A Hybrid Location Model with a Computable
Location Identifier for Ubiquitous Computing

Changhao Jiang® and Peter Steenkiste™*

TComputer Science Department
“Department of Electrical and Computer Engineering
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A.

{jiangch,prs}@cs.cmu.edu

Abstract. Location modeling and representation are crucial technolo-
gies for context-aware applications. In this paper, we present a novel
location model combining the virtues of both the hierarchical and coordi-
nate location models, and we introduce a computable location identifier,
namely Aura Location Identifier (ALI). We then describe how the Aura
space service uses this hybrid model to handle spatial queries for context-
aware applications. A simple example of such a query is a range query,
e.g. “select name from printer where distance(location, ‘ali://cmu/wean-
hall/floor3/8100-corridor#(10,10,0)’) <10”, where “location” is an at-
tribute representing the location of printers. Finally, we discuss how we
extended the PostgreSQL database system to provide direct support for
spatial SQL queries at the database level. These extensions improve per-
formance and increase flexibility for context-aware applications.

1 Introduction

Location information is a critical ingredient for context-aware applications for
mobile users, such as diverting phone calls to the receiver nearest to a user,
prefetching data to the service portal near the user’s path, locating interesting
objects/people, navigation, etc. As more context-aware applications are devel-
oped, researchers have started to realize that the modeling of the physical
environment and the representation of location are key enabling technologies
for ubiquitous computing.

The first issue is modeling of the physical environment. Numerous location
models [9,2,4] have been defined in different application domains. In general,
they can be categorized into two classes: hierarchical (or topological, descrip-
tive, symbolic) location models and coordinate (or metric, geometric) location
models. These two classes have complementary benefits and drawbacks. From the
perspective of context-aware applications, neither model is by itself completely
satisfactory.

The second issue is location representation. Most context-aware applications
adopt a a distributed collaborative service framework, that stores location mod-
eling data in a centralized data repository. Location-related queries issued by

2 Changhao Jiang, Peter Steenkiste

end-users and other services are handled by a dedicated location service. This
distributed service paradigm is attractive because of its scalability and modular-
ity. However, we need an effective and efficient location representation method
to make this work.

In this paper, we will present a novel hybrid location model that combines
the virtues of both the hierarchical and coordinate location models. It features
a computable location identifer, the Aura Location Identifier, for the purpose of
representing locations and enabling the exchange of location information between
distributed contextual services. The hybrid location model was designed to meet
the needs of establishing a space service in the Aura Project [6] for use by
campus-wide context-aware applications at Carnegie Mellon University. Some
example queries that must be supported are: “find the color printer nearest to
Joe’, “find all conference rooms on the 3rd floor of Wean Hall, with wireless
bandwidth above 2mbps”, “find all the people within Wean Hall’.

The remainder of this paper is organized as follows. In Section 2, we mo-
tivate the hybrid location model using the Aura pervasive computing project.
In Section 3, we argue that context-aware applications need a hybrid location
model. Section 4 proposes a computable location identifier, the Aura Location
Identifer, and we elaborate on how the hybrid location model supports the ALI
representation in Section 5. In Section 6, we present the design and implemen-
tation of Aura’s space service. Section 7 explains our integration of the hybrid
location model into the PostgreSQL database system. In Sections 8 and 9, we
review related work and summarize our paper.

2 Aura Project and Space Service

The Aura Project [6] at Carnegie Mellon University is a ubiquitous computing
project that focuses on minimizing the distractions to users. The motivation is
that human attention is a precious resource that does not benefit from Moore’s
law so we trade computer resource that do benefit from Moore’s law for people’s
time and attention. Aura is specifically intended for ubiquitous computing en-
vironments involving wireless communication, wearable or handheld computers,
and smart spaces. Human attention is an especially scarce resource in such envi-
ronments, since the user is often preoccupied with walking, driving or other real-
world interactions. In addition, this environment has many challenges, including
the use of hand-held devices with limited network capabilities and battery power,
and the presence of diverse and possibly unfamiliar physical spaces.

