
1

The multiplicative weights
method

 CMU 15-451/15-651

Lecturer: Avrim Blum 11/16/15

Last time / today
Last time: looked at model where data is
coming from some probability distribution.

– Take a sample S, find h with low 𝑒𝑟𝑟𝑠(ℎ).
– Ask: when can we be confident that 𝑒𝑟𝑟𝐷(ℎ) is

low too? (Or more generally, that the gap
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆 ℎ is low.)

– Gives us confidence in our predictions.

Today: what if we don’t assume the future
looks like the past. What can we say then?

Will be more like online algorithms / competitive
analysis, and how we analyzed Perceptron.

Online learning
• What if we don’t want to make assumption that

data is coming from some fixed distribution? Or
any assumptions on data?

• Can no longer talk about past performance
predicting future results.

Idea: regret bounds.
Show that our algorithm does nearly as well
as best predictor in some large class.

Using “expert” advice

• We solicit n “experts” for their advice. (Will the
market go up or down?)

• We then want to use their advice somehow to
make our prediction. E.g.,

Say we want to predict the stock market.

Basic question: Is there a strategy that allows us to do
nearly as well as best of these in hindsight?

[“expert” = someone with an opinion. Not necessarily
someone who knows anything.]

Simpler question
• We have n “experts”.

• One of these is perfect (never makes a mistake).
We just don’t know which one.

• Can we find a strategy that makes no more than
lg(n) mistakes?

Answer: sure. Just take majority vote over all
experts that have been correct so far.

Each mistake cuts # available by factor of 2.

Note: this means ok for n to be very large.

But what if none is perfect? Can we do nearly as
well as the best one in hindsight?

Strategy #1:
• Iterated halving algorithm. Same as before, but

once we've crossed off all the experts, restart
from the beginning.

• Makes at most lg(n)[OPT+1] mistakes, where OPT
is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've
“learned”. Can we do better?

What if no expert is perfect?

2

What if no expert is perfect?

Intuition: Making a mistake doesn't completely
disqualify an expert. So, instead of crossing
off, just lower its weight.

Weighted Majority / Multiplicative Weights Alg:

– Start with all experts having weight 1.

– Predict based on weighted majority vote.

– Penalize mistakes by cutting weight in half.

Weights: 1 1 1 1

Predictions: U U U D We predict: U

Weights: ½ ½ ½ 1

Truth: D

Analysis: do nearly as well as best
expert in hindsight

• M = # mistakes we've made so far.

• m = # mistakes best expert has made so far.

• W = total weight (starts at n).

• After each mistake, W drops by at least 25%.

 So, after M mistakes, W is at most n(3/4)M.

• Weight of best expert is (1/2)m. So,

Constant Ratio! So, if m is small, then M is pretty small too.

Randomized Wtd Majority / Mult Wts

2.4(m + lg n) not so good if the best expert makes a
mistake 20% of the time. Can we do better? Yes.

• Instead of taking majority vote, use weights as
probabilities. (e.g., if 70% on up, 30% on down, then pick

70:30) Idea: smooth out the worst case.

• Also, multiply by 1- e instead of ½.

M = expected
#mistakes

Solves to 𝑀 ≤
−𝑚 ln 1−𝜖 +ln 𝑛

𝜖
≈ 1 +

𝜖

2
𝑚 +

1

𝜖
ln⁡(𝑛)

Analysis
• Say at time t we have fraction Ft of

weight on experts that made mistake.

• So, we have probability Ft of making a mistake, and
we remove an eFt fraction of the total weight.
– Wfinal = n(1-e F1)(1 - e F2)...

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] ≤ ln(n) - e t Ft

 (using ln(1-x) < -x)

 = ln(n) - e M. ( Ft = E[# mistakes])

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m).

• Now solve: ln(n) - e M > m ln(1-e).

Ft

Solves to 𝑀 ≤
−𝑚 ln 1−𝜖 +ln 𝑛

𝜖
≈ 1 +

𝜖

2
𝑚 +

1

𝜖
ln⁡(𝑛)

What can we use this for?
• Can use for repeated play of matrix game:

– Consider cost matrix where all entries 0 or 1.

– Rows are different experts. Start each with
weight 1.
• Notice that the RWM algorithm is equivalent to “pick

an expert with prob 𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗𝑗 , and go with it”.

• Can apply when experts are actions rather than
predictors.

• 𝐹𝑡 = fraction of weight on rows that had “1” in
adversary’s column.

– Analysis shows do nearly as well as best row in
hindsight!

What can we use this for?
In fact, alg/analysis extends to costs in [0,1], not
just {0,1}.

– We assign weights 𝑤𝑖, inducing probabilities
𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗 .𝑗

– Adversary chooses column. Gives cost vector 𝑐 .
We pay (expected cost) 𝑝 ⋅ 𝑐 .

– Update: 𝑤𝑖 ← 𝑤𝑖 1⁡ − 𝜖𝑐𝑖 .

