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The multiplicative weights
method

Last time / today

Last time: looked at model where data is
coming from some probability distribution.

- Take a sample S, find h with low erry(h).

- Ask: when can we be confident that err, (h) is
low t00? (Or more generally, that the gap
lerry (h) — errs(h)| is low.)

- Gives us confidence in our predictions.

Today: what if we don't assume the future
looks like the past. What can we say then?

Will be more like online algorithms / competitive
analysis, and how we analyzed Perceptron.

Online learning

* What if we don't want to make assumption that
data is coming from some fixed distribution? Or
any assumptions on data?

+ Can no longer talk about past performance
predicting future results.

Tdea: regret bounds.
»Show that our algorithm does nearly as well
as best predictor in some large class.

T

Using "expert" advice
Say we want to predict the stock market.
+ We solicit n “experts” for their advice. (Will the
market go up or down?)
+ We then want to use their advice somehow to
make our prediction. E.g.,

Expt 1 Expt 2 Expt 3 neighbor's dog | truth
down up up up up
down up up down down

Basic question: Is there a strategy that allows us to do
nearly as well as best of these in hindsight?

["expert” = someone with an opinion. Not necessarily
someone who knows anything.]

Simpler question

+ We have n “experts".

* One of these is perfect (never makes a mistake).
We just don't know which one.

* Can we find a strategy that makes no more than
Ig(n) mistakes?

Answer: sure. Just take majority vote over all
experts that have been correct so far.

>Each mistake cuts # available by factor of 2.

>Note: this means ok for n to be very large.

What if no expert is perfect?

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?

Strategy #1:

- Iterated halving algorithm. Same as before, but
once we've crossed of f all the experts, restart
from the beginning.

+ Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?




What if no expert is perfect?

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority / Multiplicative Weights Alg:
- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Weights: 1 1 1
Predictionss U U U D We predict: U Truth: D
Weights: 3+ 3 $ 1

Analysis: do nearly as well as best
expert in hindsight
* M = # mistakes we've made so far.
m = # mistakes best expert has made so far.
W = total weight (starts at n).

After each mistake, W drops by at least 25%.
So, after M mistakes, W is at most n(3/4)M.
Weight of best expert is (1/2)™. So,
(1/2)™ < n(3/4)M
(4/3)M < nom
M 2.4(m+1gn)
Constant Ratio! So, if mis small, then M is pretty small too.
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Randomized W1td Majority / Mult Wts

2.4(m + lg n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.
+ Instead of taking majority vote, use weights as
probabilities.
Idea: smooth out the worst case.

- Also, multiply by 1- ¢ instead of %.

—-mIn(1-€)+] 1
Solves to M < ~min=a+in() :) nm (1 + E) m+=In(n)
M =expected | 5r - =
M<139m+2Inn £ 1/2
M<115m+4Inn —c=1/4
M<107m+8Inn «—e=1/8

Analysis
- Say at time t we have fraction F, of

weight on experts that made mistake.
- So, we have probability F, of making a mistake, and

we remove an ¢F, fraction of the total weight.

= Weina = n(1-e F)(1 - e Fy)...

= In(Wing) = In(n) + Z, [In(1 - e F)1 < In(n) - e X, F,

(using In(1-x) < -x)
= In(n) - ¢ M. (X F, = E[# mistakes])

+ If best expert makes m mistakes, then In(W;,y) > In((1-€)™).
+ Now solve: In(n) - ¢ M > m In(1-¢).

—m In(1-€)+In(n) -

Solves to M < A= (1 4 &) + 2in(n)

What can we use this for?

« Can use for repeated play of matrix game:
- Consider cost matrix where all entries O or 1.
- Rows are different experts. Start each with

weight 1.
* Notice that the RWM algorithm is equivalent to "pick
an expert with prob p; = w;/ X.;w;, and go with it".
+ Can apply when experts are actions rather than
predictors.
* F, = fraction of weight on rows that had “1" in
adversary's column.
- Analysis shows do nearly as well as best row in
hindsight!

What can we use this for?
In fact, alg/analysis extends to costs in [0,1], not
just {0,1}.
- We assign weights w;, inducing probabilities
pi = wi/ Zjwj.
- Adversary chooses column. Gives cost vector ¢.
We pay (expected cost) p - C.
- Update: w; « w;(1 — ecy).
- A few minor extra calculations in analysis...




RWM / MW
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Elcost] < (1+ €)OPT + (%) log(n)
In T steps, E[cost] < OPT + €T + (1) log(n)

RWM / WM

In fact, gives a proof of the minimax theorem...

Nice proof of minimax thm (sketch)
+ Suppose for contradiction it was false.

* This means some game G has V. > Vy:

- If Column player commits first, there exists
a row that gets the Row player at least V.

- But if Row player has to commit first, the
Column player can make him get only V5.
- Scale matrix so payoffs to row are
in[-1,0]. Say Vi = V.- 8.
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Proof sketch, contd

* Now, consider randomized weighted-majority
alg, against Col who plays optimally against
Row's distrib.

* In T steps,

- Alg gets = [best row in hindsight] —eT - log(n)/e

- BRiH = TV, [Best against opponent's empirical
distribution]

- Alg < TV, [Each time, opponent knows your
randomized strategy]

- Gap is 8T. Contradicts assumption if use € = 5/2,
once T > log(n)/e?.

¢ What if only get your own cost/benefit as feedback?

¢ Called the "multi-armed bandit problem”

+ Will do a somewhat weaker version of their analysis
(same algorithm but not as tight a bound).

¢ For fun, talk about it in the context of online pricing...

+ Say you are selling lemonade (or a cool new software tool, or
bottles of water at the world expo).

+ Protocol #1: for t=1,2,..T

without v' revealed.
+ Assume all valuations in [1,

+ Goal: do nearly as well as be
price in hindsight.




Say you are selling lemonade (or a cool new software tool, or + Say you are selling lemonade (or a cool new software tool, or
bottles of water at the world expo). bottles of water at the world expo).
+ Protocol #1: for +=1,2,..T + What about Protocol #2? [just see accept/reject decision]

$5.00 aglass

“" #experts=h |
OPT(1—¢€) — O(e~* hlogh)

[extra factor of h coming from range of gains]

Exponential Weights for Exploration and Exploitation (exp?) Exponential Weights for Exploration and Exploitation (exp?)

[Auer Cesa-Bianchi,Freund,Schapire] [Auer Cesa-Bianchi,Freund,Schapire]

Distrib p* Distrib p*

RWM

n=
#experts

§'=(0...0, g/q,
1. RWM believes gain is: pt* - §* = p*(9/q") = g'rwm
2.3, g'awm = OPT (1 — €) - O(e~1 nh/y log n)
3. Our actual gain is: g = g'xwm (4'/pi") = g'rwm(l-¥) E[Exp3] = OPT(1-¢)2 - O(e2 nh log(n))

4 E[OPT] = OPT. Because E[§']= (I )0 + (9 /q) = g;' . > - - -
so E[max,[%, §/1] = max, [ EL%, ;1] = OPT. Can reduce 1/€? term to 1/e with more care in analysis.

« Application: play repeated game against
adversary. Perform nearly as well as fixed
strategy in hindsight.

Application: online pricing, even if only have
buy/no buy feedback.