Automatic adaptation of the computing environment (including applications,
networks, operating systems, and middleware services) to the user’s context is
one of the key techniques used in Aura. For example, if the user experiences
poor network performance, Aura should be able to switch to a different network
technology if one is available in that space. If the adaptation is successful, this
eliminates the need for user intervention. We also want the system to be proactive
in identifying ways of helping the user. For example, if the user is trying to view

Submitted to Ubicomp 2002 3

. NetSeg Attached
Devices <— s“&g"%%ﬁ
Device Device
Owners/_Carrig|

People

Pe(\)ple\

Location

Space

Fig. 1. A set of Aura contextual services for context-aware applications

a high resolution image on a hand-held device, Aura should be able to point out
that there is a large wall-mounted display around the corner.

Automatic adaptation requires that the Aura system needs detailed informa-
tion about the user’s context. For this purpose, we developed the Aura contex-
tual information services [8] (Figure 1). The CSI (Contextual Services Interface)
infrastructure can provide information about the primary entities in the user’s
context: people, devices, physical spaces, and networks. It also provides infor-
mation about relationships between these entities. For example, people-location
services [11, 1] provide information on the relation between people and physical
space. Note that some information maintained by the CSI is primarily static (e.g.
basic information about devices and people) while some information is dynamic
(e.g. the people-location relationship).

The API for the contextual services allows users to retrieve information stored
or collected by the services using SQL-like queries. For example, a query to the
device-space service could request all “printers” that match “Type=color” and
“Space=Wean_Hall_8th_Floor”.

The space service and the space relationship services (e.g. people-location)
play a critical role in this architecture and they are the focus of this paper. We can
identify two requirements. First, different services and applications have to be
able to exchange location information. For example, the people-location service
must return location information in a format that can then be used to query
other services (e.g. to find a nearby printer using the device-location service).
Second, we must devise efficient scalable implementations of the space-related
services so that these common queries can be handled quickly.

3 Hybrid Location Model

One important issue for space services and more broadly for context-aware ap-
plications, is that they must model the physical environment through an appro-
priate location model. As we mentioned earlier, the prevailing location models
fall into two groups: hierarchical and coordinate [5] models. In this section, we
argue that neither model by itself is satisfactory for context-aware applications
and a hybrid location model combining the benefits of both models is needed.

4 Changhao Jiang, Peter Steenkiste

Hierarchical location models decompose the physical environment in different
levels of precision, and normally feature a self-descriptive location representation.
A typical example of a hierarchical location model is the postal address, e.g.
U.S.A., Pennsylvania, Pittsburgh, Carnegie Mellon University, Wean Hall, 3rd
floor, Room 3515. Coordinate location models superimpose a grid on the physical
environment thus providing a coordinate system that can be used to represent
locations uniquely and accurately using a tuple of numbers. A typical example
of a coordinate location model is the GPS coordinate system, in which locations
are defined by (longitude, latitude, altitude).

Both classes of location models have advantages and disadvantages with re-
spect to the needs of context-aware applications. The hierarchical location model
is good for its implicit representation of spatial relationships, such as contain-
ment, closeness, and it has the virtue of human readability. It also handles some
location queries very efficiently, For example, the query “find the people who
live on Forbes Avenue’ is satisfied by people whose address prefix is “Forbes
Avenue’. The biggest disadvantages of the hierarchical location model are its
lack of position precision and the fact that it is difficult or inefficient to compute
distances. The flaws of hierarchical location model embody the benefits of the
coordinate location model. With built-in geometric attributes, coordinate loca-
tion models are well suited for specifying locations precisely and for computing
distance accurately. However, the coordinate location model hides hierarchical
relationships. Hence, it needs additional specifications to deduce spatial relation-
ships.

We propose a hybrid location model for context-aware applications that com-
bines the benefits from both sides. The starting point for the hybrid model is
the hierarchical location model: we view the world as a hierarchy of spaces and
each level further refines and subdivides the spaces of the previous level. We
bring in the coordinate model by allowing each space in the hierarchy to define a
coordinate system that can be used to define points or areas within that space.
Different spaces may use different coordinate systems, as we describe later. The
coordinates allow us to define points or areas for which there is no name in the
hierarchical name system. For example, we can identify the location of a camera
in a room by concatenating hierarchical name of the room with the coordinates
of the camera in the room. Similarly, we can describe the coverage area of a
cell in a wireless network (which in general does not line up with rooms) using
coordinates in the building or floor.

In the remainder of this paper we describe how we can use the hybrid location
model as a basis to name locations and areas (Section 4) and to build contextual
services that resolve space-related queries efficiently (Section 5 through 7).

4 Aura Location Identifier

The Aura Location Identifier is used to represent locations based on the hybrid
location model. We first review the type of information we need to represent,
and we then introduce the ALI representation.

