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Abstract

This paper addresses the problem of approx-
imate singular value decomposition of large
dense matrices that arises naturally in many
machine learning applications. We discuss
two recently introduced sampling-based spec-
tral decomposition techniques: the Nystrom
and the Column-sampling methods. We
present a theoretical comparison between the
two methods and provide novel insights re-
garding their suitability for various applica-
tions. We then provide experimental results
motivated by this theory. Finally, we pro-
pose an efficient adaptive sampling technique
to select informative columns from the origi-
nal matrix. This novel technique outperforms
standard sampling methods on a variety of
datasets.

1. Introduction

Several common methods in machine learning, such
as spectral clustering (Ng et al., 2001) and manifold
learning (de Silva & Tenenbaum, 2003), require the
computation of singular values and singular vectors
of symmetric positive semi-definite (SPSD) matrices.
Similarly, kernel-based methods can be sped up by us-
ing low-rank approximations of SPSD kernel matri-
ces, which can be achieved via spectral decomposi-
tion (Williams & Seeger, 2000; Zhang et al., 2008).
The computational complexity of Singular Value De-
composition (SVD) of n x n SPSD matrices is O(n?),
which presents a major challenge in large-scale applica-
tions. Large-scale data sets have been used in several
recent studies (Platt, 2004; Chang et al., 2008; Tal-
walkar et al., 2008). The size of such datasets can be
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in the order of millions and the O(n3) complexity is
infeasible at this scale.

Many of the aforementioned applications require only
some of the top or bottom singular values and singular
vectors. If the input matrix is sparse, one can use effi-
cient iterative methods, e.g., Jacobi or Arnoldi. How-
ever, for large dense matrices that arise naturally in
many applications, e.g., manifold learning and kernel
methods, iterative techniques are also quite expensive.
In fact, for many real-world problems, even storing the
full dense matrix becomes infeasible. For example, an
input set containing 1 million points requires storage

of a 4 TB SPSD matrix.

Sampling-based methods provide a powerful alterna-
tive for approximate spectral decomposition. They
operate on a small part of the original matrix and
often eliminate the need for storing the full matrix.
In the last decade, two sampling-based approxima-
tion techniques have been introduced (Frieze et al.,
1998; Williams & Seeger, 2000; Drineas & Mahoney,
2005). However, their similarities and relative advan-
tages have not been well studied. Also, there exist
no clear guidelines on which method to use for spe-
cific applications. This work introduces a theoretical
framework to compare these methods and provides the
first exhaustive empirical comparison on a variety of
datasets. The analysis and subsequent experiments
reveal the counter-intuitive behavior of these methods
for different tasks.

Another important component of sampling-based ap-
proximations is the sampling strategy used to select
informative columns of the original matrix. Among
the techniques that sample columns according to some
fixed distribution, uniform sampling has been shown to
be quite effective in practice (Williams & Seeger, 2000;
de Silva & Tenenbaum, 2003; Kumar et al., 2009),
and a bound on approximation error has also been de-
rived (Kumar et al., 2009). As an improvement over
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the fixed-distribution techniques, an adaptive, error-
driven sampling technique with better theoretical ap-
proximation accuracy was recently introduced (Desh-
pande et al., 2006). However, this technique requires
the full matrix to be available at each step, and is thus
infeasible for large matrices. In the second part of this
work, we propose a simple and efficient algorithm for
adaptive sampling that uses only a small submatrix
at each step. In comparison to non-adaptive sampling
techniques, we show that the proposed adaptive sam-
pling can provide more accurate low-rank approxima-
tion, particularly for higher ranks.

2. Approximate spectral decomposition

Two different sampling-based methods, i.e., Nystrom
and Column-sampling, have recently been introduced
for spectral decomposition of large matrices using sub-
sets of their columns. Let G be an SPSD matrix of
size n x n with spectral decomposition G = UgXcU/,
where Y contains the singular values of G and Ug
the associated singular vectors. Suppose we randomly
sample [ < n columns of G uniformly without replace-
ment.! Let C be the n x [ matrix of these sampled
columns, and W be the [ x [ matrix consisting of the
intersection of these | columns with the corresponding
I rows of G. Since G is SPSD, W is also SPSD. With-
out loss of generality, we can rearrange the columns
and rows of G such that:

W Gy, w
= d = . 1
¢ { Ga1 Gao ] and ¢ [ G2 ] (1)

The approximation techniques discussed next use the
SVD of W and C to generate approximations of Ug
and Yg.

