) time to do the product Ax. However,
if we approximate A by Ak =

∑k
i=1

σiuivi
T we could return Akx =

∑k
i=1

σiui(vi · x) as
the approximation to Ax. This only takes k dot products of d-vectors and takes time
O(kd) which is a win provided k is fairly small. How do we measure the error? Since
x is unknown, the approximation needs to be good for every x. So we should take the
maximum over all x of |(Ak −A)x|. But unfortunately, this is infinite since |x| can grow
without bound. So we restrict to |x| ≤ 1.

The 2-norm or spectral norm of a matrix A is

||A||2 = max
|x|≤1

|Ax|.
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Note that the 2-norm of A equals σ1(A).

We will prove in Section 3.4 that Ak is the best rank k, 2-norm approximation to A.

3.4 Left Singular Vectors

In this section we show that he left singular vectors are orthogonal and that Ak is the
best 2-norm approximation to A.

Theorem 3.7 The left singular vectors are pairwise orthogonal.

Proof: First we show that each ui, i ≥ 2 is orthogonal to u1. Suppose not, and for some
i ≥ 2, uT

1ui 6= 0. Without loss of generality assume that uT
1ui > 0. The proof is symmetric

for the case where uT
1ui < 0. Now, for infinitesimally small ε > 0, the vector

A

(

v1 + εvi

|v1 + εvi|

)

=
σ1u1 + εσiui√

1 + ε2

has length at least as large as its component along u1 which is

uT
1 (

σ1u1 + εσiui√
1 + ε2

) =
(

σ1 + εσiu
T
1ui

)

(

1− ε2

2
+O (ε4)

)

= σ1 + εσiu
T
1ui −O

(

ε2
)

> σ1,

a contradiction. Thus u1 · ui = 0 for i ≥ 2.

The proof for other ui and uj, j > i > 1 is similar. Suppose without loss of generality
that ui

Tuj > 0.

A

(

vi + εvj

|vi + εvj|

)

=
σiui + εσjuj√

1 + ε2

has length at least as large as its component along ui which is

uT
i (

σ1ui + εσjuj√
1 + ε2

) =
(

σi + εσju
T
i uj

)

(

1− ε2

2
+O (ε4)

)

= σi + εσju
T
i uj −O

(

ε2
)

> σi,

a contradiction since vi + εvj is orthogonal to v1,v2, . . . ,vi−1 and σi is the maximum
over such vectors of |Av|.

In Theorem 3.9 we show that A− k is the best 2-norm approximation to A. We first
show that the square of the 2-norm of A−Ak is the square of the (k+1)st singular value
of A,

Lemma 3.8 ‖A− Ak‖22 = σ2
k+1.
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Proof: LetA =
r
∑

i=1

σiuivi
T be the singular value decomposition ofA. ThenAk =

k
∑

i=1

σiuivi
T

and A− Ak =
r
∑

i=k+1

σiuivi
T . Let v be the top singular vector of A− Ak. Express v as a

linear combination of v1,v2, . . . ,vr. That is, write v =
r
∑

i=1

αivi. Then

|(A− Ak)v| =
∣

∣

∣

∣

∣

r
∑

i=k+1

σiuivi
T

r
∑

j=1

αjvj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

i=k+1

αiσiuivi
Tvi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

r
∑

i=k+1

αiσiui

∣

∣

∣

∣

∣

=

√

√

√

√

r
∑

i=k+1

α2
iσ

2
i ,

since the ui are orthonormal. The v maximizing this last quantity, subject to the con-

straint that |v|2 =
r
∑

i=1

α2
i = 1, occurs when αk+1 = 1 and the rest of the αi are 0. Thus,

‖A− Ak‖22 = σ2
k+1 proving the lemma.

Finally, we prove that Ak is the best rank k, 2-norm approximation to A.

Theorem 3.9 Let A be an n× d matrix. For any matrix B of rank at most k

‖A− Ak‖2 ≤ ‖A− B‖
2
.

Proof: If A is of rank k or less, the theorem is obviously true since ‖A− Ak‖2 = 0.
Assume that A is of rank greater than k. By Lemma 3.8, ‖A− Ak‖22 = σ2

k+1. The null
space of B, the set of vectors v such that Bv = 0, has dimension at least d − k. Let
v1,v2, . . . ,vk+1 be the first k + 1 singular vectors of A. By a dimension argument, it
follows that there exists a z 6= 0 in

Null (B) ∩ Span {v1,v2, . . . ,vk+1} .
Letw1,w2, . . . ,wd−k be d−k independent vectors in Null(B). Now,w1,w2, . . . ,wd−k,v1,
v2, . . . ,vk+1 are d+1 vectors in d space and thus are linearly dependent. Let α1, α2, . . . , αd−k

and β1, β2, . . . , βk be such that
∑d−k

i=1
αiui =

∑k
j=1

βjvj. Let z =
∑d−k

i=1
αiui. Scale z so

that |z| = 1. We now show that for this vector z, which lies in the space of the first k+1
singular vectors of A, that (A− B) z ≥ σk+1. Hence the 2-norm of A−B is at least σk+1.
First

‖A− B‖2
2
≥ |(A− B) z|2 .

Since Bz = 0,
‖A− B‖2

2
≥ |Az|2 .

