

- Zero-sum games
- General-sum games

**Shall we play a game?**

## Game Theory and Computer Science

### 2-player zero-sum game recap

### Plan for Today

- 2-Player Zero-Sum Games (matrix games)
  - Minimax optimal strategies
  - Minimax theorem and proof
- General-Sum Games (bimatrix games)
  - notion of Nash Equilibrium
- Proof of existence of Nash Equilibria
  - using Brouwer's fixed-point theorem

test material  
not test material

### 2-Player Zero-Sum games

- Two players **R** and **C**. Zero-sum means that what's good for one is bad for the other.
- Game defined by matrix with a row for each of **R**'s options and a column for each of **C**'s options. Matrix tells who wins how much.
  - an entry  $(x,y)$  means:  $x$  = payoff to row player,  $y$  = payoff to column player. "Zero sum" means that  $y = -x$ .
- E.g., penalty shot:

|       | Left   | Right  | shooter |
|-------|--------|--------|---------|
| Left  | (0,0)  | (1,-1) | goalie  |
| Right | (1,-1) | (0,0)  | GOAL!!! |

### Consider the following scenario...

- Shooter has a penalty shot. Can choose to shoot left or shoot right.
- Goalie can choose to dive left or dive right.
- If goalie guesses correctly, (s)he saves the day. If not, it's a **GOAL!!!**
- Vice-versa for shooter.

### Minimax-optimal strategies

- Minimax optimal strategy is a (randomized) strategy that has the best guarantee on its expected gain, over choices of the opponent. **[maximizes the minimum]**
- I.e., the thing to play if your opponent knows you well.

|       | Left   | Right  | shooter |
|-------|--------|--------|---------|
| Left  | (0,0)  | (1,-1) | goalie  |
| Right | (1,-1) | (0,0)  | GOAL!!! |

## Minimax-optimal strategies

- In class on Linear Programming, we saw how to solve for this using LP.
  - polynomial time in size of matrix if use poly-time LP alg.
- I.e., the thing to play if your opponent knows you well.

|         |        |        |          |
|---------|--------|--------|----------|
|         | Left   | Right  | goalie   |
| shooter | (0,0)  | (1,-1) | GOALLL!! |
| Right   | (1,-1) | (0,0)  | No goal  |

## Minimax-optimal strategies

- What are the minimax optimal strategies for this game?

Minimax optimal strategy for both players is 50/50. Gives expected gain of  $\frac{1}{2}$  for shooter ( $-\frac{1}{2}$  for goalie). Any other is worse.

|         |        |        |          |
|---------|--------|--------|----------|
|         | Left   | Right  | goalie   |
| shooter | (0,0)  | (1,-1) | GOALLL!! |
| Right   | (1,-1) | (0,0)  | No goal  |

## Minimax-optimal strategies

- How about penalty shot with goalie who's weaker on the left?

Minimax optimal for shooter is  $(2/3, 1/3)$ .  
Guarantees expected gain at least  $2/3$ .

Minimax optimal for goalie is also  $(2/3, 1/3)$ .  
Guarantees expected loss at most  $2/3$ .

|         |                               |           |          |
|---------|-------------------------------|-----------|----------|
|         | Left                          | Right     | goalie   |
| shooter | $(\frac{1}{2}, -\frac{1}{2})$ | $(1, -1)$ | GOALLL!! |
| Right   | $(1, -1)$                     | $(0, 0)$  | 50/50    |

Shall we play a game...?

I put either a quarter or dime in my hand. You guess. If you guess right, you get the coin.  
Else you get nothing.

All right!

## Summary of game

Value to guesser

|        |      |    |
|--------|------|----|
|        | hide |    |
| guess: | D    | Q  |
|        | 10   | 0  |
| Q      | 0    | 25 |

Should guesser always guess Q? 50/50?

What is minimax optimal strategy?

## Summary of game

Value to guesser

|        |      |    |
|--------|------|----|
|        | hide |    |
| guess: | D    | Q  |
|        | 10   | 0  |
| Q      | 0    | 25 |

If guesser always guesses Q, then hider will hide D. Value to guesser = 0.