2.1. Nystrom method

The Nystrom method was presented in (Williams &
Seeger, 2000) to speed up kernel machines and has
been used in applications ranging from manifold learn-
ing to image segmentation (Platt, 2004; Fowlkes et al.,
2004; Talwalkar et al., 2008). The Nystrom method
uses W and C from (1) to approximate G as:

GrG=CWlCT. (2)

If W is not invertible, its pseudoinverse can be used
(Drineas & Mahoney, 2005). If W = U,X%,U,[, the
approximate singular values and singular vectors of G
are (Williams & Seeger, 2000):

n l 3
s = (7)Bu and Unys = \/;CUwa e

!Other sampling schemes are possible (see Section 4).

If £ < I singular values and singular vectors are needed,
the run time of this algorithm is O(I*+nlk): I? for SVD
on W and nlk for multiplication with C.

2.2. Column-sampling method

The Column-sampling method was introduced to ap-
proximate the SVD of any rectangular matrix (Frieze
et al., 1998). It approximates the spectral decom-
position of G by using the SVD of C directly. If
C = U.X.V," and we assume uniform sampling, the
approximate singular values and singular vectors of G
are given as:

Seol = \/7& and U.y = U, =CV.E71 (4)

The runtime of the Column-sampling method is dom-
inated by the SVD of C. Even when only k& singular
values and singular vectors are required, the algorithm
takes O(nl?) time and is thus more expensive than
Nystrém. Often, in practice, the SVD of CTC (O(I?))
is performed instead of the SVD of C. However, it
is still substantially more expensive than the Nystrém
method due to the additional cost of computing C'T C.

3. Nystrom vs Column-sampling

Given that two sampling-based techniques exist to ap-
proximate the SVD of SPSD matrices, we pose a natu-
ral question: which method should one use to approx-
imate singular values, singular vectors and low-rank
approximations? We first analyze the form of these ap-
proximations and then empirically evaluate their per-
formance in Section 3.3 on a variety of datasets.

3.1. Singular values and singular vectors

As shown in (3) and (4), the singular values of G
are approximated as the scaled singular values of W
and C, respectively. The scaling terms are quite rudi-
mentary and are primarily meant to compensate for
the ‘small sample size’ effect for both approximations.
However, the form of singular vectors is more inter-
esting. The Column-sampling singular vectors (Ueop)
are orthonormal since they are the singular vectors of
C. In contrast, the Nystrom singular vectors (Uyys)
are approximated by extrapolating the singular vec-
tors of W as shown in (3), and are not orthonormal.
It is easy to verify that U,;rySUnys = I;, where [ is the
identity matrix of size . As we show in Section 3.3,
this adversely affects the accuracy of singular vector
approximation from the Nystrom method.

It is possible to orthonormalize the Nystrom singular
vectors by using QR decomposition. Since U,ys o
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CUwa , where U, is orthogonal and ¥, is diagonal,
this simply implies that QR decomposition creates an
orthonormal span of C' rotated by U,,. However, the
complexity of QR decomposition of U,y is the same as
that of the SVD of C'. Thus, the computational cost of
orthogonalizing U, would nullify the computational
benefit of Nystrom over Column-sampling.

3.2. Low-rank approximation

Several studies have shown that the accuracy of low-
rank approximations of kernel matrices is tied to
the performance of kernel-based learning algorithms
(Williams & Seeger, 2000; Talwalkar et al., 2008;
Zhang et al., 2008). Hence, accurate low-rank ap-
proximations are of great practical interest in machine
learning. Suppose we are interested in approximating
G with a matrix of rank k& < n, denoted as Gy. It is
well-known that the GGj, that minimizes the Frobenius
norm of the error, i.e., |G — G|, is given by,

G = UciSenUdr = UakUS 4G = GUg Ul (5)

where Ug j, contains the singular vectors of G corre-
sponding to top k singular values contained in g .
We refer to U(;’;CEG,;CUGT’,C as Spectral Reconstruction,
since it uses both the singular values and vectors, and
U,k UakG as Matriz Projection, since it uses only sin-
gular vectors to compute the projection of G onto the
space spanned by vectors Ug ;. These two low-rank
approximations are equal only if ¢ ; and Ug, con-
tain the true singular values and singular vectors of G.
Since this is not the case for approximate methods such
as Nystrom and Column-sampling, these two measures
generally give different errors. Thus, we analyze each
measure separately in the following sections.