Since z is in the Span {v1,v2, . . . ,vk+1}

|Az|2 =
∣

∣

∣

∣

∣

n
∑

i=1

σiuivi
Tz

∣

∣

∣

∣

∣

2

=
n
∑

i=1

σ2

i

(

vi
Tz
)2

=
k+1
∑

i=1

σ2

i

(

vi
Tz
)2 ≥ σ2

k+1

k+1
∑

i=1

(

vi
Tz
)2

= σ2

k+1.

It follows that ‖A− B‖2
2
≥ σ2

k+1 and the theorem is proved.
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3.5 Power Method for Computing the Singular Value Decom-
position

Computing the singular value decomposition is an important branch of numerical
analysis in which there have been many sophisticated developments over a long period of
time. Here we present an “in-principle” method to establish that the approximate SVD
of a matrix A can be computed in polynomial time. The reader is referred to numerical
analysis texts for more details. The method we present, called the power method, is simple
and is in fact the conceptual starting point for many algorithms. Let A be a matrix whose
SVD is

∑

i

σiuivi
T .We wish to work with a matrix that is square and symmetric. By direct

multiplication, since uT
i uj is the dot product of the two vectors and is zero unless i = j

B = ATA =

(

∑

i

σiviu
T
i

)(

∑

j

σjujv
T
j

)

=
∑

i,j

σiσjvi(u
T
i · uj)v

T
j =

∑

i

σ2

i viv
T
i .

The matrix B is square and symmetric, and has the same left and right-singular vectors.
If A is itself square and symmetric, it will have the same right and left-singular vectors,
namely A =

∑

i

σivivi
T and computing B is unnecessary.

Now consider computing B2.

B2 =

(

∑

i

σ2

i viv
T
i

)(

∑

j

σ2

jvjv
T
j

)

=
∑

ij

σ2

i σ
2

jvi(vi
Tvj)vj

T

When i 6= j, the dot product vi
Tvj equals 0. However the “outer product” vivj

T is a

matrix and is not zero even for i 6= j. Thus, B2 =
r
∑

i=1

σ4
i vivi

T . In computing the kth power

of B, all the cross product terms are zero and

Bk =
r
∑

i=1

σ2k
i vivi

T .

If σ1 > σ2, then
1

σ2k
1

Bk → v1v1
T .

We do not know σ1. However, if we divide Bk by ||Bk||F so that the Frobenius norm is
normalized to one, the matrix will converge to the rank one matrix v1v1

T from which v1

may be computed by normalizing the first column to be a unit vector.

The difficulty with the above method is that A may be a very large, sparse matrix, say
a 108×108 matrix with 109 nonzero entries. Sparse matrices are often represented by just
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a list of non-zero entries, say, a list of triples of the form (i, j, aij). Though A is sparse, B
need not be and in the worse case all 1016 elements may be non-zero in which case it is
impossible to even store B, let alone compute the product B2. Even if A is moderate in
size, computing matrix products is costly in time. Thus, we need a more efficient method.

Instead of computing Bk = σ2k
1 v1v1

T , select a random vector x and compute the
product Bkx. The way Bkx is computed is by a series of matrix vector products, instead
of matrix products. Bx = A(Ax) and Bkx = (ATABk−1x). Thus, we perform 2k vector
times sparse matrix multiplications. The vector x can be expressed in terms of the singular
vectors of B augmented to a full orthonormal basis as x =

∑

civi. Then

Bkx ≈ (σ2k
1 v1v1

T )
(

n
∑

i=1

civi

)

= σ2k
1 c1v1

Normalizing the resulting vector yields v1, the first singular vector of A.

An issue occurs if there is no significant gap between the first and second singular
values of a matrix. If σ1 = σ2, then the above argument fails. Theorem 3.10 below states
that even with ties, the power method converges to some vector in the span of those sin-
gular vectors corresponding to the “nearly highest” singular values. The theorem needs
a vector x that has a component of at least δ along the first right singular vector v1 of
A. Lemma 3.11 establishes that a random vector satisfies this condition.

Theorem 3.10 Let A be an n×d matrix and x a unit length vector in Rd with |xTv1| ≥ δ,
where, δ > 0. Let V be the space spanned by the right singular vectors of A corresponding
to singular values greater than (1− ε) σ1. Let w be unit vector after k = ln(1/εδ)/ε
iterations of the power method, namely,

w =

(

ATA
)k

x
∣

∣

∣
(ATA)k x

∣

∣

∣

.

Then w has a component of at most ε perpendicular to V .

Proof: Let

A =
r
∑

i=1

σiuiv
T
i

be the SVD of A. If the rank of A is less than d, then complete {v1,v2, . . .vr} into an
orthonormal basis {v1,v2, . . .vd} of d-space. Write x in the basis of the vi

′s as

x =
n
∑

i=1

civi.
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Since (ATA)k =
n
∑

i=1

σ2k
i viv

T
i , it follows that (ATA)kx =

n
∑

i=1

σ2k
i civi. By hypothesis,

|c1| ≥ δ.

Suppose that σ1, σ2, . . . , σm are the singular values of A that are greater than or equal
to (1− ε) σ1 and that σm+1, . . . , σn are the singular values that are less than (1− ε) σ1.
Then

|(ATA)kx|2 =
∣

∣

∣

∣

∣

d
∑

i=1

σ2k
i civi

∣

∣

∣

∣

∣

2

=
n
∑

i=1

σ4k
i c2i ≥ σ4k

1 c21 ≥ σ4k
1 δ2.