If guesser does 50/50, hider will still hide D.  $E[\text{value to guesser}] = \frac{1}{2}(10) + \frac{1}{2}(0) = 5$

### Summary of game

Value to guesser

|        |   | hide |    |
|--------|---|------|----|
|        |   | D    | Q  |
| guess: | D | 10   | 0  |
|        | Q | 0    | 25 |

If guesser guesses 5/7 D, 2/7 Q, then:

- if hider hides D,  $E[\text{value}] = (5/7) * 10 \sim 7.1$
- if hider hides Q,  $E[\text{value}] = 50/7$  also.

### Summary of game

Value to guesser

|        |   | hide |    |
|--------|---|------|----|
|        |   | D    | Q  |
| guess: | D | 10   | 0  |
|        | Q | 0    | 25 |

What about hider?

Minimax optimal strategy: 5/7 D, 2/7 Q. Guarantees expected loss at most  $50/7$ , no matter what the guesser does.

Interesting. The hider has a (randomized) strategy *he can* reveal with expected loss  $\leq 50/7$  against any opponent, and the guesser has a strategy *she can* reveal with expected gain  $\geq 50/7$  against any opponent.



### Minimax Theorem (von Neumann 1928)

- Every 2-player zero-sum game has a unique value  $V$ .
- Minimax optimal strategy for  $R$  guarantees  $R$ 's expected gain at least  $V$ .
- Minimax optimal strategy for  $C$  guarantees  $C$ 's expected loss at most  $V$ .

**Counterintuitive:** Means it doesn't hurt to publish your strategy if both players are optimal. (Borel had proved for symmetric  $5 \times 5$  but thought was false for larger games)

Can use notion of minimax optimality to explain bluffing in poker

### Simplified Poker (Kuhn 1950)

- Two players  $A$  and  $B$ .
- Deck of 3 cards: 1, 2, 3.
- Players ante \$1.
- Each player gets one card.
- $A$  goes first. Can bet \$1 or pass.
  - If  $A$  bets,  $B$  can call or fold.
  - If  $A$  passes,  $B$  can bet \$1 or pass.
    - If  $B$  bets,  $A$  can call or fold.
- High card wins (if no folding). Max pot \$2.

- Two players A and B. 3 cards: 1,2,3.
- Players ante \$1. Each player gets one card.
- A goes first. Can bet \$1 or pass.
  - If A bets, B can call or fold.
  - If A passes, B can bet \$1 or pass.
  - If B bets, A can call or fold.

### Writing as a Matrix Game

- For a given card, A can decide to
  - Pass but fold if B bets. [PassFold]
  - Pass but call if B bets. [PassCall]
  - Bet. [Bet]
- Similar set of choices for B.

Can look at all strategies as a big matrix...

|            | [FP,FP,CB] | [FP,CP,CB] | [FB,FP,CB] | [FB,CP,CB] |
|------------|------------|------------|------------|------------|
| [PF,PF,PC] | 0          | 0          | -1/6       | -1/6       |
| [PF,PF,B]  | 0          | 1/6        | -1/3       | -1/6       |
| PF,PC,PC]  | -1/6       | 0          | 0          | 1/6        |
| [PF,PC,B]  | -1/6       | -1/6       | 1/6        | 1/6        |
| [B,PF,PC]  | 1/6        | -1/3       | 0          | -1/2       |
| [B,PF,B]   | 1/6        | -1/6       | -1/6       | -1/2       |
| [B,PC,PC]  | 0          | -1/2       | 1/3        | -1/6       |
| [B,PC,B]   | 0          | -1/3       | 1/6        | -1/6       |

### And the minimax optimal

- A: strategies are...
  - If hold 1, then 5/6 PassFold and 1/6 Bet.
  - If hold 2, then  $\frac{1}{2}$  PassFold and  $\frac{1}{2}$  PassCall.
  - If hold 3, then  $\frac{1}{2}$  PassCall and  $\frac{1}{2}$  Bet.

Has both bluffing and underbidding...
- B:
  - If hold 1, then 2/3 FoldPass and 1/3 FoldBet.
  - If hold 2, then 2/3 FoldPass and 1/3 CallPass.
  - If hold 3, then CallBet

Minimax value of game is  $-1/18$  to A.

### Matrix games and Algorithms

• Gives a useful way of thinking about guarantees on algorithms for a given problem.

• Think of rows as different algorithms, columns as different possible inputs.

•  $M(i,j) = \text{cost of algorithm } i \text{ on input } j$ .