3.2.1. MATRIX PROJECTION

For Column-sampling, using (4), the low-rank approx-
imation via matrix projection is

GCOl — cal kUcol kG UC,kU;—kG = C(CTC);lcTG’

(6)
where Uw i are the first k vectors of U, and (C’TC’),;l =
VerZe! kVC x- Cleatly, if k = 1, (CTCO), = CTC.
Slmllarly, using (3), the Nystrom matrix projection is

nys l _
ka — Unys, kUnys kG = C(gwlg 2)CTG3 (7)

where W, :kaZwkU s and if k=1, W, =W.

As shown in (6) and (7), the two methods have similar
expressions for matrix projection, except that C'TC
is replaced by a scaled W2. Furthermore, the scaling
term appears only in the Nystrom expression. We now

present Theorem 1 and Observations 1 and 2, which
provide further insights about these two methods.

Theorem 1. The Column-sampling and Nystrém ma-
triz projections are of the form U.RU. G, where R €
R s SPSD. Further, Column-sampling gives the
lowest reconstruction error (measured in ||-||p) among
all such approximations if k = 1.

Proof. From (6), it is easy to see that
G =Uc kUG = U:ReaU, G, (8)

where R.,; = [Ik

[ 0]. Similarly, from (7) we can derive

G = UCRnySUCTG where Rys = YE;?kYTa (9)

and Y = /1/n¥.V,"U, . Note that both R. and
R,,ys are SPSD matrices. Furthermore, if k = [, Reot =
I. Let E be the (squared) reconstruction error for
an approximation of the form U.RU[G, where R is
an arbitrary SPSD matrix. Hence, when k = [, the
difference in reconstruction error between the generic
and the Column-sampling approximations is

E—Ecq =||G-URU,/ G|} — |G-UU. G|}
Tt[G"(I - U.RU)" (I - U.RU])G]
G'(I-UU)"(I-UU)G]

Tr[
Tr[
[
[

=Tr[G"(U.R*U, — 2U.RU, + U.U,)G]
=Tr[(R- DU G)"(R-1)U/G)]
> 0. (10)

We used the fact that U U, = I, and that AT A is
SPSD for any matrix A. O

Observation 1. For k = [, matriz projection for
Column-sampling reconstructs C exactly. This can be
seen by block- decomposmg G as: G =1[C O], where
C =[G G2, and using (6):
gel=ccTo)ylcTa=[c ccteyte'a). (11)
Observation 2. Fork =1, the span of the orthogonal-
ized Nystrom singular vectors equals the span of Ugo,
as discussed in Section 3.1. Hence, matriz projec-
tion is identical for Column-sampling and Orthonor-
mal Nystrom for k = 1.

From an application point of view, matrix projec-
tion approximations tend to be more accurate than
the spectral reconstruction approximations discussed
in the next section (results omitted due to space con-
straints). However, these low-rank approximations are
not necessarily symmetric and require storage of all
entries of GG. For large-scale problems, this storage
requirement may be inefficient or even infeasible.
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3.2.2. SPECTRAL RECONSTRUCTION

Using (3), the Nystrém spectral reconstruction is:

G = Unys kSnyskUpys e = CWHCT. (12)

When k£ = [, this approximation perfectly recon-
structs three blocks of G, and Gag is approximated
as Go1 W 1G4, which is the Schur Complement of W
in G (Williams & Seeger, 2000):

w G

1 T
cwe Go G21W71G;1

G = (13)
The Column-sampling spectral reconstruction has a

similar form as (12):
l _1
Gcol:Ucol,kchl,kU;l’k;:C(E(CTC)]C) 2CT. (].4)

In contrast with matrix projection, the scaling term
now appears in the Column-sampling reconstruction.
To analyze the two approximations, we consider an al-
ternative characterization based on the fact that since
G is SPSD, there exists an X € R™*™ such that
G = XTX. Similar to (Drineas & Mahoney, 2005),
we define a zero-one sampling matrix, S € R"*!, that
selects [ columns from G, ie., C = GS. Each col-
umn of S has exactly one non-zero entry per column.
Further, W = STGS = (XS)TXS = X'' X', where
X' € R™! contains | sampled columns of X and

= Ux/Xx/Vy, is the SVD of X’. We use these
definitions to present Theorems 2 and 3.