The square of the component of |(ATA)kx|2 perpendicular to the space V is

n
∑

i=m+1

σ4k
i c2i ≤ (1− ε)4k σ4k

1

n
∑

i=m+1

c2i ≤ (1− ε)4k σ4k
1

since
∑d

i=1
c2i = |x| = 1. Thus, the component of w perpendicular to V is at most

(1− ε)2kσ2k
1

δσ2k
1

= (1− ε)2k/δ ≤ e−2kε−ln δ = ε.

Lemma 3.11 Let y ∈ Rn be a random vector with the unit variance spherical Gaussian
as its probability density. Let x = y/|y|. Let v be any fixed unit length vector. Then

Prob(|xTv| ≤ 1

20
√
d
) ≤ 1

10
+ 3e−d/64.

Proof: By Theorem 2.11 of Chapter 2 with c =
√
d substituted in that theorem, we see

that the probability that |y| ≥ 2
√
d is at most 3e−d/64. Further, yTv is a random variable

with the distribution of a unit variance Gaussian with zero mean. Thus, the probability
that |yTv| ≤ 1

10
is at most 1/10. Combining these two and using the union bound, proves

the lemma.

THE FOLLOWING MATERIAL IS NOT IN PUBLIC VERSION OF BOOK

3.6 Laplacian

Different versions of the adjacency matrix are used for various purposes. Here we
consider an undirected graph G with adjacency matric A.

Adjacency matrix

Since the graph is undirected the adjacency matrix is symmetric. For a random undi-
rected graph with edge probability p, the eigenvalues obey Wigner’s semi circular law and
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all but the largest have a semicircular distribution between ±2σ
√
n. The largest eigen-

value is approximately np.

The largest eigenvalue of a symmetric matrix A is at most the maximum sum of
absolute values of the elements in any row of A. To see this let λ be an eigenvalue of
A and x the corresponding eigenvector. Let xi be the maximum component of x. Now
n
∑

j=1

aijxj = λxi. Thus
∑

j 6=i

aijxj = λxi − aiixi and hence

|λ− aii| =

∣

∣

∣

∣

∣

∣

∣

∑

j 6=i

aijxj

xi

∣

∣

∣

∣

∣

∣

∣

≤
∑

j 6=i

∣

∣

∣

∣

aijxj

xi

∣

∣

∣

∣

≤
∑

j 6=i

|aij|.

It follows that λ ≤
n
∑

j=1

|aij|.

Laplacian

The Laplacian is defined to be L = D − A where D is a diagonal matrix with the
vertex degrees on its diagonal.

lij =







dij i = j
−1 i 6= j and there is an edge from i to j
0 otherwise

The smallest eigenvalue of L is zero since each row of L sums to zero and thus the all 1’s
vector is an eigenvector with eigenvalue zero. The number of eigenvalues equal to zero
equals the number of connected components of the graph G. All other eigenvalues are
greater than zero. Thus, the matric L is positive semi definite. The maximum eigenvalue
is at most twice the maximum of any row sum of L which is at most twice the maximum
degree.

To see that all eigenvalues of L are nonnegative define an incidence matrix B whose
rows correspond to edges of the graph G and whose columns correspond to vertices of G.

bij =







1 ith edge is (k, j)
−1 ith edge is (j, k)
0 otherwise

The Laplacian matrix can be expressed as L = MTM. This follows since each row of
MT gives the edges incident to the corresponding vertex. Some entries are +1 and some
-1. The diagonal entries of MTM are the length of the corresponding vectors and the off
diagonal ijth entry will be 0 or -1 depending on whether an edge incident to vertex i is also
incident to vertex j. If v is an eigenvector of L with eigenvalue λ, then λ = (Mv)TMv ≥ 0.
Thus L is positive semi definite and hence all eigenvalues are nonnegative.

80



Symmetric normalized Laplacian
Sometimes the Laplacian is normalized. Define Lsym = D− 1

2LD− 1

2 . Lsym is symmetric
and all eigenvalues are nonnegative since

Lsym = D− 1

2LD− 1

2 = D− 1

2MTMD− 1

2 = (D− 1

2M)T (MD− 1

2 )

is positive semi definite. The eigenvalues of Lsym are in the range 0 ≤ λ ≤ 2.
Spectral gap

Adjacency matrix normalized for a random walk
In doing a random walk on a graph one wants each row to sum to one so that the entries
are probabilities of taking an edge. To do this one defines a transition matrix T = D−1A.
In a random walk we have adopted the notation pT (t+ 1) = pT (t)T and this requires the
rows instead of the columns to sum to one.

Laplacian normalized for random walk

To use the L for a random walk one needs to normalize the edge probability by the degree.
This is done by multiplying by D−1 to get D−1L = D−1(D − A) = I −D−1A = I − T.

