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1 The Perceptron Algorithm

Today we discuss an algorithm for solving linear programming feasibility problems of the form
Aw > 1, where w is our vector of variables. It will in fact do more than this, as we will see. Notice
we have changed notation, now using w instead of x; this is to avoid confusion with our machine
learning motivation.

1.1 Online linear classification

Consider the following problem. You have a sequence of email messages arriving one at a time
aj,as, as, ..., and for each one you (the algorithm) have to decide whether to mark it “important”
or “not important”. After marking it, you are then told (by your user) if you were correct or if you
made a mistake.!

Let’s assume that email messages are represented as vectors in some space R", such as indicating
how many times each word in the dictionary appears in the email message (in this case, n is
the number of words in the dictionary, and this would be called a “bag of words” model). Let’s
furthermore suppose that there exists some unknown weight vector w* such that a; - w* > 1 for
the important emails (the positive examples) and a; - w* < —1 for the non-important emails (the
negative examples). Our goal is to give an algorithm for performing this task that makes as few
mistakes as possible.

The Perceptron Algorithm is one such algorithm for this problem. It maintains a weight vector w
that it uses for prediction (predicting positive on a; if a;-w > 0 and predicting negative if a;-w < 0)
and then updates it when it makes a mistake (let’s say it says “I don’t know” if a; - w = 0 and so
makes a mistake either way). What we will prove about the algorithm is the following theorem.

Theorem 1 On any sequence of examples a1, aq, .. ., if there exists a consistent w*, i.e., a;-w* > 1
for the positive examples and a; - w* < —1 for the negative examples, then the Perceptron algorithm
makes at most R?||w*||> mistakes, where R = max; ||a;||.

To get a feel for this statement, notice that if we multiply all entries in all the a; by 100, we can
divide all entries in w* by 100 and it will still be consistent. So the bound is invariant to this kind
of scaling (i.e., what our “units” are).

Secondly, if we rewrite a;-w* > 1 as a;-w™*/||[w*|| > 1/||w*||, and we think of the a; as points in R",
then we can think of the LHS as the distance of a; to the hyperplane a-w* = 0. So, we can think of
w* as defining a linear separator that separates the positive examples from the negative examples,
and what the theorem is saying is that if there exists a hyperplane that correctly separates the
positive examples from the negative examples by a large margin, then the total number of mistakes
will be small.

!Traditionally in machine learning, the data is called x1,Xz2,.... We have changed this to avoid confusion with
LP notation.



Before giving the algorithm and analysis, note that by the above theorem, we can use it to solve
linear programs of the form mentioned at the beginning. In particular, just cycle it through the
constraints (viewing each one as a positive example) until the algorithm stops making any more
mistakes. At this point we have Aw > 0, and we can just scale up w to be large enough so that
Aw > 1. (This LP is called a “cone” LP).

1.2 The algorithm

The Perceptron algorithm is simply the following:

1. Begin with w = 0.

2. Given a;, predict positive if a; - w > 0 and predict negative if a; - w < 0, else say “I don’t
know”.

3. If a mistake was made (or the prediction was “I don’t know”):

e If the correct answer was “positive”, update: w «— w + a;.
o If the correct answer was ‘“negative”, update: w «— w — a;.

1.3 The analysis

Proof (Theorem 1): Fix some consistent w*. We will keep track of two quantities, w - w* and
|[w||?. First of all, each time we make a mistake, w - w* increases by at least 1. That is because if
a; is a positive example, then

(wWHa;) - w'=w-w'+a, - w'>w-w"+1,
by definition of w*. Similarly, if a; is a negative example, then
(Ww—a;) - w'=w-w'—a,-w'>w-w"+ 1

Next, on each mistake, we claim that ||w]||? increases by at most R?. Let us first consider mistakes
on positive examples. If we make a mistake on a positive example a; then we have

(wta) - (w+ay) = [[w|* + 2w - a; + [Jail|* < [[w]]* + [|ag||* < |lw]]* + R?,

where the middle inequality comes from the fact that we made a mistake, which means that
w - a; < 0. Similarly, if we make a mistake on a negative example a; then we have

(w—a;) - (w—a;) =[|w|[* —2w - a; +||a;]|* < [|wl]® +[|a]|” < [|w]]* + R
Note that it is important here that we only update on a mistake.