Theorem 2. Column-sampling and Nystrom spec-
tral reconstructions are of the form XTUX/’kZU;;/’kX

where Z € RFXF s SPSD. Further, among all approzi-
mations of this form, neither the Column-sampling nor
the Nystrom approzimation is optimal (in ||| F)-

Proof. If a = y/n/l, then starting from (14) and ex-
pressing C' and W in terms of X and S, we have

Gt =aGS(STG2S),*STGT

—aX X' (Vo322 Va,) "/ x T x
=X "Ux' kZeaUxr 1 X, (15)
where Zeot = aXx/ VL VerSchVd i VaExs.  Simi-
larly, from (12) we have:
G =GS(STGS) 'sTaT
=X"X'(XTX) X' X
=X "Ux/ xUxs 1, X. (16)

Clearly, Z,ys = I. Next, we analyze the error, F, for
an arbitrary Z, which yields the approximation GZ

E=|G-G{|E = X"(I - Ux s ZUx ) X% (17)

Let X = UxYxVy and Y = Uy Uy . Then,
E=Tr[((I - Ux 1, ZU% ) UxS%U%)7]

=Tr [(UxExUL (I — Uxr p ZU3 ) UxExUL)]
—Tr [(UxSx(I - YZYT)SxUL)]

Sx(I-YZY )21 -YZY")Sx)]

>4

A—22%YZY TEX +ExY ZY TER Y ZY TEy)].
(18)

= I'

[
[
Tr [
[

To find Z, the Z that minimizes (18), we set:
OE/0Z = =2V TS4Y +2(Y T23Y)Z(Y T5%Y) =0
and solve for Z:

Z=T23y)" (Y Ty (Y TEdy) !

Clearly 7 is different from Zeor and Zyys, and since
Y2 =Yg, Z depends on the spectrum of G. O

While Theorem 2 shows that the optimal approxi-
mation is data-dependent and may differ from the
Nystrom and Column-sampling approximations, The-
orem 3 reveals that in certain instances the Nystrom
method is optimal. In contrast, the Column-sampling
method enjoys no such guarantee.

Theorem 3. Suppose r = rank(G) < k < [ and
rank(W) = r. Then, the Nystrom approximation is
exact for spectral reconstruction. In contrast, Column-
sampling is exact iff W = ((l/n)CTC)l/Q. Further-
more, when this very specific condition holds, Column-
Sampling trivially reduces to the Nystrém method.
Proof. Since G = XX, rank(G) = rank(X) = r.
Similarly, W = X’T X’ implies rank(X’) = r. Thus
the columns of X’ span the columns of X and Ux:
is an orthonormal basis for X, i.e., I — UX/WU;,,T €
Null(X). Since k > r, from (16) we have

IG = G|l = XTI = Ux, Ux ) X||lF = 0. (19)
To prove the second part of the theorem, we note
that rank(C) = r. Thus, C = UCWEC’TVCT’T and
(C'—'—C’)llc/2 = (CTCO)'/? = VerXorVe, since k > r.
If W = (1/a)(CTC)Y2, then the Column-sampling
and Nystrom approximations are identical and hence
exact. Conversely, to exactly reconstruct G, Column-
sampling necessarily reconstructs C' exactly. Using
CT =[W Ggy]in (14):
ac(CTO)PW =cC
aUc, Vg, W =UcrScn Ve,

Gi'=G =
=
= Ve, Vo, W =Ve,Sc, Ve, (20)
=

W= é(CTC)W. (21)
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Dataset Data, n d Kernel
PIE-2.7TK faces 2731 | 2304 linear
PIE-7TK faces 7412 | 2304 | linear
MNIST digits 4000 | 784 linear
ESS proteins | 4728 16 RBF

Table 1. Description of the datasets used in our experi-
ments (Sim et al., 2002; LeCun & Cortes, 2009; Talwalkar
et al., 2008). ‘n’ denotes the number of points and ‘d’
denotes the number of features in input space.