3.7 Applications of Singular Value Decomposition

3.7.1 Principal Component Analysis

The traditional use of SVD is in Principal Component Analysis (PCA). PCA is il-
lustrated by a customer-product data problem where there are n customers buying d
products. Let matrix A with elements aij represent the probability of customer i pur-
chasing product j. One hypothesizes that there are only k underlying basic factors like
age, income, family size, etc. that determine a customer’s purchase behavior. An individ-
ual customer’s behavior is determined by some weighted combination of these underlying
factors. That is, a customer’s purchase behavior can be characterized by a k-dimensional
vector where k is much smaller than n or d. The components of the vector are weights
for each of the basic factors. Associated with each basic factor is a vector of probabilities,
each component of which is the probability of purchasing a given product by someone
whose behavior depends only on that factor. More abstractly, A is an n× d matrix that
can be expressed as the product of two matrices U and V where U is an n × k matrix
expressing the factor weights for each customer and V is a k × d matrix expressing the
purchase probabilities of products that correspond to that factor. Finding the best rank k
approximation Ak by SVD gives such a U and V . One twist is that A may not be exactly
equal to UV , but close to it since there may be noise or random perturbations in which
case A− UV is treated as noise.

In the above setting, A was available fully and we wished to find U and V to identify
the basic factors. If n and d are very large, on the order of thousands or even millions,
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Figure 3.3: Customer-product data

there is probably little one could do to estimate or even store A. In this setting, we may
assume that we are given just a few elements of A and wish to estimate A. If A was an
arbitrary matrix of size n× d, this would require Ω(nd) pieces of information and cannot
be done with a few entries. But again hypothesize that A was a small rank matrix with
added noise. If now we also assume that the given entries are randomly drawn according
to some known distribution, then there is a possibility that SVD can be used to estimate
the whole of A. This area is called collaborative filtering and one of its uses is to target
an ad to a customer based on one or two purchases. We do not describe it here.

3.7.2 Clustering a Mixture of Spherical Gaussians

Clustering, is the task of partitioning a set of points in d-space into k subsets or clus-
ters where each cluster consists of “nearby” points. Different definitions of the goodness
of a clustering lead to different solutions. Clustering is an important area which we will
study in detail in Chapter ??. Here we solve a particular clustering problem using singular
value decomposition.

In general, a solution to any clustering problem comes up with k cluster centers that
define the k clusters. A cluster is the set of data points that are closest to a particular
cluster center. Hence the Vornoi cells of the cluster centers determine the clusters. Using
this observation, it is relatively easy to cluster points in two or three dimensions. However,
clustering is not so easy in higher dimensions. Many problems have high-dimensional data
and clustering problems are no exception.

Clustering problems tend to be NP-hard, so we there are no polynomial time algo-
rithms to solve them. One way around this is to assume stochastic models of input data
and devise algorithms to cluster data generated by such models. Mixture models are a
very important class of stochastic models. A mixture is a probability density or distri-
bution that is the weighted sum of simple component probability densities. It is of the
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form
F = w1p1 + w2p2 + · · ·+ wkpk,

where p1, p2, . . . , pk are the basic probability densities and w1, w2, . . . , wk are positive real
numbers called weights that add up to one. Clearly, F is a probability density, it inte-
grates to one.

The model fitting problem is to fit a mixture of k basic densities to n independent,
identically distributed samples, each sample drawn according to the same mixture dis-
tribution F . The class of basic densities is known, but various parameters such as their
means and the component weights of the mixture are not. Here, we deal with the case
where the basic densities are all spherical Gaussians. There are two equivalent ways of
thinking of the sample generation process which is hidden, only the samples are given.

1. Pick each sample according to the density F on Rd.

2. Pick a random i from {1, 2, . . . , k} where probability of picking i is wi. Then, pick
a sample according to the density Fi.

The model-fitting problem can be broken up into two sub problems:

• The first sub problem is to cluster the set of samples into k clusters C1, C2, . . . , Ck,
where, Ci is the set of samples generated according to Fi, see (2) above, by the
hidden generation process.

• The second sub problem is to fit a single Gaussian distribution to each cluster of
sample points.

The second problem is easier than the first and in Chapter (2) we showed that taking
the empirical mean, the mean of the sample, and the empirical standard deviation gives
the best-fit Gaussian. The first problem is harder and this is what we discuss here.

If the component Gaussians in the mixture have their centers very close together, then
the clustering problem is unresolvable. In the limiting case where a pair of component
densities are the same, there is no way to distinguish between them. What condition on
the inter-center separation will guarantee unambiguous clustering? First, by looking at
1-dimensional examples, it is clear that this separation should be measured in units of the
standard deviation, since the density is a function of the number of standard deviation
from the mean. In one dimension, if two Gaussians have inter-center separation at least
six times the maximum of their standard deviations, then they hardly overlap.

How far apart must the means be to determine which Gaussian a point belongs to. In
one dimension, if the distance is at least six standard deviations, we separate the Gaus-
sians. What is the analog of this in higher dimensions?

83



We discussed in Chapter (2) distances between two sample points from the same
Gaussian as well the distance between two sample points from two different Gaussians.
Recall from that discussion that if

• If x and y are two independent samples from the same spherical Gaussian with
standard deviation1 σ, then

|x− y|2 ≈ 2(
√
d± c)2σ2.

• If x and y are samples from different spherical Gaussians each of standard deviation
σ and means separated by distance δ, then

|x− y|2 ≈ 2(
√
d± c)2σ2 + δ2.

Now we would like to assert that points from the same Gaussian are closer to each other
than points from different Gaussians. To ensure this, we need

2(
√
d− c)2σ2 + δ2 > 2(

√
d+ c)2σ2.