Submitted to Ubicomp 2002 5

4.1 Types of Location

Based on the requirements of context-aware applications, we identify three types
of location information that we must be able to represent:

— Space location is a physical space entity, e.g. “room 3115 of 3rd floor of
Wean Hall at CMU”.

— Area location is a space not physically demarcated, but virtually defined by
applications, e.g. “the area covered by a particular wireless access point”.

— Point location is a position of mobile user or object. Usually, we are not
interested in the shape and extension of that user or object, but just in its
position, e.g. “the location of printer ‘slate” .

The ALI space type is composed of only a hierarchical name, while the two
other ALI types append explicit geometric information to a hierarchical name.
We present examples of all three types of ALI in Section 4.3.

4.2 Syntax of Aura Location Identifier

The Aura Location Identifier uses a formatted string representation complying
with the generic syntax of a Universal Resource Identifier [3]. Here is the Barcus-
Naur Form (BNF) notation for the Aura Location Identifier:

<ALI> = [ali://] <Path> ["#" <Position>]

<Position> ::= <Pt-3D> | <Area> ["-" <Height>]

<Path> ::= <Space> {"/" <Space>}

<Area> = "{" <Pt-2D> "," <Pt-2D> "," <Pt-2D> {"," <Pt-2D>} "}"
<Height> = "(" <Float> "," <Float> ")"

<Pt-3D> ::= "(" <Float> "," <Float> "," <Float> ")"

<Pt-2D> ::= "(" <Float> "," <Float> ")"

<Space> ::= <Char> {<Char>}

<Float> ze= ["+" | "-"] <Digit> {<Digit>} ["." <Digit> {<Digit>}]
<Char> ::= <Alphanum> | "-" | "_"

<Alphanum> ::= <Alpha> | <Digit>

<Alpha> zi= "a b et rd" e [ME | g ["Rt Ay kL]

llmll | llnll | lloll | llpll | llqll | llrll | llsll | lltll | llull | llvll | llwll | llxll | llyll | llzll | llAll |
PR NG| MDY [NE" [MEN G| H [T T K| LM N Ot | P |
"R ["RM ST Y Y W X Yz

<Digit> ci= MQU AN QN NN ngn [ngn | ngn | n7n | ngn g

4.3 ALI Examples
Here are examples of three types of ALI according to the above BNF notation:

— Space Identifier: “ali://cmu/wean-hall/floor3/3100-corridor/3115”
This identifier represents room 3115 on 3rd floor of Wean Hall at CMU. Its
geometric attributes are stored in a centralized location data repository.

6 Changhao Jiang, Peter Steenkiste

Fig. 2. “ali://cmu/weanhall/floor8#{(1,0),(-1.5,0.5),(0,3),(2,3.5),(3,1.5)-(1,5)}”
represents an area within the 3rd floor of Wean Hall.

— Area Identifer: “ali://cmu/wean-hall/floor3#{(1,0),(-1.5,0.5),(0,3),(2,3.5)
?(3’1'5)_(1’5)}”
This identifier represents an area on the 3rd floor of Wean Hall at CMU. The
series of points after the ‘#’ token specify a closed polygon in planes par-
allel to the X-Y plane of the 3rd floor’s space coordinate system (Figure 2).
“(1,5)” specifies the height range of the area (see Section 5.2 for details).

— Point Identifier: “ali://cmu/wean-hall/floor3/3700-corridor/3718#(10,4,1)"
This identifier represents the point (10,4,1) within room 8718. The coordi-
nates are relative to room 3718’s space coordinate system.

4.4 Operators on ALI

A feature of the ALI that distinguishes it from other location representation
schemes, is that, combined with a set of operators, the ALI can be viewed as an
abstract data type. The benefit is that this provides options for implementing it
at different levels of the system, such as the database level, the service level, and
the programming language level. For example, we could define an “ALI” class in
a object-oriented programming language to realize programming language-level
support. As we will see later, we can also define ALI as a user-defined data type
in an extended SQL standard to realize database-level support. These options
provide flexibility in the context-aware application’s design and implementation.
It can also provide performance improvements, as we will see in Section 7 for
the case of implementing ALI at the database level.

The following are some operators on ALIs that are of interest in ubiquitous
computing environments:

— distance(ali, ali) returns float
compute the distance between two locations.