Singular Values Singular Vectors

0. 0.5
—PIE-2.7K
—PIE-7K

|| —mNIST
—ESS

—PIE-2.7K
—PIE-7K
—MNIST
—ESS

s
2
Accuracy (Nys - Col)
o

Accuracy (Nys - Col)
o

|
o

100 w08 20 40 60 80 100
Top Singular Vectors

20 40 60 80
Top Singular Values

(a) (b)

Matrix Projection Spectral Reconstruction

0 PIE-2.7K

—PIE-TK

05 —MNIST
—ESs

e—
DEXT

oo 400 00 800 1000
# Sampled Columns (1)

() (d)

—PIE-2.7K
—PIE-7K
—MNIST
—ESS

Accuracy (Nys - Col)
c o
Accuracy (Nys - Col)

# Sampled Columns (1)

Figure 1. Differences in accuracy between Nystrom and
Column-Sampling. Values above zero indicate better per-
formance of Nystrom and vice-versa. (a) Top 100 singular
values with [ = 600. (b) Top 100 singular vectors with
I = 600. (c¢) Matrix projection accuracy for k = 100. (d)
Spectral reconstruction accuracy for £ = 100.

In (20) we use Ug,rUc,r = I, while (21) follows since
VC)TVC—{ , is an orthogonal projection onto the span of
the rows of C' and the columns of W lie within this
span implying VC,TVCT, W =W. O

3.3. Empirical comparison

To test the accuracy of singular values/vectors and
low-rank approximations for different methods, we
used several kernel matrices arising in different ap-
plications, as described in Table 1. We worked with
datasets containing less than ten thousand points to
be able to compare with exact SVD. We fixed k to be
100 in all the experiments, which captures more than
90% of the spectral energy for each dataset.

For singular values, we measured percentage accuracy
of the approximate singular values with respect to
the exact ones. For a fixed [, we performed 10 tri-

_ilOO 200 400 600 800 1000

als by selecting columns uniformly at random from G.
We show in Figure 1(a) the difference in mean per-
centage accuracy for the two methods for [ = 600.
The Column-sampling method generates more accu-
rate singular values than the Nystrom method for the
top 50 singular values, which contain more than 80% of
the spectral energy for each of the datasets. A similar
trend was observed for other values of [.

For singular vectors, the accuracy was measured by
the dot product i.e., cosine of principal angles between
the exact and the approximate singular vectors. Fig-
ure 1(b) shows the difference in mean accuracy be-
tween Nystrom and Column-sampling methods. The
top 100 singular vectors were all better approximated
by Column-sampling for all datasets. This trend was
observed for other values of [ as well. This result is
not surprising since the singular vectors approximated
by the Nystrom method are not orthonormal.

Next we compared the low-rank approximations gener-
ated by the two methods using matrix projection and
spectral reconstruction as described in Section 3.2.1
and Section 3.2.2, respectively. We measured the ac-
curacy of reconstruction relative to the optimal rank-k
approximation, CAY';€7 as:

IG = Gillr
nys/col .
1G = G|

relative accuracy = (22)

The relative accuracy will approach one for good ap-
proximations. Results are shown in Figure 1(c) and
(d). As motivated by Theorem 1 and consistent
with the superior performance of Column-sampling in
approximating singular values and vectors, Column-
sampling generates better reconstructions via matrix
projection. This was observed not only for [ = k but
also for other values of [. In contrast, the Nystrom
method produces superior results for spectral recon-
struction.  These results are somewhat surprising
given the relatively poor quality of the singular val-
ues/vectors for the Nystrom method, but they are in
agreement with the consequences of Theorem 3. We
also note that for both reconstruction measures, the
methods that exactly reconstruct subsets of the orig-
inal matrix when k = [ (see (11) and (13)) generate
better approximations. Interestingly, these are also
the two methods that do not contain scaling terms
(see (6) and (12)).