Expanding the squares, the high order term 2d cancels and we need that

δ > c′d1/4.

While this was not a completely rigorous argument, it can be used to show that a distance
based clustering approach requires an inter-mean separation of at least c′d1/4 standard
deviations to succeed, thus unfortunately not keeping within a constant number of stan-
dard deviations separation of the means. Here, indeed, we will show that Ω(1) standard
deviations suffice, provided k ∈ O(1).

The central idea is the following. Suppose we can find the subspace spanned by the
k centers and project the sample points to this subspace. The projection of a spherical
Gaussian with standard deviation σ remains a spherical Gaussian with standard deviation
σ, Lemma 3.12. In the projection, the inter-center separation remains the same. So in the
projection, the Gaussians are distinct provided the inter-center separation in the whole
space is Ω(k1/4 σ) which is a lot smaller than the Ω(d1/4 σ) for k << d. Interestingly, we
will see that the subspace spanned by the k-centers is essentially the best-fit k-dimensional
subspace that can be found by singular value decomposition.

Lemma 3.12 Suppose p is a d-dimensional spherical Gaussian with center µ and stan-
dard deviation σ. The density of p projected onto a k-dimensional subspace V is a spherical
Gaussian with the same standard deviation.

1Since a spherical Gaussian has the same standard deviation in every direction, we call it the standard

deviation of the Gaussian.

84



1. The best fit 1-dimension subspace
to a spherical Gaussian is the line
through its center and the origin.

2. Any k-dimensional subspace contain-
ing the line is a best fit k-dimensional
subspace for the Gaussian.

3. The best fit k-dimensional subspace
for k spherical Gaussians is the sub-
space containing their centers.

Figure 3.4: Best fit subspace to a spherical Gaussian.

Proof: Rotate the coordinate system so V is spanned by the first k coordinate vectors.
The Gaussian remains spherical with standard deviation σ although the coordinates of
its center have changed. For a point x = (x1, x2, . . . , xd), we will use the notation x′ =
(x1, x2, . . . xk) and x′′ = (xk+1, xk+2, . . . , xn). The density of the projected Gaussian at
the point (x1, x2, . . . , xk) is

ce−
|x′−µ′|2

2σ2

∫

x′′

e−
|x′′−µ′′|2

2σ2 dx′′ = c′e−
|x′−µ′|2

2σ2 .

This clearly implies the lemma.

We now show that the top k singular vectors produced by the SVD span the space of
the k centers. First, we extend the notion of best fit to probability distributions. Then
we show that for a single spherical Gaussian whose center is not the origin, the best fit
1-dimensional subspace is the line though the center of the Gaussian and the origin. Next,
we show that the best fit k-dimensional subspace for a single Gaussian whose center is not
the origin is any k-dimensional subspace containing the line through the Gaussian’s center
and the origin. Finally, for k spherical Gaussians, the best fit k-dimensional subspace is
the subspace containing their centers. Thus, the SVD finds the subspace that contains
the centers.

Recall that for a set of points, the best-fit line is the line passing through the origin
that minimizes the sum of squared distances to the points. We extend this definition to
probability densities instead of a set of points.
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Definition 3.1 If p is a probability density in d space, the best fit line for p is the line l
passing through the origin that minimizes the expected squared perpendicular distance to
the line, namely,

∫

dist (x, l)2 p (x) dx.

A word of caution: The integral may not exist. We assume that it does when we write
it down.

For the uniform density on the unit circle centered at the origin, it is easy to see that
any line passing through the origin is a best fit line for the probability distribution. Our
next lemma shows that the best fit line for a spherical Gaussian centered at µ 6= 0 is the
line passing through µ and the origin.

Lemma 3.13 Let the probability density p be a spherical Gaussian with center µ 6= 0.
The unique best fit 1-dimensional subspace is the line passing through µ and the origin.
If µ = 0, then any line through the origin is a best-fit line.

Proof: For a randomly chosen x (according to p) and a fixed unit length vector v,

E
[

(vTx)2
]

= E
[

(

vT (x− µ) + vT
µ
)2
]

= E
[

(

vT (x− µ)
)2

+ 2
(

vT
µ
) (

vT (x− µ)
)

+
(

vT
µ
)2
]

= E
[

(

vT (x− µ)
)2
]

+ 2
(

vT
µ
)

E
[

vT (x− µ)
]

+
(

vT
µ
)2

= E
[

(

vT (x− µ)
)2
]

+
(

vT
µ
)2

= σ2 +
(

vT
µ
)2

since E
[

(

vT (x− µ)
)2
]

is the variance in the direction v and E
(

vT (x− µ)
)

= 0. The

lemma follows from the fact that the best fit line v is the one that maximizes
(

vT
µ
)2

which is maximized when v is aligned with the center µ. To see the uniqueness, just note
that if µ 6= 0, then vT

µ is strictly smaller when v is not aligned with the center.

Recall that a k-dimensional subspace is the best-fit subspace if the sum of squared
distances to it is minimized or equivalently, the sum of squared lengths of projections onto
it is maximized. This was defined for a set of points, but again it can be extended to a
density as we did for best-fit lines.

86



Definition 3.2 If p is a probability density in d-space and V is a subspace, then the
expected squared perpendicular distance of V to p, denoted f(V, p), is given by

f(V, p) =

∫

(

dist (x, V )
)2

p (x) dx,

where dist(x, V ) denotes the perpendicular distance from the point x to the subspace V .