Submitted to Ubicomp 2002 7

Fig. 3. Hierarchical Space Tree

— contains(ali, ali) returns boolean
tell whether one location contains another.
— within(ali,ali) returns boolean
tell whether one location is within another.
— super(ali) returns ali
get direct super space containing the location
— sub(ali) returns list of ali
get list of spaces which are direct sub space of input parameter

5 Realizing the Hybrid Location Model

The ALI bases its expressive power and computability on the hybrid location
model. In this section, we describe the hybrid location model in more detail and
we elaborate on how it can be used to realize the above ALI operations.

5.1 Hierarchical Aspect of the Hybrid Location Model

The hierarchical aspect of the hybrid location model means that the physical en-
vironment is decomposed into different levels of spaces. For example, the campus
of Carnegie Mellon University is decomposed into several sub-spaces: Wean hall,
Smith Hall, Posner Hall, etc. Each of these halls is divided into smaller com-
posing sub-spaces, until we reach enough precision. Such a hierarchy is called a
space tree. Each node in the space tree corresponds to an actual space in the
physical environment, and the parent-child link in the tree implies a super/sub
space relationships between two spaces. Based on the space tree, it is easy to
resolve queries about the containment relationship between two physical spaces.

Figure 3 illustrates part of the space tree for Carnegie Mellon University.
It is up to the location service (or space service) designer to decide how to

8 Changhao Jiang, Peter Steenkiste

Ultrasound

Sub spage

X

Fig. 4. Each space has its own space coordinate system, defined by specifying the origin

point and three azes of “x”, “y” and “z”

decompose the physical environment. The location service needs to maintain a
tree style data structure for the space tree and must handle queries about spatial
relationships based on this data structure.

All types of ALIs described in Section 4.3 corresponds to nodes in space
tree, e.g. “ali://cmu/wean-hall/floor3/3100-corridor/3115" could correspond to
a leaf node. The ALI is formatted by joining the names of nodes on the path
from that corresponding node to the root.

5.2 Coordinate Aspect of the Hybrid Location Model

In order to compute the geometric relations such as distance, containment, and
intersection between locations, they need to possess geometric attributes, such
as shapes and point coordinates, in a well-defined coordinate system. Most co-
ordinate location models use a global reference coordinate system, such as GPS
coordinate system. Within a global coordinate system, locations can be uniquely
specified, thus making distance computation easier. However, in many cases, it
is useful to support coordinates relative to a local reference system rather than
to a global system. An important example is indoor spaces where GPS does not
work well and a local coordinate system is more convenient. Another example is
the coordinate system used by local sensing devices (e.g. badges).

For these reasons, the hybrid location model allows each space in the space
tree to have its own coordinate system, named the space coordinate system.

Figure 4 shows an example of a space coordinate system in a physical envi-
ronment. In the figure, we see two rooms, one containing the other. The bigger
room is the super space of the smaller one. Both rooms have their own space
coordinate system. The position of the computer in the smaller room can be

Submitted to Ubicomp 2002 9

N
\\
.

\ N
\ L\
\

Fig. 5. Super Space Coordinate and Sub Coordinate System

expressed in coordinates of either the super space’s coordinate system or the
sub space’s coordinate system. Coordination translation can be used to have the
disparate coordinate system interoperate.

In order to translate coordinates between coordinate systems, the hybrid
location model must define the position of the sub space’s space coordinate sys-
tem within the super space’s space coordinate system. To translate coordinates
between spaces with no direct super/sub relationship, we must find the path
between the two spaces in the space tree (see Section 5.1) and translate along
the path, since the composing links imply super/sub relations.

The position of a sub space’s space coordinate system is defined by specifying
its origin point and axes within the super space’s coordinate system. The
origin point is specified by a displacement vector, from the super space’s origin
to the sub space’s origin (vector OO" in Figure 5). The three axes are specified
by three unit vectors, respectively corresponding to the “x”, “y”, “z” axes of the
sub space coordinate system (vector OX" W ,W in Figure 5). The three
vectors are expressed in the form of a matrix, called the rotation matriz with
each row recording an axis vector.

