

The multiplicative weights method

Last time / today

Last time: looked at model where data is coming from some probability distribution.

- Take a sample S , find h with low $\text{err}_S(h)$.
- Ask: when can we be confident that $\text{err}_D(h)$ is low too? (Or more generally, that the gap $|\text{err}_D(h) - \text{err}_S(h)|$ is low.)
- Gives us confidence in our predictions.

Today: what if we don't assume the future looks like the past. What can we say then?

Will be more like online algorithms / competitive analysis, and how we analyzed Perceptron.

Online learning

- What if we don't want to make assumption that data is coming from some fixed distribution? Or any assumptions on data?
- Can no longer talk about past performance predicting future results.

Idea: regret bounds.

➤ Show that our algorithm does nearly as well as best predictor in some large class.

Using "expert" advice

Say we want to predict the stock market.

- We solicit n "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	up	up	up
down	up	up	down	down
...

Basic question: Is there a strategy that allows us to do nearly as well as best of these in hindsight?

["expert" = someone with an opinion. Not necessarily someone who knows anything.]

Simpler question

- We have n "experts".
- One of these is perfect (never makes a mistake). We just don't know which one.
- Can we find a strategy that makes no more than $\lg(n)$ mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

➤ Each mistake cuts # available by factor of 2.

➤ Note: this means ok for n to be very large.

What if no expert is perfect?

But what if none is perfect? Can we do nearly as well as the best one in hindsight?

Strategy #1:

- Iterated halving algorithm. Same as before, but once we've crossed off all the experts, restart from the beginning.
- Makes at most $\lg(n)[\text{OPT}+1]$ mistakes, where OPT is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've "learned". Can we do better?

What if no expert is perfect?

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority / Multiplicative Weights Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

Weights:	1	1	1	1
Predictions:	U	U	U	D
Weights:	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	1

Analysis: do nearly as well as best expert in hindsight

- $M = \# \text{ mistakes we've made so far.}$
- $m = \# \text{ mistakes best expert has made so far.}$
- $W = \text{total weight (starts at } n\text{).}$
- **After each mistake, W drops by at least 25%.**
So, after M mistakes, W is at most $n(3/4)^M$.
- **Weight of best expert is $(1/2)^m$. So,**

$$(1/2)^m \leq n(3/4)^M$$

$$(4/3)^M \leq n2^m$$

$$M \leq 2.4(m + \lg n)$$

Constant Ratio! So, if m is small, then M is pretty small too.

Randomized Wtd Majority / Mult Wts

$2.4(m + \lg n)$ not so good if the best expert makes a mistake 20% of the time. Can we do better? **Yes.**

- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30) **Idea:** smooth out the worst case.
- Also, multiply by $1 - \varepsilon$ instead of $\frac{1}{2}$.

$$\text{Solves to } M \leq \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \approx \left(1 + \frac{\varepsilon}{2}\right)m + \frac{1}{\varepsilon} \ln(n)$$

$$\begin{aligned} M = \text{expected} \\ \# \text{mistakes} \end{aligned} \quad M \leq 1.39m + 2 \ln n \quad \leftarrow \varepsilon = 1/2$$

$$M \leq 1.15m + 4 \ln n \quad \leftarrow \varepsilon = 1/4$$

$$M \leq 1.07m + 8 \ln n \quad \leftarrow \varepsilon = 1/8$$

Analysis

- Say at time t we have fraction F_t of weight on experts that made mistake.
- So, we have probability F_t of making a mistake, and we remove an εF_t fraction of the total weight.
 - $W_{\text{final}} = n(1 - \varepsilon F_1)(1 - \varepsilon F_2) \dots$
 - $\ln(W_{\text{final}}) = \ln(n) + \sum_t [\ln(1 - \varepsilon F_t)] \leq \ln(n) - \varepsilon \sum_t F_t$
(using $\ln(1-x) < -x$)
 - $= \ln(n) - \varepsilon M. \quad (\sum F_t = E[\# \text{mistakes}])$
- If best expert makes m mistakes, then $\ln(W_{\text{final}}) > \ln((1-\varepsilon)^m)$.
- Now solve: $\ln(n) - \varepsilon M > m \ln(1-\varepsilon)$.

$$\text{Solves to } M \leq \frac{-m \ln(1-\varepsilon) + \ln(n)}{\varepsilon} \approx \left(1 + \frac{\varepsilon}{2}\right)m + \frac{1}{\varepsilon} \ln(n)$$

What can we use this for?

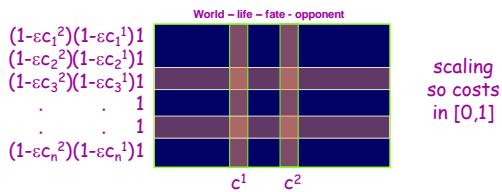
- Can use for repeated play of matrix game:
 - Consider cost matrix where all entries 0 or 1.
 - Rows are different experts. Start each with weight 1.
 - Notice that the RWM algorithm is equivalent to "pick an expert with prob $p_i = w_i / \sum_j w_j$, and go with it".
 - Can apply when experts are *actions* rather than *predictors*.
 - F_t = fraction of weight on rows that had "1" in adversary's column.
 - Analysis shows do nearly as well as best row in hindsight!

What can we use this for?

In fact, alg/analysis extends to costs in $[0,1]$, not just $\{0,1\}$.