Lemma 3.14 For a spherical Gaussian with center µ, a k-dimensional subspace is a best
fit subspace if and only if it contains µ.

Proof: If µ = 0, then by symmetry any k-dimensional subspace is a best-fit subspace. If
µ 6= 0, then the best-fit line must pass through µ by Lemma 3.13. Now, as in the greedy
algorithm for finding subsequent singular vectors, we would project perpendicular to the
first singular vector. But after the projection, the mean of the Gaussian becomes 0 and
then any vectors will do as subsequent best-fit directions.

This leads to the following theorem.

Theorem 3.15 If p is a mixture of k spherical Gaussians , then the best fit k-dimensional
subspace contains the centers. In particular, if the means of the Gaussians are linearly
independent, the space spanned by them is the unique best-fit k dimensional subspace.

Proof: Let p be the mixture w1p1+w2p2+· · ·+wkpk. Let V be any subspace of dimension
k or less. The expected squared perpendicular distance of V to p is

f(V, p) =

∫

dist2(x, V )p(x)dx

=
k
∑

i=1

wi

∫

dist2(x, V )pi(x)dx

≥
k
∑

i=1

wi( distance squared of pi to its best fit k-dimensional subspace).

If a subspace V contains the centers of the densities pi, by Lemma ?? the last inequality
becomes an equality proving the theorem. Indeed, for each i individually, we have equality
which is stronger than just saying we have equality for the sum.

For an infinite set of points drawn according to the mixture, the k-dimensional SVD
subspace gives exactly the space of the centers. In reality, we have only a large number
of samples drawn according to the mixture. However, it is intuitively clear that as the
number of samples increases, the set of sample points approximates the probability density
and so the SVD subspace of the sample is close to the space spanned by the centers. The
details of how close it gets as a function of the number of samples are technical and we
do not carry this out here.
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3.7.3 Spectral Decomposition

Let B be a square matrix. If the vector x and scalar λ are such that Bx = λx, then x
is an eigenvector of the matrix B and λ is the corresponding eigenvalue. We present here
a spectral decomposition theorem for the special case where B is of the form B = AAT for
some possibly rectangular matrix A. If A is a real valued matrix, then B is symmetric and
positive definite. That is, xTBx > 0 for all nonzero vectors x. The spectral decomposition
theorem holds more generally and the interested reader should consult a linear algebra
book.

Theorem 3.16 (Spectral Decomposition) If B = AAT then B =
∑

i

σ2
i uiu

T
i where

A =
∑

i

σiuiv
T
i is the singular valued decomposition of A.

Proof:

B = AAT =

(

∑

i

σiuivi
T

)(

∑

j

σjujv
T
j

)T

=
∑

i

∑

j

σiσjuivi
Tvjuj

T

=
∑

i

σ2

i uiui
T .

When the σi are all distinct, the ui are the eigenvectors of B and the σ2
i are the

corresponding eigenvalues. If the σi are not distinct, then any vector that is a linear
combination of those ui with the same eigenvalue is an eigenvector of B.

3.7.4 Singular Vectors and Ranking Documents

An important task for a document collection is to rank the documents according to
their intrinsic relevance to the collection. A good candidate is a document’s projection
onto the best-fit direction for the collection of term-document vectors, namely the top
left-singular vector of the term-document matrix. An intuitive reason for this is that this
direction has the maximum sum of squared projections of the collection and so can be
thought of as a synthetic term-document vector best representing the document collection.

Ranking in order of the projection of each document’s term vector along the best fit
direction has a nice interpretation in terms of the power method. For this, we consider
a different example, that of the web with hypertext links. The World Wide Web can
be represented by a directed graph whose nodes correspond to web pages and directed
edges to hypertext links between pages. Some web pages, called authorities, are the most
prominent sources for information on a given topic. Other pages called hubs, are ones
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that identify the authorities on a topic. Authority pages are pointed to by many hub
pages and hub pages point to many authorities. One is led to what seems like a circular
definition: a hub is a page that points to many authorities and an authority is a page
that is pointed to by many hubs.

One would like to assign hub weights and authority weights to each node of the web.
If there are n nodes, the hub weights form a n-dimensional vector u and the authority
weights form a n-dimensional vector v. Suppose A is the adjacency matrix representing
the directed graph. Here aij is 1 if there is a hypertext link from page i to page j and 0
otherwise. Given hub vector u, the authority vector v could be computed by the formula

vj =
d
∑

i=1

uiaij

since the right hand side is the sum of the hub weights of all the nodes that point to node
j. In matrix terms,

v = ATu.

Similarly, given an authority vector v, the hub vector u could be computed by u = Av.
Of course, at the start, we have neither vector. But the above discussion suggests a power
iteration. Start with any v. Set u = Av; then set v = ATu and repeat the process. We
know from the power method that this converges to the left and right-singular vectors.
So after sufficiently many iterations, we may use the left vector u as hub weights vector
and project each column of A onto this direction and rank columns (authorities) in order
of their projections. But the projections just form the vector ATu which equals v. So we
can rank by order of the vj. This is the basis of an algorithm called the HITS algorithm,
which was one of the early proposals for ranking web pages.