Further, as stated in Theorem 2, the optimal spectral
reconstruction approximation is tied to the spectrum
of G. Our results suggest that the relative accuracies
of Nystrom and Column-sampling spectral reconstruc-
tions are also tied to this spectrum. When we analyzed
spectral reconstruction performance on a sparse kernel
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Orthonormal Nystrom (Mat Proj)
1

# Sampled Columns (1) # Sampled Columns (1)

(a) (b)

Effect of Rank on Spec Recon Matrix Size vs # Sampled Cols

1 1000
8 % 800
O os 2
| €
14 =}
S 3 600
£ o [}
oy —PIE-2.7K B 400 —PIE-2.7K
g — PIE-TK = —PIE-7K
3 -05 E
2 : — MNIST & 200 —MNIST
—ESS 3 —ESs
= 0
0 50 100 150 200 (] 2000 4000 6000 8000
low rank (k) Matrix Size (n)

() (d)

Figure 2. (a) Difference in matrix projection between
Column-sampling and Orthonormal Nystrom (k = 100).
Values above zero indicate better performance of Column-
sampling. (b) Difference in spectral reconstruction be-
tween Nystrom and Orthonormal Nystrém (k = 100). Val-
ues above zero indicate better performance of Nystrom
method. (c) Difference in spectral reconstruction accu-
racy between Nystréom and Column-sampling for various
k and fixed | = 600. Values above zero indicate better
performance of Nystrém method. (d) Number of columns
needed to achieve 75% relative accuracy for Nystrom spec-
tral reconstruction as a function of n.

matrix with a slowly decaying spectrum, we found that
Nystrom and Column-sampling approximations were
roughly equivalent (‘DEXT’ in Figure 1(d)). This re-
sult contrasts the results for dense kernel matrices with
exponentially decaying spectra arising from the other
datasets used in the experiments.

One factor that impacts the accuracy of the Nystrom
method for some tasks is the non-orthonormality of
its singular vectors (Section 3.1). When orthonormal-
ized, the error in resulting singular vectors is reduced
(not shown) and the corresponding Nystrom matrix
projection error is reduced considerably as shown in
Figure 2(a). Further, as discussed in Observation 2
and seen in Figure 2(a) when [ = 100, Orthonormal
Nystrom is identical to Column-sampling when k = [.
However, since orthonormalization is computationally
costly, it is avoided in practice. Moreover, the accu-
racy of Orthogonal Nystrom spectral reconstruction is
actually worse relative to the standard Nystrom ap-
proximation, as shown in Figure 2(b). This surprising
result can be attributed to the fact that orthonormal-
ization of the singular vectors leads to the loss of some

= —PIE-2.7K =

£ —PIE-TK 5

9 —MNIST @

2 05 2 05|

3 —ESS 2

] I

-_— 1’4

S o0 S0

[S) £ —PIE-2.7K

§ § —PIE-7K

§ -0.5 £-05 —MNIST
Q

5 —E!

< < S3

o0 200 400 600 800 1000 “Too 200 400 600 800 1000

Orthonormal Nystrom (Spec Recon) - of the unique properties described in Section 3.2.2. For

instance, Theorem 3 no longer holds and the scaling
terms do not cancel out, i.e., G1Y° # CW, 'C.

Even though matrix projection tends to produce more
accurate approximations, spectral reconstruction is of
great practical interest for large-scale problems since,
unlike matrix projection, it does not use all entries
in G to produce a low-rank approximation. Thus,
we further expand upon the results from Figure 1(d).
We first tested the accuracy of spectral reconstruc-
tion for the two methods for varying values of k and
a fixed [. We found that the Nystrom method out-
performs Column-sampling across all tested values of
k, as shown in Figure 2(c). Next, we addressed an-
other basic issue: how many columns do we need to
obtain reasonable reconstruction accuracy? For very
large matrices (n ~ 0(109)), one would wish to select
only a small fraction of the samples. Hence, we per-
formed an experiment in which we fixed k and varied
the size of our dataset (n). For each n, we performed
grid search over [ to find the minimal [ for which the
relative accuracy of Nystrom spectral reconstruction
was at least 75%. Figure 2(d) shows that the required
[ does not grow linearly with n. The % ratio actually
decreases quickly as n increases, lending support to the
use of sampling-based algorithms for large-scale data.