- We assign weights w_i , inducing probabilities $p_i = w_i / \sum_j w_j$.
- Adversary chooses column. Gives cost vector \vec{c} . We pay (expected cost) $\vec{p} \cdot \vec{c}$.
- Update: $w_i \leftarrow w_i(1 - \varepsilon c_i)$.
- A few minor extra calculations in analysis...

RWM / MW



$$E[\text{cost}] \leq (1 + \epsilon)OPT + \left(\frac{1}{\epsilon}\right) \log(n)$$

In T steps, $E[\text{cost}] \leq OPT + \epsilon T + \left(\frac{1}{\epsilon}\right) \log(n)$

RWM / WM

In fact, gives a proof of the minimax theorem...

Nice proof of minimax thm (sketch)

- Suppose for contradiction it was false.
- This means some game G has $V_C > V_R$:
 - If Column player commits first, there exists a row that gets the Row player at least V_C .
 - But if Row player has to commit first, the Column player can make him get only V_R .
- Scale matrix so payoffs to row are in $[-1, 0]$. Say $V_R = V_C - \delta$.

Proof sketch, contd

- Now, consider randomized weighted-majority alg, against Col who plays optimally against Row's distrib.
- In T steps,
 - Alg gets \geq [best row in hindsight] $- \epsilon T - \log(n)/\epsilon$
 - BRiH $\geq TV_C$ [Best against opponent's empirical distribution]
 - Alg $\leq TV_R$ [Each time, opponent knows your randomized strategy]
 - Gap is δT . Contradicts assumption if use $\epsilon = \delta/2$, once $T > \log(n)/\epsilon^2$.

[ACFS02]: applying RWM to bandit setting

- What if only get your own cost/benefit as feedback?
-
- Called the "multi-armed bandit problem"
- Will do a somewhat weaker version of their analysis (same algorithm but not as tight a bound).
- For fun, talk about it in the context of online pricing...

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- Protocol #1: for $t=1, 2, \dots, T$
 - Seller sets price p^t
 - Buyer arrives with valuation v^t
 - If $v^t \geq p^t$, buyer purchases and pays p^t , else doesn't.
 - v^t revealed to algorithm.
 - repeat
- Protocol #2: same as protocol 1, but without v^t revealed.
- Assume all valuations in $[1, h]$
- Goal: do nearly as well as best fixed price in hindsight.

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- Protocol #1: for $t=1,2,\dots,T$
 - Seller sets price p^t
 - Buyer arrives with valuation v^t
 - If $v^t \geq p^t$, buyer purchases and pays p^t , else doesn't.
 - v^t revealed to algorithm.
- Good algorithm: RWM / MWI
 - Define one expert for each price $p \in [1, h]$. #experts = h
 - Best price of this form gives profit OPT .
 - Run RWM algorithm. Get expected gain at least:

$$OPT(1 - \epsilon) - O(\epsilon^{-1} h \log h)$$

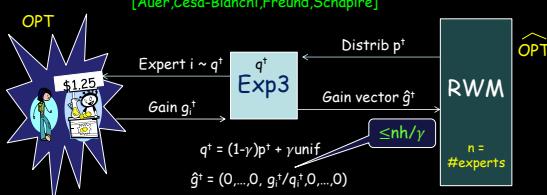
[extra factor of h coming from range of gains]

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo).
- What about Protocol #2? [just see accept/reject decision]
 - Now we can't run RWM directly since we don't know how to penalize the experts!
 - Called the "adversarial multiarmed bandit problem"
 - How can we solve that?

Multi-armed bandit problem

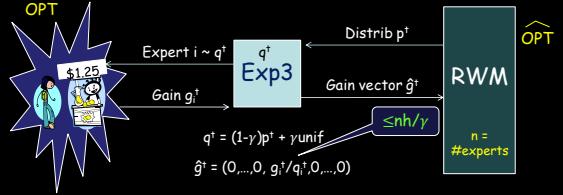
Exponential Weights for Exploration and Exploitation (\exp^3)
[Auer,Cesa-Bianchi,Freund,Schapire]



1. RWM believes gain is: $p^t \cdot \hat{g}^t = p_i^t(g_i^t/q_i^t) \equiv g_{RWM}^t$
2. $\sum g_{RWM}^t \geq \widehat{OPT}(1 - \epsilon) - O(\epsilon^{-1} nh/y \log n)$
3. Our actual gain is: $g^t = g_{RWM}^t (q_i^t/p_i^t) \geq g_{RWM}^t (1 - \epsilon)$
4. $E[OPT] \geq OPT$. Because $E[\hat{g}_j^t] = (1 - q_j^t)0 + q_j^t(g_j^t/q_j^t) = g_j^t$, so $E[\max_j E[\hat{g}_j^t]] \geq \max_j E[\sum_t \hat{g}_j^t] = OPT$.

Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (\exp^3)
[Auer,Cesa-Bianchi,Freund,Schapire]



Conclusion ($\gamma = \epsilon$):
 $E[Exp3] \geq OPT(1-\epsilon)^2 - O(\epsilon^{-2} nh \log(n))$

Can reduce $1/\epsilon^2$ term to $1/\epsilon$ with more care in analysis.

Summary

Algorithms for online decision-making with strong guarantees on performance compared to best fixed choice.

- Application: play repeated game against adversary. Perform nearly as well as fixed strategy in hindsight.

Can apply even with very limited feedback.

- Application: online pricing, even if only have buy/no buy feedback.