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— Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve
objective when participant preferences are private.

Goals for Mechanism Design Theory:
e Descriptive: predict/affirm mechanisms arising in practice.
® Prescriptive: suggest how good mechanisms can be designed.
e Conclusive: pinpoint salient characteristics of good mechanisms.

® Tractable: mechanism outcomes can be computed quickly.
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— Goals for Mechanism Design Theory

Mechanism Design: how can a social planner / optimizer achieve
objective when participant preferences are private.

Goals for Mechanism Design Theory:
e Descriptive: predict/affirm mechanisms arising in practice.
® Prescriptive: suggest how good mechanisms can be designed.
e Conclusive: pinpoint salient characteristics of good mechanisms.

® Tractable: mechanism outcomes can be computed quickly.

Informal Thesis: approximately optimality is often descriptive, prescrip-
tive, conclusive, and tractable.
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— Example 1. Gambler’'s Stopping Game

A Gambler’s Stopping Game:
e sequence of n games,
e prize of game ¢ is distributed from F’;,
e prior-knowledge of distributions.
On day 2, gambler plays game :
e realizes prize v; ~ F;,
® chooses to keep prize and stop, or

e discard prize and continue.
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— Example 1. Gambler’'s Stopping Game

A Gambler’s Stopping Game:
e sequence of n games,
e prize of game ¢ is distributed from F;,
e prior-knowledge of distributions.
On day 2, gambler plays game :
e realizes prize v; ~ F;,
® chooses to keep prize and stop, or
e discard prize and continue.

Question: How should our gambler play?
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— Optimal Strategy

Optimal Strategy:
e threshold t; for stopping with zth prize.

e solve with “backwards induction”.
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— Optimal Strategy

Optimal Strategy:
e threshold t; for stopping with zth prize.

e solve with “backwards induction”.

Discussion:
e Complicated: n different, unrelated thresholds.
e |nconclusive: what are properties of good strategies?
e Non-robust: what if order changes? what if distribution changes?

e Non-general: what do we learn about variants of Stopping Game?
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— Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix ¢, gambler takes first prize v; > .

(clearly suboptimal, may not accept prize on last day!)

APPROX. MECH. DESIGN — AUGUST 8 AND 10, 2012 —




— Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix ¢, gambler takes first prize v; > .
(clearly suboptimal, may not accept prize on last day!)
Theorem: (Prophet Inequality) For ¢ such that Pr|“no prize’] = 1/2,

E [prize for strategy t| > E[max; v;] /2.
[Samuel-Cahn '84]
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— Threshold Strategies and Prophet Inequality

Threshold Strategy : “fix ¢, gambler takes first prize v; > .

(clearly suboptimal, may not accept prize on last day!)
Theorem: (Prophet Inequality) For ¢ such that Pr|“no prize’] = 1/2,
E [prize for strategy t| > E[max; v;] /2.
[Samuel-Cahn '84]
Discussion:
e Simple: one number .
e Conclusive: trade-off “stopping early” with “never stopping”.

e Robust: change order? change distribution above or below £?

e General: same solution works for similar games: invariant of
“tie-breaking rule”
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— Prophet Inequality Proof

0. Notation:
® (;, = Pr[Ui < t]
e 1 = Pr|neverstops| = | [. ;.

1. Upper Bound on E|max|:

2. Lower Bound on E|prize]:

3. Choose x = 1/2 to prove theorem.
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— Prophet Inequality Proof

0. Notation:
® (;, = Pr[Ui < t]
e 1 = Pr|neverstops| = | [. ;.

1. Upper Bound on E|max|:

E[max] <t + E|max;(v; — )]

2. Lower Bound on E|prize]:

3. Choose x = 1/2 to prove theorem.
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— Prophet Inequality Proof

0. Notation:
® g, = Pr[vi < t].
e 1 = Pr|neverstops| = | [. ;.
1. Upper Bound on E|max|:
E[max] <t + E|max;(v; — )]

<t+) E[(vi-t)*].

2. Lower Bound on E|prize]:

3. Choose x = 1/2 to prove theorem.
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— Prophet Inequality Proof

0. Notation:
® (;, = Pr[Ui < t]
e 1 = Pr|neverstops| = | [. ;.

1. Upper Bound on E|max|:
E[max] <t + E|max;(v; — )]
<t+)Y» E[(vi—t)7].

2. Lower Bound on E|prize]:

Elprize] > (1 — x)t +

3. Choose x = 1/2 to prove theorem.
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— Prophet Inequality Proof

0. Notation:

® g, = Pr[vi < t].

e 1 = Pr|neverstops| = | [. ;.
1. Upper Bound on E|max|:

E[max] <t + E|max;(v; — )]

<t+) E[(vi—

2. Lower Bound on E|prize]:

Elprize] > (1 — x)t + Z E|(v; —t)T | otherv; < t| Pr[other v; < ¢]

3. Choose x = 1/2 to prove theorem.

APPROX. MECH. DESIGN — AUGUST 8 AND 10, 2012 —



— Prophet Inequality Proof

0. Notation:

® g, = Pr[vi < t].