4. Sampling Techniques

In Section 3, we focused on uniformly sampling
columns to create low-rank approximations. Since ap-
proximation techniques operate on a small subset of
G, i.e., C, the selection of columns can significantly
influence the accuracy of approximation. In this sec-
tion we discuss various sampling options that aim to
select informative columns from G. The most common
sampling techniques select columns using a fixed prob-
ability distribution, with uniform sampling being the
most basic of these non-adaptive approaches. Alterna-
tively, the ith column can be sampled non-uniformly
with a weight that is proportional to either the cor-
responding diagonal element, G;; (diagonal) or the
squared Ly norm of the column (column-norm). The
non-adaptive sampling methods have been combined
with SVD approximation algorithms to bound the re-
construction error (Drineas & Mahoney, 2005; Ku-
mar et al., 2009). Interestingly, the non-uniform ap-
proaches are often outperformed by uniform sampling
for dense matrices (Kumar et al., 2009). Contrary to
the non-adaptive sampling methods, an adaptive sam-
pling technique with better theoretical approximation
accuracy (adaptive-full) was proposed in (Deshpande
et al., 2006). It requires a full pass through G in each
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iteration. Another interesting technique that selects
informative columns based on k-means clustering has
been shown to give good empirical accuracy (Zhang
et al., 2008). However, both methods are computa-
tionally inefficient for large G.

4.1. Proposed Adaptive Sampling Method

Instead of sampling all [ columns from a fixed distribu-
tion, adaptive sampling alternates between selecting a
set of columns and updating the distribution over all
the columns. Starting with an initial distribution over
the columns, s < [ columns are chosen to form a set
C’. The probabilities are then updated as a function
of previously chosen columns and s new columns are
sampled and incorporated in C’. This process is re-
peated until I columns have been selected.

Input: nxn SPSD matrix G, number of columns to be
chosen (1), initial probability distribution over [1...n]
(Po), number of columns selected at each iteration (s)
Output: [ indices corresponding to columns of G
SAMPLE-ADAPTIVE(G, n, 1, Py, s)

1 R < set of s indices sampled according to Py
t <+ é — 1 > number of iterations
foriec[l...t] do

P; < UPDATE-PROBABILITY-PARTIAL(R)

return R

N O Uk W N

UPDATE-PROBABILITY-PARTIAL(R)
1 (' <« columns of G corresponding to indices in R

2 k' < CHOOSE-RANK() > low rank (k) or ‘—1;“'

3 Ynys, Unys < DO-NYSTROM (C', k') > see eq (3)
4 C’;ys < Spectral reconstruction using X,ys, Unys
5 B+ C'—C)

6 forje[l...n]do
7 if j € R then

8 P; <~ 0 > sample without replacement
9 else P; + ||E;||3

10 P 55

11 return P

Figure 3. The proposed adaptive sampling technique that
uses only a small subset of the original matrix G to com-
pute probability distribution over columns. Note that it
does not need to store or run a full pass over G.

We propose a simple sampling technique (adaptive-
partial) that incorporates the advantages of adaptive
sampling while avoiding the computational and stor-
age burdens of the technique in (Deshpande et al.,
2006). At each iterative step, we measure the recon-
struction error for each row of C’ and the distribution

R; < set of s indices sampled according to P;

over corresponding columns of G is updated propor-
tional to this error. Unlike (Deshpande et al., 2006),
we compute the error for C’, which is much smaller
than G, thus avoiding the O(n?) computation. As
described in (13), if k' is fixed to be the number of
columns in C’, it will lead to C7},,; = C’ resulting
in perfect reconstruction of C’. So, one must choose
a smaller k&’ to generate non-zero reconstruction er-
rors from which probabilities can be updated (we used
k' = (# columns in C")/2 in our experiments). One
artifact of using a &’ smaller than the rank of C’ is
that all the columns of GG will have a non-zero probabil-
ity of being selected, which could lead to the selection
of previously selected columns in the next iteration.
However, sampling without replacement strategy alle-
viates this problem. Working with C instead of G to
iteratively compute errors makes this algorithm signif-
icantly more efficient than that of (Deshpande et al.,
2006), as each iteration is O(nlk’ + [*) and requires at
most the storage of [ columns of G. The details of the
proposed sampling technique are outlined in Figure 3.

4.2. Sampling Experiments

We used the datasets already shown in Table 1, and
compared the effect of different sampling techniques
on the relative accuracy of Nystrom spectral recon-
struction for & = 100. The results for PIE-7TK are
presented in Figure 4(a) for varying values of {. The
results across datasets (Figure 4(b)) show that our
adaptive-partial sampling technique outperforms all
non-adaptive methods. They show that adaptive-
partial performs roughly the same as adaptive-full for
smaller | and outperforms it for larger [, while being
much cheaper computationally (Figure 5(a)).