V =00 =[00,,00,,00]

OX;I OXII OXII OXII

T Yy z

Rppatriz = | OY" | = | OYY OV OV
07" o0z! 0z 0z

Given the position of the sub space’s coordination system within the super
space’s coordinate system, we can use simple linear algebra to translate coordi-
nates between them. Here are the translation formulas:

10 Changhao Jiang, Peter Steenkiste

super

a

Fig. 6. Coordinate translation between super space and sub space

In Figure 6, if Wsub = [z0,y0, 20], and O?supe,, = [z1,y1, z1] then:
—
Ojsuper = (ﬁsub * Ryatriz + 00’
—
O'Poup = (0P guper — 00') - R

matric

5.3 Integration of the Hybrid Location Model

So far we have discussed the hierarchical and coordinate aspects of the hybrid
location model. We need to integrate these two aspects into a seamless system to
realize the hybrid location model. This is achieved by adding geometric attributes
to the nodes in the space tree. The resulting tree is called the geometric space
tree (Figure 7).

The following geometric attributes are embedded into the space tree nodes:

— Shape indicates the geometric shape of the space, such as cube, cylinder,
cube, etc.

— Extension, combined with Shape attribute, specifies the volume/area cov-

ered by the space.

Origin is the origin point for the space coordinate system of the current

space relative to the parent’s coordinate system.

— Rotation Matrix which, as described in the previous section, specifies the
directions of three axes of the space coordinate system of the current space
relative to the parent’s coordinate system.

The above four attributes are necessary for computing distance and spatial
relationship. However the set of geometric attributes in the geometric space tree
is extensible. For example, if you want to improve the performance, you can store
some redundant information, such as the centroid, to accelerate the calculation
of distance between spaces. You can also store additional information, such as
an owner field to store the owner of the space, etc.

Submitted to Ubicomp 2002 11

/ \ \\\ \\’r Shape
N | E i
7 s @

Rotation

Fig. 7. Geometric space tree

5.4 ALI Operator Implementation

We briefly discuss how to realize the ALI operators of Section 4.4 using a geomet-
ric space tree. The basic step for the ALI operator implementation is coordinate
translation, as described in Section 5.2. Theoretically, if we could turn all geomet-
ric attributes into a universal reference coordinate system, the implementation
of every proposed operator in Section 4.4 becomes a trivial Euclidean Geometry
problem. For brevity, we only describe the algorithm for the distance operator.
Other operator implementations are similar:

distance(ali, ali) returns float compute the distance between two locations

1. if the two input locations are in the same space coordinate system, return
the Euclidean distance between them directly, otherwise go to step (2)

2. find the common super space for the two locations, and translate the coordi-
nates of both locations into new coordinates in the space coordinate system
of the common super space.

3. return the Euclidean distance between the coordinates of the input locations
in the shared space coordinate system.

6 A Space Service based on the Hybrid Location Model

In this section, we describe how the Aura space service is implemented using the
hybrid location model and ALI representation.

6.1 Space Service for Aura

A Space Service provides information about the physical environment and about
the spatial relationship between locations. Figure 8 illustrates how a context-
aware application may use contextual information services [8] to locate the near-
est color printer. It first asks the People Location Service for the current location

12 Changhao Jiang, Peter Steenkiste

HWHW g
o
=1

)

1)

Device

) =

J

(€)

i€
Q
[w]
D

Fig. 8. A context-aware application uses the contextual information services to locate
the nearest color printer.

of the user and it retrieves the locations and names of all available color print-
ers from the Device Service. It then queries the Space Service for the distances
between all the printers and the user. Finally the nearest printer is identified as
the one with the smallest distance.

Besides distance, the Space Service also answers queries about contain-
ment, the within relationship between locations, the super and sub spaces of
a location, etc.

6.2 Space Service Implementation

In order for the Space Service to handle queries of spatial relations between
locations, it needs to (1) model the relevant physical environment, (2) use a
common location representing scheme with clients and other services. These two
issues are directly addressed by the previously introduced hybrid location model
and the Aura Location Identifier.

The Aura Space Service adopts the hybrid location model to model the phys-
ical environment. The model can either be implemented by building and main-
taining a custom data structure representing the Geometric Space Tree, or by
using a database to store the Geometric Space Tree. We use the latter approach
for simplicity and easier extensibility. Note that using a custom data structure
for the Geometric Space Tree may offer some advantages, such as more effient
access. Table 1 shows the definition of the relations in the PostgreSQL [13,10]
database for the geometric space tree. Most of the attributes were explained in
Section 5.3. In our current implementation, we eliminated the Shape attribute
and we assume all spaces are in the shape of a polygon box, similar to ALIs
of type Area (e.g. Figure 2. This explains the Height geometric attribute in the
relation. To support spatial areas, we introduced the new datatype polygon. The
ali field is a character string representing the space ALI for the node. Super-sub
spatial relationships are implicitly expressed in it. The name field is for the real