e 1 = Pr|neverstops| = | [. ;.
1. Upper Bound on E|max|:

E[max] <t + E|max;(v; — )]

<t+) E[(vi—

2. Lower Bound on E|prize|: [1,.; 4;
Elprize] > (1 — x)t + Z E|(v; —t)T | otherv; < ¢] Pr[other v; < t]

3. Choose x = 1/2 to prove theorem.
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— Prophet Inequality Proof

0. Notation:

® g, = Pr[vi < t].

e 1 = Pr|neverstops| = | [. ;.
1. Upper Bound on E|max|:

E[max] <t + E|max;(v; — )]

<t+) E[(vi—

2. Lower Bound on E|prize|: z < T,z 45
Elprize] > (1 — x)t + Z E|(v; —t)T | otherv; < ¢] Pr[other v; < t]

3. Choose x = 1/2 to prove theorem.
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— Prophet Inequality Proof

0. Notation:

® g, = Pr[vi < t].

e 1 = Pr|neverstops| = | [. ;.
1. Upper Bound on E|max|:

E[max] <t + E|max;(v; — )]

<t+) E[(vi—

2. Lower Bound on E|prize]: < [ 9

N

Elprize] > (1 — x)t + Z E|(v; —t)T | otherv; < ¢] IrDr[other v; < tT

1—xt+xz (v; — )T | otherv; < t]

3. Choose x = 1/2 to prove theorem.
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— Prophet Inequality Proof

0. Notation:
® (;, = Pr[Ui < t]
e 1 = Pr|neverstops| = | [. ;.

1. Upper Bound on E|max|:
E[max] <t + E|max;(v; — )]
<t+)Y» E[(vi—t)7].

2. Lower Bound on E|prize]: < [ 9

N

Elprize] > (1 — x)t + Z E|(v; —t)T | otherv; < ¢] IrDr[other v; < tT

> (1 —x)t%—xZ.E:(vi —t)" | otherv; < t]

— (1—x)t+xZiE:(vi—t)+}.

3. Choose x = 1/2 to prove theorem.
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— Philosophy of Approximation

What is the point of a 2-approximation?
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— Philosophy of Approximation

What is the point of a 2-approximation?

e Constant approximations identify details of model. [cf. Wilson '87]
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— Philosophy of Approximation

What is the point of a 2-approximation?

e Constant approximations identify details of model. [cf. Wilson '87]
Example: is X a detail?
— yes, If constant approx without X

— no, otherwise.
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— Philosophy of Approximation

What is the point of a 2-approximation?

e Constant approximations identify details of model. [cf. Wilson '87]
Example: is X a detail? competition?
— yes, If constant approx without X

— no, otherwise.

APPROX. MECH. DESIGN — AUGUST 8 AND 10, 2012 —



— Philosophy of Approximation

What is the point of a 2-approximation?

e Constant approximations identify details of model. [cf. Wilson '87]
Example: is X a detail? competition? transfers?
— yes, If constant approx without X

— no, otherwise.
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— Philosophy of Approximation

What is the point of a 2-approximation?

e Constant approximations identify details of model. [cf. Wilson '87]
Example: is X a detail? competition? transfers?

— yes, If constant approx without X

— no, otherwise.

® gives relevant intuition for practice
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— Philosophy of Approximation

What is the point of a 2-approximation?

e Constant approximations identify details of model. [cf. Wilson '87]
Example: is X a detail? competition? transfers?

— yes, If constant approx without X

— no, otherwise.
® gives relevant intuition for practice

® gives simple, robust solutions.
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— Philosophy of Approximation

What is the point of a 2-approximation?

e Constant approximations identify details of model. [cf. Wilson '87]
Example: is X a detail? competition? transfers?

— yes, If constant approx without X
— no, otherwise.
® gives relevant intuition for practice

® gives simple, robust solutions.

e Exact optimization is often impossible.
(information theoretically, computationally, analytically)
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— Plcasso

[Picasso’s Bull 1945-1946 (one month)]
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Questions?



— Overview

Part I: Optimal Mechanism Design

e single-item auction.

® objectives: social welfare vs. seller profit.

e characterization of Bayes-Nash equilibrium.

® consequences: solving, uniqueness, and optimizing over BNE.
Part Il: Approximation in Mechanism Design

® single-item auctions.

e multi-dimensional auctions.

® prior-independent auctions.

e computationally tractable mechanisms.
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— Overview

Part I. Optimal Mechanism Design (Chapters 2 & 3)

e single-item auction.

® objectives: social welfare vs. seller profit.

e characterization of Bayes-Nash equilibrium.