Next, we wished to identify the situations where adap-
tive sampling is most effective. It is well-known that
most matrices arising in real-world applications ex-
hibit a fast decaying singular value spectrum. For
these matrices, sampling based spectral decomposi-
tion methods generally provide accurate estimates of
the top few singular values/vectors. However, the ac-
curacy generally deteriorates for subsequent singular
values/vectors. To test this behavior, we conducted
an experiment with the PIE-7TK dataset, where the
relative accuracy for Nystrom spectral reconstruction
was measured by varying k for a fixed [. As shown
in Figure 5(b), the relative accuracy for all sampling
methods decreases as k is increased, thus verifying the
deterioration in quality of singular value/vector ap-
proximation as k increases. However, by performing
error-driven sampling, the proposed adaptive sampling
provides better relative accuracy as k increases.
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Nystrom Reconstruction: PIE-7K l Dataset Uniform Diagonal | Col-Norm | Adapt-Partial| Adapt-Full
. PIE-2.7K |[67.2 (£1.1) [62.1 (£0.9) [59.7 (£1.0)| 70.4 (£0.9) |72.6 (£1.0)
os ez PIE-7TK ||57.5 (£1.1)]50.8 (£1.9)|56.8 (£1.6) | 62.8 (£0.9) |64.3 (+£0.7)
206 = 400 || MNIST ||67.4 (£0.7)|67.4 (£0.4)|65.3 (£0.5) | 69.3 (£0.7) | 69.2 (£0.7)
< - ESS 61.0 (£1.7)|61.5 (£1.5) | 57.5 (£1.9)| 65.0 (£1.0) | 63.9 (+0.9)
g™ —oeaonal PIE-2.7K [[84.1 (£0.5) [77.8 (£0.6)[73.9 (£1.0)[ 86.5 (£0.4) |87.7 (£0.4)
Loz - Adapve-Partial PIE-7TK || 73.8 (£1.2)|64.9 (£1.8)|71.8 (+3.0)| 78.5 (+0.5) | 74.1 (£0.6)
) Adapive-Full 800|| MNIST ||83.3 (40.3)|83.0 (£0.3)|80.4 (+0.4) | 84.2 (£0.4) | 80.7 (£0.5)
10020, Sampled Columns (1) 0 ESS 78.1 (£1.0)|79.2 (£0.9) | 75.4 (£1.2) | 80.6 (£1.1) | 74.8 (£0.8)

(a)

(b)

Figure 4. Nystrom spectral reconstruction accuracy for various sampling methods for £ = 100. (a) Results for PIE-7TK
using several values of [. (b) Results for all datasets for two values of | with £ = 100. Numbers in parenthesis indicate

the standard deviations for 10 different runs for each .

5. Conclusions and Future Work

We presented an analysis of two sampling-based tech-
niques for approximating SVD on large dense SPSD
matrices, and provided a theoretical and empirical
comparison. Although the Column-sampling method
generates more accurate singular values/vectors and
low-rank matrix projections, the Nystrém method con-
structs better low-rank spectral approximations, which
are of great practical interest as they do not use the
full matrix. We also presented a novel adaptive sam-
pling technique that results in improved performance
over standard techniques and is significantly more ef-
ficient than the existing adaptive method. An impor-
tant question left to study is how different properties of
SPSD matrices, e.g., sparsity and singular value spec-
trum, affect the quality of SVD approximations and
the effectiveness of various sampling techniques.

Timing for Sampling: PIE-7K

2500
. \\~
2000 Q0.8 Sos~
g — Uniform © SOGA
) D >
3 1500 Diagonal Sos
£ —Col-Norm < —— Uniform
= 1000 = = Adaptive-Partial 2 0.4|— Diagonal
a Adaptive-Full E ——Col-Norm
O 500 e macmmmmn & 0.2{|- - - Adaptive—Partial
/ Adaptive-Full
0 0
100 200 400 600 800 1000 0 150 200

50 100
# Sampled Columns (1) low rank (k)
(a) (b)

Figure 5. Results on PIE-7TK for different sampling tech-
niques. Left: Empirical run times (Matlab) for Nystrom
method for £ = 100. Right: Mean Nystrom spectral recon-
struction accuracy for varying k and fixed | = 600.
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