
15-451/651: Design & Analysis of Algorithms October 26, 2015
Lecture #15 last changed: October 26, 2015

In this lecture we continue our discussion of LP duality.

1 Linear Programming Duality Recap

Consider the “primal” maximization LP. Solve for x to:

maximize cTx (1)
subject to Ax ≤ b

x ≥ 0,

The constraint x ≥ 0 is just short-hand for saying that the x variables are constrained to be
non-negative.1 Recall that the dual of this is: Solve for y to:

minimize yTb (2)

subject to yT A ≥ cT

y ≥ 0,

We defined the dual in order to get the best upper bound we could on the primal. And if you
take the dual of (2) to try to get the best lower bound on this LP, you’ll get (1). The dual of the
dual is the primal. The dual and the primal are best upper/lower bounds you can obtain as linear
combinations of the inputs.

The natural question is: maybe we can obtain better bounds if we combine the inequalities in more
complicated ways, not just using linear combinations. Or do we obtain optimal bounds using just
linear combinations? In fact, we get optimal bounds using just linear combinations, as the next
theorems show.

1.1 The Theorems

It is easy to show that the dual (2) provides an upper bound on the value of the primal (1):

Theorem 1 (Weak Duality) If x is a feasible solution to the primal LP (1) and y is a feasible
solution to the dual LP (2) then

cTx ≤ yTb.

Proof: This is just a sequence of trivial inequalities that follow from the LPs above:

cTx ≤ (yT A)x = yT (Ax) ≤ yT b.

�

The amazing (and deep) result here is to show that the dual actually gives a perfect upper bound
on the primal (assuming some mild conditions).

1We use the convention that vectors like c and x are column vectors. So cT is a row vector, and thus cT x is
the same as the inner product c · x =

P
i cixi. We often use cT x and c · x interchangeably. Also, a ≤ b means

component-wise inequality, i.e., ai ≤ bi for all i.

1



Theorem 2 (Strong Duality Theorem) Suppose the primal LP (1) is feasible (i.e., it has at
least one solution) and bounded (i.e., the optimal value is not ∞). Then the dual LP (2) is also
feasible and bounded. Moreover, if x∗ is the optimal primal solution, and y∗ is the optimal dual
solution, then

cTx∗ = (y∗)Tb.

In other words, the maximum of the primal equals the minimum of the dual.

2 Example #1: Zero-Sum Games

Consider a 2-player zero-sum game defined by an n-by-m payoff matrix R for the row player. That
is, if the row player plays row i and the column player plays column j then the row player gets
payoff Rij and the column player gets −Rij . To make this easier on ourselves (it will allow us to
simplify things a bit), let’s assume that all entries in R are positive (this is really without loss of
generality since as pre-processing one can always translate values by a constant and this will just
change the game’s value to the row player by that constant). We saw we could write this as an LP:

• Variables: v, p1, p2, . . . , pn.

• Maximize v,

• Subject to:

pi ≥ 0 for all rows i,∑
i pi = 1,∑
i piRij ≥ v, for all columns j.

To put this into the form of (1), we can replace
∑

j pj = 1 with
∑

i pi ≤ 1 since we said that all
entries in R are positive, so the maximum will occur with

∑
i pi = 1, and we can also safely add

in the constraint v ≥ 0. We can also rewrite the third set of constraints as v −
∑

i piRij ≤ 0. This
then gives us an LP in the form of (1) with

x =

v
p1

p2

. . .
pn

, c =

1
0
0

. . .
0

,b =

0
0

. . .
0
1

, and A =

1
1 −RT

. . .
1
0 1 . . . 1

.

I.e., maximizing cTx subject to Ax ≤ b and x ≥ 0.

We can now write the dual, following (2). Let yT = (y1, y2, . . . , ym+1). We now are asking to
minimize yTb subject to yT A ≥ cT and y ≥ 0. In other words, we want to:

• Minimize ym+1,

• Subject to:

y1 + . . . + ym ≥ 1,

−y1Ri1 − y2Ri2 − . . .− ymRim + ym+1 ≥ 0 for all rows i,

2



or equivalently,

y1Ri1 + y2Ri2 + . . . + ymRim ≤ ym+1 for all rows i.