• Algorithm design goal: good strategy for row player. Lower bound: good strategy for adversary.

One way to think of upper-bounds/lower-bounds: on value of this game

### Matrix games and Algorithms

• Gives a useful way of thinking about guarantees on algorithms for a given problem.

• Think of rows as different algorithms, columns as different possible inputs.

•  $M(i,j) = \text{cost of algorithm } i \text{ on input } j$ .

• Algorithm design goal: good strategy for row player. Lower bound: good strategy for adversary.

Of course matrix may be HUGE. But helpful conceptually.

### Matrix games and Algs



• What is a deterministic alg with a good worst-case guarantee?

• A row that does well against all columns.

• What is a lower bound for deterministic algorithms?

• Showing that for each row  $i$  there exists a column  $j$  such that  $M(i,j)$  is bad.

• How to give lower bound for randomized algs?

• Give randomized strategy for adversary that is bad for all  $i$ . Must also be bad for all distributions over  $i$ .

## E.g., hashing

- Rows are different hash functions.
- Cols are different sets of  $n$  items to hash.
- $M(i,j) = \# \text{collisions incurred by alg } i \text{ on set } j$ .

We saw:

- For any row, can reverse-engineer a bad column (if universe of keys is large enough).
- Universal hashing is a randomized strategy for row player that has good behavior for **every** column.
  - For any set of inputs, if you randomly construct hash function in this way, you won't get many collisions in expectation.



We are now below the red line from slide 2

## General-Sum Games

- Zero-sum games are good formalism for design/analysis of algorithms.
- General-sum games are good models for systems with many participants whose behavior affects each other's interests
  - E.g., routing on the internet
  - E.g., online auctions

## General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "what side of sidewalk to walk on?":

|       | Left    | Right   |                            |
|-------|---------|---------|----------------------------|
| Left  | (1,1)   | (-1,-1) | person walking towards you |
| Right | (-1,-1) | (1,1)   |                            |

## General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "which movie should we go to?":

|          | Bruno | New Moon |
|----------|-------|----------|
| Bruno    | (8,2) | (0,0)    |
| New Moon | (0,0) | (2,8)    |

No longer a unique "value" to the game.

## Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- **Stable** means that neither player has incentive to deviate on their own.
- E.g., "what side of sidewalk to walk on?":

|       | Left    | Right   |
|-------|---------|---------|
| Left  | (1,1)   | (-1,-1) |
| Right | (-1,-1) | (1,1)   |

NE are: both left, both right, or both 50/50.

## Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- **Stable** means that neither player has incentive to deviate on their own.
- E.g., "which movie to go to?":

|          | Bruno | New Moon |
|----------|-------|----------|
| Bruno    | (8,2) | (0,0)    |
| New Moon | (0,0) | (2,8)    |

NE are: both B, both NM, or (80/20,20/80)

## Uses

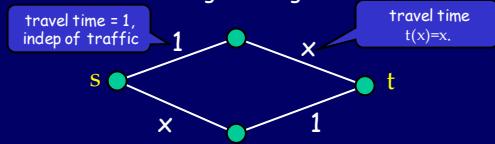
- Economists use games and equilibria as models of interaction.
- E.g., pollution / prisoner's dilemma:
  - (imagine pollution controls cost \$4 but improve everyone's environment by \$3)

|               |        | don't pollute | pollute |
|---------------|--------|---------------|---------|
| don't pollute | (2,2)  | (-1,3)        |         |
| pollute       | (3,-1) | (0,0)         |         |

Need to add extra incentives to get good overall behavior.

## NE can do strange things

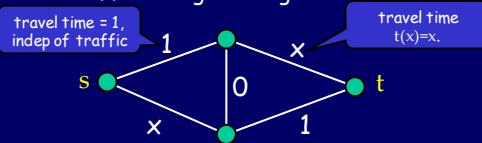
- Braess paradox:
  - Road network, traffic going from  $s$  to  $t$ .
  - travel time as function of fraction  $x$  of traffic on a given edge.



Fine. NE is 50/50. Travel time = 1.5

## NE can do strange things

- Braess paradox:
  - Road network, traffic going from  $s$  to  $t$ .
  - travel time as function of fraction  $x$  of traffic on a given edge.



