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The multiplicative weights 
method 

 CMU 15-451/15-651  
 

Lecturer: Avrim Blum                                                 11/16/15 

Last time / today 
Last time: looked at model where data is 
coming from some probability distribution. 

– Take a sample S, find h with low 𝑒𝑟𝑟𝑠(ℎ). 
– Ask: when can we be confident that 𝑒𝑟𝑟𝐷(ℎ) is 

low too?  (Or more generally, that the gap 
𝑒𝑟𝑟𝐷 ℎ − 𝑒𝑟𝑟𝑆 ℎ  is low.) 

– Gives us confidence in our predictions. 

Today: what if we don’t assume the future 
looks like the past.  What can we say then? 

Will be more like online algorithms / competitive 
analysis, and how we analyzed Perceptron.  

Online learning 
• What if we don’t want to make assumption that 

data is coming from some fixed distribution?  Or 
any assumptions on data? 

• Can no longer talk about past performance 
predicting future results. 

Idea: regret bounds.   
Show that our algorithm does nearly as well 
as best predictor in some large class. 

Using “expert” advice 

• We solicit n “experts” for their advice. (Will the 
market go up or down?) 

• We then want to use their advice somehow to 
make our prediction.  E.g., 

Say we want to predict the stock market. 

Basic question: Is there a strategy that allows us to do 
nearly as well as best of these in hindsight? 

[“expert” = someone with an opinion.  Not necessarily 
someone who knows anything.] 

Simpler question 
• We have n “experts”. 

• One of these is perfect (never makes a mistake).  
We just don’t know which one. 

• Can we find a strategy that makes no more than 
lg(n) mistakes? 

Answer: sure.  Just take majority vote over all 
experts that have been correct so far. 

Each mistake cuts # available by factor of 2. 

Note: this means ok for n to be very large. 

But what if none is perfect?  Can we do nearly as 
well as the best one in hindsight?  

Strategy #1: 
• Iterated halving algorithm.  Same as before, but 

once we've crossed off all the experts, restart 
from the beginning. 

• Makes at most lg(n)[OPT+1] mistakes, where OPT 
is #mistakes of the best expert in hindsight. 

 

Seems wasteful. Constantly forgetting what we've 
“learned”.  Can we do better? 

What if no expert is perfect? 
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What if no expert is perfect? 

Intuition: Making a mistake doesn't completely 
disqualify an expert. So, instead of crossing 
off, just lower its weight. 

 

Weighted Majority / Multiplicative Weights Alg: 

–  Start with all experts having weight 1. 

–  Predict based on weighted majority vote. 

–  Penalize mistakes by cutting weight in half. 

Weights:    1     1     1     1 

Predictions:    U    U    U    D We predict:    U 

Weights:    ½    ½     ½    1 

Truth:    D 

Analysis: do nearly as well as best 
expert in hindsight 

•  M = # mistakes we've made so far. 

•  m = # mistakes best expert has made so far. 

•  W = total weight (starts at n). 
 

•  After each mistake, W drops by at least 25%. 

    So, after M mistakes, W is at most n(3/4)M. 

•  Weight of best expert is (1/2)m. So, 

Constant Ratio!  So, if m is small, then M is pretty small too. 

Randomized Wtd Majority / Mult Wts 

2.4(m + lg n) not so good if the best expert makes a 
mistake 20% of the time. Can we do better? Yes. 

• Instead of taking majority vote, use weights as 
probabilities. (e.g., if 70% on up, 30% on down, then pick 

70:30)  Idea: smooth out the worst case. 

• Also, multiply by 1- e instead of ½. 

M = expected 
#mistakes 

Solves to 𝑀 ≤
−𝑚 ln 1−𝜖 +ln 𝑛

𝜖
≈ 1 +

𝜖

2
𝑚 +

1

𝜖
ln⁡(𝑛) 

Analysis 
• Say at time t we have fraction Ft of                

weight on experts that made mistake. 

• So, we have probability Ft of making a mistake, and 
we remove an eFt fraction of the total weight. 
– Wfinal = n(1-e F1)(1 - e F2)... 

– ln(Wfinal) = ln(n) + t [ln(1 - e Ft)] ≤ ln(n) - e t Ft 

      (using ln(1-x) < -x) 

                       = ln(n) - e M.             ( Ft = E[# mistakes]) 

• If best expert makes m mistakes, then ln(Wfinal) > ln((1-e)m). 

• Now solve: ln(n) - e M > m ln(1-e). 

Ft 

Solves to 𝑀 ≤
−𝑚 ln 1−𝜖 +ln 𝑛

𝜖
≈ 1 +

𝜖

2
𝑚 +

1

𝜖
ln⁡(𝑛) 

What can we use this for? 
• Can use for repeated play of matrix game: 

– Consider cost matrix where all entries 0 or 1. 

– Rows are different experts.  Start each with 
weight 1. 
• Notice that the RWM algorithm is equivalent to “pick 

an expert with prob 𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗𝑗 , and go with it”. 

• Can apply when experts are actions rather than 
predictors.   

• 𝐹𝑡 = fraction of weight on rows that had “1” in 
adversary’s column. 

– Analysis shows do nearly as well as best row in 
hindsight! 

What can we use this for? 
In fact, alg/analysis extends to costs in [0,1], not 
just {0,1}.   