So, if we make M mistakes, then w - w* > M, and ||w||? < M R?, or equivalently, ||w|| < RV M.

Finally, we use the fact that w - w*/||w*|| < ||w|| which is just saying that the projection of w in
the direction of w* cannot be larger than the length of w. This gives us:

M/|lw*|| < RVM
vM < R|w"|
M < Rw*|]?
as desired. m
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1.4 Extensions and hinge-loss

We assumed above that there existed a perfect w* that correctly classified all the examples, i.e.,
correctly classified all the emails into important versus non-important. This is rarely the case in
real-life data. What if w* isn’t quite perfect? We can see what this does to the above proof: if there
is an example that w* doesn’t correctly classify, then while the second part of the proof still holds,
the first part (the dot product of w with w* increasing) breaks down. However, if this doesn’t
happen too often, and also a; - w* is just a “little bit wrong” then this just means we will make a
few more mistakes.

To make this formal, define the hinge-loss of w* on a positive example a; as max(0,1 — a; - w*).
In other words, if a; - w* > 1 as desired then the hinge-loss is zero; else, the hinge-loss is the
amount the LHS is less than the RHS.? Similarly, the hinge-loss of w* on a negative example a; is
max(0,14+a;-w*). Given a sequence of labeled examples A, define the total hinge-loss Lyinge(W*, A)
as the sum of hinge-losses of w* on all examples in A. We now get the following extended theorem.

Theorem 2 On any sequence of examples A = ay,ao, ..., the Perceptron algorithm makes at most
i (2197 + 2L (v, )

mistakes, where R = max; ||a;||.

Proof: As before, each update of the Perceptron algorithm increases ||w||? by at most R?, so if
the algorithm makes M mistakes, we have ||w]|[? < M R?.

What we can no longer say is that each update of the algorithm increases w - w* by at least 1.
Instead, on a positive example we are “increasing” w - w* by a; - w* (it could be negative), which
is at least 1 — Lpinge(W*,a;). Similarly, on a negative example we “increase” w - w* by —a; - w*,
which is also at least 1 — Lpinge(W*,a;). If we sum this up over all mistakes, we get that at the
end we have w - W* > M — Ljpge(W*, A), where we are using here the fact that hinge-loss is never
negative so summing over all of A is only larger than summing over the mistakes that w made.

Finally, we just do some algebra. Let L = Lpnge(W*, A). So we have:

wewr /W< jw|
(w-w)? < [Jwl]]?|w*||?
(M—L)* < MR|w*|?
M? —2ML+L? < MR?||w*|?
M —2L+ L*/M < R?||w*|?
M < RY|w*||*+2L—-L*/M < R*|w*||>+2L
as desired. m

1.5 Kernel functions

What if even the best w* has high hinge-loss? E.g., maybe instead of a linear separator decision
boundary, the boundary between important emails and unimportant emails looks more like a circle?

2This is called “hinge-loss” because as a function of a; - w* it looks like a hinge.



A neat idea for addressing situations like this is to use what are called kernel functions, or sometimes
the “kernel trick”. Here is the idea. Suppose you have a function K (called a “kernel”) over pairs
of data points such that for some (doesn’t even have to be known) function ¢ : R" — RY (where
perhaps N > n) we have K(a;,a;) = ¢(a;) - ¢(a;). In that case, if we can write the Perceptron
algorithm so that it only interacts with the data via dot products, and then replace every dot-
product with an invocation of K, then we can act as if we had performed the function ¢ explicitly
without having to actually compute ¢. For example, consider K (a;,a;) = (1 + a; - a;)%. It turns
out this corresponds to a mapping ¢ into a space of dimension N ~ n¢ (try doing it with d = 2),
and perhaps in this higher-dimensional space there is a w* such that the bound of Theorem 2 is
small. But the nice thing is we didn’t have to computationally perform the mapping ¢!

So, how can we view the Perceptron algorithm as only interacting with data via dot-products?
Notice that w is always a linear combination of data points, e.g., we might have w = a; + as — as.
So if we keep track of it this way, and need to predict on a new example ag, we can write w - ag =
aj -ag+ag-ag — as - ag. S0 if we just replace each of these dot-products with “K”, we are running
the algorithm as if we had explicitly performed the ¢ mapping. This is called “kernelizing” the
algorithm.