Add new superhighway. NE: everyone uses zig-zag path. Travel time = 2.

## Existence of NE

- Nash (1950) proved: any general-sum game must have at least one such equilibrium.
  - Might require randomized strategies (called "mixed strategies")
- This also yields minimax thm as a corollary.
  - Pick some NE and let  $V$  = value to row player in that equilibrium.
  - Since it's a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
  - So, they're each playing minimax optimal.

## Existence of NE

- Proof will be non-constructive.
- Unlike case of zero-sum games, we do not know any polynomial-time algorithm for finding Nash Equilibria in  $n \times n$  general-sum games. [known to be "PPAD-hard"]
- Notation:
  - Assume an  $n \times n$  matrix.
  - Use  $(p_1, \dots, p_n)$  to denote mixed strategy for row player, and  $(q_1, \dots, q_n)$  to denote mixed strategy for column player.

## Proof

- We'll start with Brouwer's fixed point theorem.
  - Let  $S$  be a compact convex region in  $\mathbb{R}^n$  and let  $f: S \rightarrow S$  be a continuous function.
  - Then there must exist  $x \in S$  such that  $f(x) = x$ .
  - $x$  is called a "fixed point" of  $f$ .
- Simple case:  $S$  is the interval  $[0,1]$ .
- We will care about:
  - $S = \{(p,q): p, q \text{ are legal probability distributions on } 1, \dots, n\}$ . I.e.,  $S = \text{simplex}_n \times \text{simplex}_n$

## Proof (cont)

- $S = \{(p, q) : p, q \text{ are mixed strategies}\}$ .
- Want to define  $f(p, q) = (p', q')$  such that:
  - $f$  is continuous. This means that changing  $p$  or  $q$  a little bit shouldn't cause  $p'$  or  $q'$  to change a lot.
  - Any fixed point of  $f$  is a Nash Equilibrium.
- Then Brouwer will imply existence of NE.

## Try #1

- What about  $f(p, q) = (p', q')$  where  $p'$  is best response to  $q$ , and  $q'$  is best response to  $p$ ?
- Problem: not necessarily well-defined:
  - E.g., penalty shot: if  $p = (0.5, 0.5)$  then  $q'$  could be anything.

|       | Left   | Right  |
|-------|--------|--------|
| Left  | (0,0)  | (1,-1) |
| Right | (1,-1) | (0,0)  |

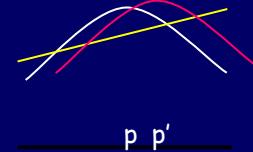
## Try #1

- What about  $f(p, q) = (p', q')$  where  $p'$  is best response to  $q$ , and  $q'$  is best response to  $p$ ?
- Problem: also not continuous:
  - E.g., if  $p = (0.51, 0.49)$  then  $q' = (1,0)$ . If  $p = (0.49, 0.51)$  then  $q' = (0,1)$ .

|       | Left   | Right  |
|-------|--------|--------|
| Left  | (0,0)  | (1,-1) |
| Right | (1,-1) | (0,0)  |

## Instead we will use...

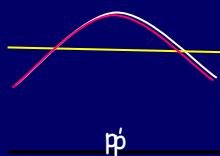
- $f(p, q) = (p', q')$  such that:
  - $q'$  maximizes  $[(\text{expected gain wrt } p) - \|q - q'\|^2]$
  - $p'$  maximizes  $[(\text{expected gain wrt } q) - \|p - p'\|^2]$



Note: quadratic + linear = quadratic.

## Instead we will use...

- $f(p, q) = (p', q')$  such that:
  - $q'$  maximizes  $[(\text{expected gain wrt } p) - \|q - q'\|^2]$
  - $p'$  maximizes  $[(\text{expected gain wrt } q) - \|p - p'\|^2]$



Note: quadratic + linear = quadratic.

## Instead we will use...

- $f(p, q) = (p', q')$  such that:
  - $q'$  maximizes  $[(\text{expected gain wrt } p) - \|q - q'\|^2]$
  - $p'$  maximizes  $[(\text{expected gain wrt } q) - \|p - p'\|^2]$

- $f$  is well-defined and continuous since quadratic has unique maximum and small change to  $p, q$  only moves this a little.
- Also fixed point = NE. (even if tiny incentive to move, will move little bit).
- So, that's it!