Submitted to Ubicomp 2002 13

Table 1. Relation definition for the geometric space tree in PostgreSQL database

Geometric Attributes||{Colomn Name|Column Type
NA ali varchar
NA name varchar
NA type enum
Extension extent polygon
Height height double
Centroid CX, Cy, CZ double
Origin dx , dy, dz double
m00, m01, m02
Rotation Matrix ml10, m11, m12 double
m20, m21, m22

name of the space. The type attribute describes the use of the space; it is an
enumeration of conference room, teaching room, office, corridor, building, etc.

As shown in Table 1, an extended geometric space tree (with additional at-
tributes as name, type) of hybrid location model is implemented by a relation
in the database system. Based on this relation, all proposed ALI operators were
implemented usnig simple database queries. The operators are rich enough to
support the targeted context-applications such as those mentioned in Section 1.
At the time of the writing of this paper, we are working on constructing some
concrete context-aware applications with this space service and other contextual
services (e.g. the Jane and Fred scenarios described in [6]). These applications
will be used to evaluate both the choice of operators and performance of the
Aura Space Service.

6.3 Populating the Space Service

The information for the Aura Space Service was obtained by extracting hierar-
chical and coordinate location data from floor plan files of subset of the buildings
on the CMU campus. These files use AutoCAD’s “.dwg” format. The first major
service (other than the space service) to use the ALI representation is the Aura
“people-location” service. It tracks the location of users using the 802.11 wireless
network interface on their PDA or laptop. The people-location service is a based
on signal triangulation [11]. In the initial version of hybrid location model, we
do not support location attributes such as orientation, velocity, and precision.
We hope to add these in the next version of the hybrid location model since they
are important for some context-aware applications.

14 Changhao Jiang, Peter Steenkiste

Table 2. ALI functions and their operators

Functions Operators
distance(ali,ali) <->
within(ali,ali) <<
contains(ali,ali) >>
nearest(tab.col,tab.col) ##
isSuper(ali,ali) =>
isSub(ali,ali) <=

7 Embedding the Hybrid Location Model into Database
System

In the previous section we described how the hybrid location model can be
implemented using a database. However, while the service API was based on the
the ALI representation, the database used only primitive datatypes. We will call
this a service-level implementation of the model. In this section we explore an
alternative implementation in which the ALI datatype is directly supported by
the database itself. We will call this a database-level implementation.

7.1 Extension to PostgreSQL

In the previous section, the space service was implemented at the service level
and the database did not directly support the ALI representation. As a result,
queries about spatial relationships often have to be broken down into a sequence
of service queries, thus making it impossible to fully exploit the power of the
database system. For example, suppose an application wants to implement the
query “find all printers on the 3rd floor of Wean Hall’. With a service-level
implementation of the space service, it would typically use a two-phase execu-
tion: (1) query the device service to get a list of all the printers with name
and location attributes through “select name, location from printer”, and (2)
for each printer in the list, test whether it is on the 3rd floor of Wean Hall
through a series of “select containment from space where locationl="‘zxx’ and
location2="‘ali://cmu/wean-hall/floor3” queries. If the containment attribute
returns yes, then add the name of printer to the result list. In the database-
level service implementation, the ALI representation is directly supported by
the database, making it possible to have more complex queries handled by the
database system itself. In the case of our example, with a database-level im-
plementation, the query can be done in just one SQL query, “select name from
printer where within(location, ‘ali://cmu/wean-hall/floors’)”.

We embed the hybrid location model into the open source object-relational
database system PostgreSQL [10] by using its support of user-defined data types
and operators in SQL queries [12]. This integration involved three steps:

Submitted to Ubicomp 2002 15

— Create a table in PostgreSQL’s system catalog to store the geometric space
tree (Table 1).

The table with environmental location data serves as meta-data to model the
physical environment of interest. ALI related operators are implemented by
traversing the hierarchical geometric tree in the table.

— Define ALI as a user-defined data type.

The PostgreSQL database system allows users to create user-defined datatypes
that can be used directly in SQL sentences. The creation of the ALI type is
done using the SQL command “CREATE TYPE”.

— Realize user-defined functions for ALI, i.e. distance, contains, within,
super and sub, and assign user-defined operators for these functions (Ta-
ble 2).