– A few minor extra calculations in analysis…

3

World – life – fate - opponent

RWM / MW

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c1 c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

E[cost] ≤ 1 + 𝜖 𝑂𝑃𝑇 +
1

𝜖
log 𝑛

In T steps, E[cost] ≤ 𝑂𝑃𝑇 + 𝜖𝑇 +
1

𝜖
log 𝑛

In fact, gives a proof of the minimax theorem…

RWM / WM

Nice proof of minimax thm (sketch)
• Suppose for contradiction it was false.

• This means some game G has VC > VR:
– If Column player commits first, there exists

a row that gets the Row player at least VC.

– But if Row player has to commit first, the
Column player can make him get only VR.

• Scale matrix so payoffs to row are
in [-1,0]. Say VR = VC - .

VC

VR

Proof sketch, contd
• Now, consider randomized weighted-majority

alg, against Col who plays optimally against
Row’s distrib.

• In T steps,

– Alg gets ≥ [best row in hindsight] −𝜖𝑇 – ⁡log⁡(𝑛)/e

– BRiH ≥ 𝑇𝑉𝐶 [Best against opponent’s empirical
distribution]

– Alg ≤ 𝑇𝑉𝑅 [Each time, opponent knows your
randomized strategy]

– Gap is T. Contradicts assumption if use e = /2,
once 𝑇⁡ > ⁡log⁡(𝑛)/𝜖2.

[ACFS02]: applying RWM to bandit setting

 What if only get your own cost/benefit as feedback?

 Called the “multi-armed bandit problem”

 Will do a somewhat weaker version of their analysis
(same algorithm but not as tight a bound).

 For fun, talk about it in the context of online pricing…

Online pricing
• Say you are selling lemonade (or a cool new software tool, or

bottles of water at the world expo).

• Protocol #1: for t=1,2,…T

– Seller sets price pt

– Buyer arrives with valuation vt

– If vt ≥ pt, buyer purchases and pays pt, else doesn’t.

– vt revealed to algorithm.

– repeat
• Protocol #2: same as protocol #1 but

without vt revealed.
• Assume all valuations in [1,h]

$2

• Goal: do nearly as well as best fixed
price in hindsight.

4

Online pricing
• Say you are selling lemonade (or a cool new software tool, or

bottles of water at the world expo).

• Protocol #1: for t=1,2,…T

– Seller sets price pt

– Buyer arrives with valuation vt

– If vt ≥ pt, buyer purchases and pays pt, else doesn’t.

– vt revealed to algorithm.

• Good algorithm: RWM / MW!

– Define one expert for each price p ∈ [1,h].

– Best price of this form gives profit OPT.

– Run RWM algorithm. Get expected gain at least:
𝑂𝑃𝑇(1 − 𝜖) ⁡− ⁡𝑂(𝜖−1⁡ℎ⁡log⁡ℎ)

[extra factor of h coming from range of gains]

#experts = h

Online pricing
• Say you are selling lemonade (or a cool new software tool, or

bottles of water at the world expo).

• What about Protocol #2? [just see accept/reject decision]

– Now we can’t run RWM directly since we don’t know how
to penalize the experts!

– Called the “adversarial multiarmed bandit problem”

– How can we solve that?
$2

 Because E[ĝj
t] = (1- qj

t)0 + qj
t(gj

t/qj
t) = gj

t ,

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

RWM

n =
#experts

Exp3

Distrib pt

Expert i ~ qt

Gain gi
t

Gain vector ĝt

qt

qt = (1-𝛾)pt + 𝛾unif

ĝt = (0,…,0, gi
t/qi

t,0,…,0)

OPT

OPT

1. RWM believes gain is: pt ⋅ ĝt = pi
t(gi

t/qi
t) ≡⁡gt

RWM

3. Our actual gain is: gi
t = gt

RWM (qi
t/pi

t) ≥ gt
RWM(1-𝛾)

2. t gt
RWM ≥ (1 − 𝜖) - O(𝜖−1 nh/𝛾 log n) OPT

4. E[] ≥ OPT. OPT

so E[maxj[t ĝj
t]] ≥⁡maxj [E[t ĝj

t]] = OPT.

≤nh/𝛾

[Auer,Cesa-Bianchi,Freund,Schapire]

Multi-armed bandit problem
Exponential Weights for Exploration and Exploitation (exp3)

RWM

n =
#experts

Exp3

Distrib pt

Expert i ~ qt

Gain gi
t

Gain vector ĝt

qt

qt = (1-𝛾)pt + 𝛾unif

ĝt = (0,…,0, gi
t/qi

t,0,…,0)

OPT

OPT

≤nh/𝛾

[Auer,Cesa-Bianchi,Freund,Schapire]

Conclusion 𝛾 = 𝜖 :
 E[Exp3] ≥ OPT(1-𝜖)2 - O(𝜖-2 nh log(n))

Can reduce 1/𝜖2 term to 1/𝜖 with more care in analysis.

Summary
Algorithms for online decision-making with
strong guarantees on performance compared
to best fixed choice.

• Application: play repeated game against
adversary. Perform nearly as well as fixed
strategy in hindsight.

Can apply even with very limited feedback.
• Application: online pricing, even if only have

buy/no buy feedback.