– We assign weights 𝑤𝑖, inducing probabilities 
𝑝𝑖 = 𝑤𝑖/ 𝑤𝑗 .𝑗  

– Adversary chooses column. Gives cost vector 𝑐 . 
We pay (expected cost) 𝑝 ⋅ 𝑐 . 

– Update: 𝑤𝑖 ← 𝑤𝑖 1⁡ − 𝜖𝑐𝑖 . 

– A few minor extra calculations in analysis… 
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World – life – fate - opponent 

RWM / MW 

1 
1 
1 
1 
1 
1 

(1-ec1
1) 

(1-ec2
1) 

(1-ec3
1) 

. 

. 
(1-ecn

1) 

scaling 
so costs 
in [0,1] 

c1 c2 

(1-ec1
2) 

(1-ec2
2) 

(1-ec3
2) 

. 

. 
(1-ecn

2) 

E[cost] ≤ 1 + 𝜖 𝑂𝑃𝑇 +
1

𝜖
log 𝑛  

In T steps,  E[cost] ≤ 𝑂𝑃𝑇 + 𝜖𝑇 +
1

𝜖
log 𝑛  

In fact, gives a proof of the minimax theorem… 

RWM / WM 

Nice proof of minimax thm (sketch) 
• Suppose for contradiction it was false. 

• This means some game G has VC > VR: 
– If Column player commits first, there exists 

a row that gets the Row player at least VC. 

– But if Row player has to commit first, the 
Column player can make him get only VR. 

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - . 

VC 

VR 

Proof sketch, contd 
• Now, consider randomized weighted-majority 

alg, against Col who plays optimally against 
Row’s distrib. 

• In T steps, 

– Alg gets ≥ [best row in hindsight] −𝜖𝑇 – ⁡log⁡(𝑛)/e    

– BRiH ≥ 𝑇𝑉𝐶  [Best against opponent’s empirical 
distribution] 

– Alg ≤ 𝑇𝑉𝑅  [Each time, opponent knows your 
randomized strategy] 

– Gap is T. Contradicts assumption if use e = /2, 
once 𝑇⁡ > ⁡log⁡(𝑛)/𝜖2. 

[ACFS02]: applying RWM to bandit setting 

 What if only get your own cost/benefit as feedback? 

 

 

 

 Called the “multi-armed bandit problem” 

 

 Will do a somewhat weaker version of their analysis 
(same algorithm but not as tight a bound). 

 

 For fun, talk about it in the context of online pricing… 

Online pricing 
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo). 

• Protocol #1: for t=1,2,…T 

– Seller sets price pt 

– Buyer arrives with valuation vt 

– If vt ≥ pt, buyer purchases and pays pt, else doesn’t. 

– vt revealed to algorithm.  

– repeat 
• Protocol #2: same as protocol #1 but 

without vt revealed. 
• Assume all valuations in [1,h] 

$2 

• Goal: do nearly as well as best fixed 
price in hindsight. 
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Online pricing 
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo). 

• Protocol #1: for t=1,2,…T 

– Seller sets price pt 

– Buyer arrives with valuation vt 

– If vt ≥ pt, buyer purchases and pays pt, else doesn’t. 

– vt revealed to algorithm.  

• Good algorithm: RWM / MW! 

– Define one expert for each price p ∈ [1,h]. 

– Best price of this form gives profit OPT. 

– Run RWM algorithm.  Get expected gain at least: 
𝑂𝑃𝑇(1 − 𝜖) ⁡− ⁡𝑂(𝜖−1⁡ℎ⁡log⁡ℎ) 

[extra factor of h coming from range of gains] 

#experts = h 

Online pricing 
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo). 

• What about Protocol #2?  [just see accept/reject decision] 

– Now we can’t run RWM directly since we don’t know how 
to penalize the experts! 

– Called the “adversarial multiarmed bandit problem” 

– How can we solve that? 
$2 

                          Because E[ĝj
t] = (1- qj

t)0 + qj
t(gj

t/qj
t) = gj

t , 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-𝛾)pt + 𝛾unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

1. RWM believes gain is: pt ⋅ ĝt  =  pi
t(gi

t/qi
t) ≡⁡gt

RWM 

3. Our actual gain is: gi
t  = gt

RWM (qi
t/pi

t) ≥ gt
RWM(1-𝛾) 

2. t gt
RWM ≥        (1 − 𝜖) - O(𝜖−1 nh/𝛾 log n) OPT  

4. E[      ] ≥ OPT.  OPT 

so E[maxj[t ĝj
t]] ≥⁡maxj [ E[t ĝj

t] ]  = OPT. 

≤nh/𝛾 

[Auer,Cesa-Bianchi,Freund,Schapire] 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-𝛾)pt + 𝛾unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

≤nh/𝛾 

[Auer,Cesa-Bianchi,Freund,Schapire] 

Conclusion 𝛾 = 𝜖 : 
  E[Exp3] ≥ OPT(1-𝜖)2 - O(𝜖-2 nh log(n))  

Can reduce 1/𝜖2 term to 1/𝜖 with more care in analysis.  

Summary 
Algorithms for online decision-making with 
strong guarantees on performance compared 
to best fixed choice. 

• Application: play repeated game against 
adversary.  Perform nearly as well as fixed 
strategy in hindsight.  

Can apply even with very limited feedback. 
• Application: online pricing, even if only have 

buy/no buy feedback. 