The PostgreSQL database system also allows user to define user-defined
functions and operators. This is done using the SQL commands “CREATE
FUNCTION” and “CREATE OPERATOR”.

Based on the above extensions to PostgreSQL, the database system can di-
rectly handle certain spatial queries in SQL sentences. Therefore, complicated
contextual information queries can often be handled directly by the underlying
database system. Here are two examples to show the power of having database
support for spatial queries.

— “SELECT p.name FROM printer p WHERE (p.location <=> ali://cmu/wean-
hall/floor3/3700-corridor’) < 10"

This is a range query to find all the printers within 10 meters of the 3700
corridor.

— “SELECT u.name, p.name FROM (SELECT name, office AS ali FROM
staff WHERE category="facility’) AS u, (SELECT name, location AS ali
FROM print WHERE status=’error’) AS p WHERE (u.ali <-> p.ali) =
(SELECT (u.ali ## p.ali))”

This query tries to find the computing facility staff who is nearest to any of
broken printers.

7.2 Benefits and Limitations of Contextual Spatial Databases

There are two major benefits to having database-level support for spatial queries:
performance and flexibility.

Database-level support for spatial queries can improve performance in two
ways: (1) the tight integration of data storage and service execution logic can
reduce unnecessary transport overhead between them, and (2) most database
systems have excellent built-in query optimizer, that can dramatically improve
the performance of the sophisticated query processing.

In Figure 9, we show a performance comparison between database-level and
service-level implementations of ALI. The two graphs plot the query execution
time versus the queried table size. These experiments are all done on a PC with
configuration shown in Table 3. The service-level ALI is implemented using Java

16 Changhao Jiang, Peter Steenkiste

Nearest Query With/Without Query Optimizer

T T = T T

“database_level' —i— “database_level' ——

"service_level’ - - “service_level" -x---
X

x

<'X'4

time(sec)

table size table size

(a) (b)

Fig. 9. Performance comparison between (a) service-level and (b) database-level imple-
mentations of ALI

Table 3. PC Configuration for Performance Test

1 CPU |Pentium 4 1.50GHz
Memory 256M
Cache 256 KB
0OS Linux 2.4.17
PostgreSQL 7.2
JDK J2SE 1.4.0-Beta3
Perl v5.6.0

J2SE 1.4.0-Beta3. the database-level ALI was implemented on PostgreSQL 7.2
using Perl v5.6.0 as described above.

Figure 9(a) shows the execution time for the query “find the nearest printer
in a table to location A” for our service-level and database-level implementations.
We see that due to the tight integration of data storage and execution logic, the
database-level implementation of ALI consumes proportionally less time than
service-level implementation. The query for Figure 9(b) is to “find the printer
within 3rd floor of Wean Hall, whose job queue has less than 3 jobs”. Again,
we see that the query optimizer in the database system helps to reduce the
consumed time.

The second benefit of having database-level support for ALI is flexibility.
The standardized query interface language SQL has been regularly extended
from original SQL to SQL3 to accommodate more sophisticated queries. If we
can express spatial queries directly on top of the database system, we will be able
to take advantage of SQL to express more flexible queries, such as the second
example query in Section 7.1.

Though the contextual spatial database offers some intriguing benefits for
context-aware applications, there are some constraints limiting its universal ap-

0 L L L L L L L L 0 L L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000

Submitted to Ubicomp 2002 17

plicability. For example, in the Aura Project’s contextual information services,
there are several services maintaining highly dynamic attributes, which cannot
be directly stored in a database system. These dynamic attributes include “peo-
ple’s location”, “available bandwidth”, etc. This information has to be provided
by custom services that cannot be integrated as described in this section (see [8]
for more details).

8 Related Work

Context-aware applications or more narrowly location-aware applications de-
pend on efficient location modeling and representation technologies. Many lo-
cation models have emerged in different application domains. Most of these
models are either dealing with very large scale spaces, e.g. geographic loca-
tion modeling, or with very small scale, e.g. single room indoor location models.
Context-aware applications in the ubiquitous and mobile computing field need
something in between. Some earlier location models have directly addressed the
needs context-aware applications. NEXUS [2, 7] and Semantic Spaces [4] are two
good representatives.