So, we can interpret ym+1 as the value to the row player, and y1, . . . , ym as the randomized strategy
of the column player, and we want to find a randomized strategy for the column player that
minimizes ym+1 subject to the constraint that the row player gets at most ym+1 no matter what
row he plays. Now notice that we’ve only required y1 + . . . + ym ≥ 1, but since we’re minimizing
and the Rij ’s are positive, the minimum will happen at equality.

Notice that the fact that the maximum value of v in the primal is equal to the minimum value of
ym+1 in the dual follows from strong duality. Therefore, the minimax theorem is a corollary to the
strong duality theorem.

3 Example #1: Shortest Paths

Duality allows us to write problems in multiple ways, which gives us power and flexibility. For
instance, let us see two ways of writing the shortest s-t path problem, and why they are equal.

Here is an LP for computing an s-t shortest path with respect to the edge lengths `(u, v) ≥ 0:

max dt (3)
subject to ds = 0

dv − du ≤ `(u, v) ∀(u, v) ∈ E

The constaints are the natural ones: the shortest distance from s to s is zero. And if the s-u
distance is du, the s-v distance is at most du + `(u, v) — i.e., dv ≤ du + `(u, v). It’s like putting
strings of length `(u, v) between u, v and then trying to send t as far from s as possible—the farthest
you can send t from s is when the shortest s-t path becomes tight.

Here is another LP that also computes the s-t shortest path:

min
∑

e `(e) ye (4)
subject to

∑
w:(s,w)∈E ysw = 1∑

v:(v,t)∈E yvt = 1∑
v:(u,v)∈E yuv =

∑
v:(v,w)∈E yvw ∀w ∈ V \ {s, t}

ye ≥ 0.

In this one we’re sending one unit of flow from s to t, where the cost of sending a unit of flow on an
edge equals its length `e. Naturally the cheapest way to send this flow is along a shortest s-t path
length. So both the LPs should compute the same value. Let’s see how this follows from duality.

3



3.1 Duals of Each Other

Take the first LP. Since we’re setting ds to zero, we could hard-wire this fact into the LP. So we
could rewrite (3) as

max dt (5)
subject to dv − du ≤ `(u, v) ∀(u, v) ∈ E, s 6∈ {u, v}

dv ≤ `(s, v) ∀(s, v) ∈ E

−du ≤ `(u, s) ∀(u, s) ∈ E

Moreover, the distances are never negative for `(u, v) ≥ 0, so we can add in the constraint dv ≥ 0
for all v ∈ V .

How to find an upper bound on the value of this LP? The LP is in the standard form, so we can
do this mechanically. But let us do this from starting from the definition of the dual as the “best
upper bound”.

Let us define Eout
s := {(s, v) ∈ E}, Ein

s := {(u, s) ∈ E}, and Erest := E \ (Eout
s ∪ Ein

s ). For every
arc e = (u, v) we will have a variable ye ≥ 0. We want to get the best upper bound on dt by linear
combinations of the the constraints, so we should find a solution to∑

e∈Erest

yuv (dv − du) +
∑

e∈Eout
s

ysv dv −
∑

e∈Ein
s

yus du ≥ dt (6)

(this is like yT A ≥ c) and the objective function is to

minimize
∑

(u,v)∈E

yuv `(u, v). (7)

(This is like minyTb.) Great, the objective function (7) is exactly what we want, but what about
the craziness in (6)? Just collect all copies of each of the variables dv, and it now says

∑
v 6=s

dv

 ∑
u:(u,v)∈E

yuv −
∑

w:(v,w)∈E

yvw

 ≥ dt.

First, this must be an equality at optimality (since otherwise we could reduce the y values). More-
over, these equalities must hold regardless of the dv values, so this is really the same as∑

u:(u,v)∈E

yuv −
∑

w:(v,w)∈E

yvw = 0 ∀v 6∈ {s, t}. (8)

∑
u:(u,t)∈E

yut −
∑

w:(t,w)∈E

ytw = 1.

Summing all these inequalities for all nodes v ∈ V \ {s} gives us the missing equality:∑
w:(s,w)∈E

ysw −
∑

u:(u,s)∈E

yus = 1.

Finally, observe that since there’s flow conservation at all nodes, and the net unit flow leaving s
and reaching t, this means we must have a possibly-empty circulation (i.e., flow going around in
circles) plus one unit of s-t flow. Removing the circulation can only lower the objective function,
so at optimality we’re left with one unit of flow from s to t. This is precisely the LP (4), showing
that the dual of LP (3) is LP (4), after a small amount of algebra.

4