A different ranking called page rank is widely used. It is based on a random walk on
the graph described above. We will study random walks in detail in Chapter 5.

3.7.5 An Application of SVD to a Discrete Optimization Problem

In Gaussian clustering the SVD was used as a dimension reduction technique. It found
a k-dimensional subspace containing the centers of the Gaussians in a d-dimensional space
and made the Gaussian clustering problem easier by projecting the data to the subspace.
Here, instead of fitting a model to data, we have an optimization problem. Again ap-
plying dimension reduction to the data makes the problem easier. The use of SVD to
solve discrete optimization problems is a relatively new subject with many applications.
We start with an important NP-hard problem, the maximum cut problem for a directed
graph G(V,E).

The maximum cut problem is to partition the node set V of a directed graph into two
subsets S and S̄ so that the number of edges from S to S̄ is maximized. Let A be the
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adjacency matrix of the graph. With each vertex i, associate an indicator variable xi.
The variable xi will be set to 1 for i ∈ S and 0 for i ∈ S̄. The vector x = (x1, x2, . . . , xn)
is unknown and we are trying to find it or equivalently the cut, so as to maximize the
number of edges across the cut. The number of edges across the cut is precisely

∑

i,j

xi(1− xj)aij.

Thus, the maximum cut problem can be posed as the optimization problem

Maximize
∑

i,j

xi(1− xj)aij subject to xi ∈ {0, 1}.

In matrix notation,
∑

i,j

xi(1− xj)aij = xTA(1− x),

where 1 denotes the vector of all 1’s . So, the problem can be restated as

Maximize xTA(1− x) subject to xi ∈ {0, 1}. (3.1)

The SVD is used to solve this problem approximately by computing the SVD of A and

replacing A by Ak =
k
∑

i=1

σiuivi
T in (3.1) to get

Maximize xTAk(1− x) subject to xi ∈ {0, 1}. (3.2)

Note that the matrix Ak is no longer a 0-1 adjacency matrix.

We will show that:

1. For each 0-1 vector x, xTAk(1− x) and xTA(1− x) differ by at most n2√
k+1

. Thus,

the maxima in (3.1) and (3.2) differ by at most this amount.

2. A near optimal x for (3.2) can be found by exploiting the low rank of Ak, which by
Item 1 is near optimal for (3.1) where near optimal means with additive error of at
most n2√

k+1
.

First, we prove Item 1. Since x and 1− x are 0-1 n-vectors, each has length at most√
n. By the definition of the 2-norm, |(A − Ak)(1 − x)| ≤ √

n||A − Ak||2. Now since
xT (A− Ak)(1− x) is the dot product of the vector x with the vector (A− Ak)(1− x),

|xT (A− Ak)(1− x)| ≤ n||A− Ak||2.

By Lemma 3.8, ||A− Ak||2 = σk+1(A). The inequalities,

(k + 1)σ2

k+1 ≤ σ2

1 + σ2

2 + · · · σ2

k+1 ≤ ||A||2F =
∑

i,j

a2ij ≤ n2
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imply that σ2
k+1 ≤ n2

k+1
and hence ||A− Ak||2 ≤ n√

k+1
proving Item 1.

Next we focus on Item 2. It is instructive to look at the special case when k=1 and A
is approximated by the rank one matrix A1. An even more special case when the left and
right-singular vectors u and v are required to be identical is already NP-hard to solve ex-
actly because it subsumes the problem of whether for a set of n integers, {a1, a2, . . . , an},
there is a partition into two subsets whose sums are equal. So, we look for algorithms
that solve the maximum cut problem approximately.

For Item 2, we want to maximize
∑k

i=1
σi(x

Tui)(vi
T (1 − x)) over 0-1 vectors x. A

piece of notation will be useful. For any S ⊆ {1, 2, . . . n}, write ui(S) for the sum of
coordinates of the vector ui corresponding to elements in the set S and also for vi. That
is, ui(S) =

∑

j∈S
uij. We will maximize

∑k
i=1

σiui(S)vi(S̄) using dynamic programming.

For a subset S of {1, 2, . . . , n}, define the 2k-dimensional vector

w(S) = (u1(S),v1(S̄),u2(S),v2(S̄), . . . ,uk(S),vk(S̄)).

If we had the list of all such vectors, we could find
∑k

i=1
σiui(S)vi(S̄) for each of them

and take the maximum. There are 2n subsets S, but several S could have the same
w(S) and in that case it suffices to list just one of them. Round each coordinate of
each ui to the nearest integer multiple of 1

nk2
. Call the rounded vector ũi. Similarly ob-

tain ṽi. Let w̃(S) denote the vector (ũ1(S), ṽ1(S̄), ũ2(S), ṽ2(S̄), . . . , ũk(S), ṽk(S̄)). We
will construct a list of all possible values of the vector w̃(S). Again, if several differ-
ent S’s lead to the same vector w̃(S), we will keep only one copy on the list. The list
will be constructed by dynamic programming. For the recursive step of dynamic pro-
gramming, assume we already have a list of all such vectors for S ⊆ {1, 2, . . . , i} and
wish to construct the list for S ⊆ {1, 2, . . . , i + 1}. Each S ⊆ {1, 2, . . . , i} leads to two
possible S ′ ⊆ {1, 2, . . . , i + 1}, namely, S and S ∪ {i + 1}. In the first case, the vector
w̃(S ′) = (ũ1(S), ṽ1(S̄) + ṽ1,i+1, ũ2(S), ṽ2(S̄) + ṽ2,i+1, . . . , ...). In the second case, it is
w̃(S ′) = (ũ1(S) + ũ1,i+1, ṽ1(S̄), ũ2(S) + ũ2,i+1, ṽ2(S̄), . . . , ...) We put in these two vectors
for each vector in the previous list. Then, crucially, we prune - i.e., eliminate duplicates.