NEXUS aims at providing a universal platform for all location-aware appli-
cations, which involves two major issues, modeling the world and representing
locations. NEXUS introduces two XML-based languages, AWML and AWQL
respectively, to address these issues. Distributed spatial model servers collabo-
rate to provide a unified spatial view through some well-devised interfaces to
applications. NEXUS is able to describe locations at different levels of preci-
sion, which is similar to ALI’s hierarchical aspect. This model, to some extent,
has a philosophy similar to ALI, since it provides a spatial query service based
on a centralized data repository. However, NEXUS’s solution is relatively more
heavy-weighted than the ALI approach because the ALI representation is only
concerned about a particular physical environment, such as a campus, while
NEXUS worries about a global scale unified service platform.

Semantic Spaces from Microsoft Research is an example of a hierarchical
location model, which decomposes the physical environment into a hierarchy of
spaces. The locations of moving users or devices are correlated to actual physical
spaces, thus it is capable of answering “containment” queries. However, because
of its inherent lack of metric attributes and precision, it is unable to compute
distance accurately, and represent location precisely, which are requirements for
some ubiquitous computing applications.

9 Conclusion

The modeling of physical environment and representation of locations are key
technologies for context-aware applications. This paper presents a hybrid loca-
tion model using a computable location identifier to meet these needs. The hybrid
model integrates the hierarchical and coordinate approaches for representing lo-
cation. Our experience in building the Aura space service on top of the location

18 Changhao Jiang, Peter Steenkiste

model shows its viability for context-aware applications. Leveraging ALI’s dis-
tinguishing feature of computability, spatial query support at the database level
was realized by adding ALI as a user-defined datatype to PostgreSQL. Database
support for spatial queries improves the efficiency and flexibility of complex user
queries involving fairly static attributes.

10 Acknowledgement

This research was sponsored in part by the Defense Advanced Research Project
Agency and monitored by AFRL/IFGA, Rome NY 13441-4505, under contract
F30602-99-1-0518. Additional support was provided by Intel. We would like to
thank Glenn Judd for providing the underlying Contextual Service Framework
and for his many insightful suggestions and comments.

References

1. BaHL, P., AND PADMANABHAN, V. N. Radar: An in-building rf-based user location
and tracking system. In Proc. IEEE Infocom (Tel Aviv, Israel, March 2000).

2. BAUER, M., BECKER, C., AND ROTHERMEL, K. Location models from the per-
spective of context-aware applications and mobile ad hoc networks. In Workshop
on Location Modeling for Ubiquitous Computing (2001).

3. Universal Resource Identifiers (URI): Generic Syntax, August 1998.

4. BRUMITT, B., AND SHAFER, S. Topological world modeling using semantic spaces.
In Workshop on Location Modeling for Ubiquitous Computing (2001).

5. DOMNITCHEVA, S. Location modeling: State of the art and challegnes. In Workshop
on Location Modeling for Ubiquitous Computing (2001).

6. GARLAN, D., SIEWIOREK, D., SMAILAGIC, A., AND STEENKISTE, P. Project Aura:
Towards Distraction-Free Pervasive Computing. IEEE Pervasive Computing 1, 2
(April-June 2002), 22-31.

7. HouL, F., U.KUBACH, A.LEONHARDI, ROTHERMEL, K., AND SCHWEHM, M.
Nexus - an open global infrastructure for spatial-aware applications. In Proceedings
of MobiCom (Seattle, USA, 1999).

8. JupD, G., AND STEENKISTE, P. Providing Contextual Information to Ubiqui-
tous Computing Applications. Technical Report CMU-CS-02-154, Department of
Computer Science, Carnegie Mellon University, July 2002.

9. O’ConNELL, T., JENSEN, P., DEY, A., AND ABowD, G. Location in the aware
home. In Workshop on Location Modeling for Ubiquitous Computing (2001).

10. Postgresql. Software available from http://www.postgresql.org.

11. SMAILAGIC, A., AND KOGAN, D. Location Sensing in a Context Aware Computing
Environment. IEEE Wireless Communications 9, 3 (June 2002).

12. STONEBRAKER, M. Inclusion of new types in relational data base systems. In
Proceedings of the International Conference on Data Engineering, (Los Angeles,
CA, feb 1986), vol. IEEE Computer Society Order Number 655, IEEE Computer
Society Press, pp. 262-269.

13. STONEBRAKER, M., AND KEMNITS, G. The postgres next-generation database
management system. In Communications of the ACM (Oct 1991), vol. 34, pp. 78—
92.