Assume that k is constant. Now, we show that the error is at most n2√
k+1

as claimed.

Since ui,vi are unit length vectors, |ui(S)|, |vi(S̄)| ≤
√
n. Also |ũi(S)−ui(S)| ≤ n

nk2
= 1

k2

and similarly for vi. To bound the error, we use an elementary fact: if a, b are reals with
|a|, |b| ≤ M and we estimate a by a′ and b by b′ so that |a − a′|, |b − b′| ≤ δ ≤ M , then
a′b′ is an estimate of ab in the sense

|ab− a′b′| = |a(b− b′) + b′(a− a′)| ≤ |a||b− b′|+ (|b|+ |b− b′|)|a− a′| ≤ 3Mδ.

Using this, we get that
∣

∣

∣

∣

∣

k
∑

i=1

σiũi(S)ṽi(S̄) −
k
∑

i=1

σiui(S)vi(S)

∣

∣

∣

∣

∣

≤ 3kσ1

√
n/k2 ≤ 3n3/2/k ≤ n2/k,
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and this meets the claimed error bound.
Next, we show that the running time is polynomially bounded. |ũi(S)|, |ṽi(S)| ≤ 2

√
n.

Since ũi(S), ṽi(S) are all integer multiples of 1/(nk2), there are at most 2/
√
nk2 possible

values of ũi(S), ṽi(S) from which it follows that the list of w̃(S) never gets larger than
(1/

√
nk2)2k which for fixed k is polynomially bounded.

We summarize what we have accomplished.

Theorem 3.17 Given a directed graph G(V,E), a cut of size at least the maximum cut

minus O
(

n2√
k

)

can be computed in polynomial time n for any fixed k.

It would be quite a surprise to have an algorithm that actually achieves the same
accuracy in time polynomial in n and k because this would give an exact max cut in
polynomial time.

3.8 Singular Vectors and Eigenvectors

An eigenvector of a square matrix A is a vector v satisfying Av = λv, for a non-zero
scaler λ which is the corresponding eigenvalue. A square matrix A can be viewed as a
linear transformation from a space into itself which transforms an eigenvector into a scaler
multiple of itself. The eigenvector decomposition of A is V TDV where the columns of V
are the eigenvectors of A and D is a diagonal matrix with the eigenvalues on the diagonal.

A non square m× n matrix A also defines a linear transformation, but now from Rn

to Rm. In this case, eigenvectors do not make sense. But singular vectors can be defined.
They serve the purpose of decomposing the linear transformation defined by the matrix
A into the sum of simple linear transformations, each of which maps Rn to a one dimen-
sional space, i.e., to a line through the origin.

A positive semi-definite matrix can be decomposed into a product AAT . Thus, the
eigenvector decomposition can be obtained from the singular value decomposition of A =
UDV T since

AAT = UDV TV DUT = UD2UT =
∑

i

σi(A)
2uiui

T ,

where the ui, the columns of U, are the eigenvectors of AAT .

There are many applications of singular vectors and eigenvectors. For square non-
symmetric matrices, both singular vectors and eigenvectors are defined but they may be
different. In an important application, the pagerank, one represents the web by a n × n
matrix A, where, aij is one if there is a hypertext link from the ith page in the web to the
jth page. Otherwise, it is zero. The matrix is scaled by dividing each entry by the sum of
entries in its row to get a stochastic matrix P. A stochastic matrix is one with nonnegative
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entries where each row sums to one. Note that P is not necessarily symmetric. Since the
row sums of P are all one, the vector 1 of all one’s is a right eigenvector with eigenvalue
one, i.e., P1 = 1. This eigenvector contains no information. But the left eigenvector v
with eigenvalue one satisfies vTP = vT and is the stationary probability of the Markov
chain with transition probability matrix P . So, it is the proportion of time a Markov
chain spends at each vertex (page) in the long run. A simplified definition of pagerank
ranks the page in order of its component in the top left eigenvector v.

3.9 Bibliographic Notes

Singular value decomposition is fundamental to numerical analysis and linear algebra.
There are many texts on these subjects and the interested reader may want to study these.
A good reference is [GvL96]. The material on clustering a mixture of Gaussians in Section
3.7.2 is from [VW02]. Modeling data with a mixture of Gaussians is a standard tool in
statistics. Several well-known heuristics like the expectation-minimization algorithm are
used to fit the mixture model to data. Recently, in theoretical computer science, there
has been modest progress on provable polynomial-time algorithms for learning mixtures.
Some references are [DS07], [AK], [AM05], [MV10]. The application to the discrete opti-
mization problem is from [FK99]. The section on ranking documents/webpages is from
two influential papers, one on hubs and authorities by Jon Kleinberg [Kle99] and the other
on pagerank by Page, Brin, Motwani and Winograd [BMPW98].
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