® consequences: solving, uniqueness, and optimizing over BNE.
Part Il: Approximation in Mechanism Design

e single-item auctions. (Chapter 4)

e multi-dimensional auctions. (Chapter 7)

e prior-independent auctions. (Chapters 5 & 6)

e computationally tractable mechanisms. (Chapter 8)
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Part lla: Approximation for single-dimensional Bayesian mechanism
design

(where agent preferences are given by a private value for service, zero
for no service; preferences are drawn from a distribution)



— Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem
® a single item for sale,
e 1 buyers, and

e adist ¥ = F; x ... x F,, from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.
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— Example 2: Single-item auction

Problem: Bayesian Single-item Auction Problem
® a single item for sale,
e 1 buyers, and

e adist ¥ = F; x ... x F,, from which the
consumers’ values for the item are drawn.

Goal: seller opt. auction for F.

Question: What is optimal auction?

APPROX. MECH. DESIGN — AUGUST 8 AND 10, 2012 —



— Optimal Auction Design [Myerson '81 | mmmm

1. Thm: BNE < allocation rule is monotone.
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— Optimal Auction Design [Myerson '81 | mmmm
1. Thm: BNE < allocation rule is monotone.

2. Def: revenue curve: R;(q) = ¢ - F; (1 — q). Ob

0 1
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— Optimal Auction Design [Myerson '81 | mmmm

1. Thm: BNE < allocation rule is monotone.

2. Def: revenue curve: R;(q) = ¢ - F; (1 — q). Ob

0 1

3. Def: virtual value: @;(v;) = v; — 1_{;(;}) = marginal revenue.
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— Optimal Auction Design [Myerson '81 | mmmm

1. Thm: BNE < allocation rule is monotone.
2. Def: revenue curve: R;(q) = ¢ - F (1 — q) Ob
: ; s ; : . )
3. Def: virtual value: @;(v;) = v; — 1_{;(;}) = marginal revenue.
4. Def: virtual surplus: virtual value of winner(s).
12 I
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— Optimal Auction Design [Myerson '81 | mmmm

1. Thm: BNE < allocation rule is monotone.

2. Def: revenue curve: R;(q) = ¢ - F; (1 — q).

0 1

3. Def: virtual value: @;(v;) = v; — 1;2‘}(;}) = marginal revenue.

4. Def: virtual surplus: virtual value of winner(s).

5. Thm: E[revenue| = E|virtual surplus|. (via “revenue equivalence”)
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— Optimal Auction Design [Myerson '81 | mmmm

1.

2.

Thm: BNE < allocation rule is monotone.

Def: revenue curve: R;(q) = q- F, (1 — q). Ob

0 1

. 1—F; .
Def: virtual value: @; (v;) = v; — '(,USU) — marginal revenue.

Def: virtual surplus: virtual value of winner(s).

. Thm: E[revenue| = Elvirtual surplus|. (via “revenue equivalence”)

Def: F; is regular iff revenue curve concave iff virtual values

monotone. oQ

0 1
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— Optimal Auction Design [Myerson '81 | mmmm

1.

2.

Thm: BNE < allocation rule is monotone.

Def: revenue curve: R;(q) = q- F, (1 — q). Ob

0 1

Def: virtual value: @; (v;) = v; — 1;2‘}(;}) — marginal revenue.

Def: virtual surplus: virtual value of winner(s).
Thm: E[revenue| = E|virtual surplus|. (via “revenue equivalence”)

Def: F; is regular iff revenue curve concave iff virtual values

monotone. oQ

0 1

. Thm: for regular dists, optimal auction sells to bidder with highest

positive virtual value.
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— Optimal Auction Design [Myerson '81 | mmmm

1. Thm: BNE < allocation rule is monotone.

2. Def: revenue curve: R;(q) = ¢ - F; (1 — q). Ob

0 1

3. Def: virtual value: @;(v;) = v; — 1;2‘}(;}) = marginal revenue.

4. Def: virtual surplus: virtual value of winner(s).
5. Thm: E[revenue| = E|virtual surplus|. (via “revenue equivalence”)

6. Def: F; is regular iff revenue curve concave iff virtual values

monotone. oQ

0 1

/. Thm: for regular dists, optimal auction sells to bidder with highest
positive virtual value.

8. Cor: for iid, regular dists, optimal auction is second-price with
reserve price o~ 1(0).
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— Optimal Auctions

Optimal Auctions:
® iid, regular distributions: second-price with monopoly reserve price.

e general: sell to bidder with highest positive virtual value.
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— Optimal Auctions

Optimal Auctions:
® iid, regular distributions: second-price with monopoly reserve price.
e general: sell to bidder with highest positive virtual value.
Discussion:
® Iid, regular case: seems very special.

® general case: optimal auction rarely used. (too complicated?)
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— Approximation with reserve prices

Question: when is reserve pricing a good approximation?
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— Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with

Pr[no sale] = 1/2 is a 2-approximation.
[Chawla, Hartline, Malec, Sivan '10]
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— Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with

Pr[no sale] = 1/2 is a 2-approximation.
[Chawla, Hartline, Malec, Sivan '10]
Proof: apply prophet inequality (tie-breaking by “v;”) to virtual values.
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— Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]

Proof: apply prophet inequality (tie-breaking by “v;”) to virtual values.

prophet inequality

second-price with reserves

prizes
threshold ¢
E|[max prize|
E [prize for ]

APPROX. MECH. DESIGN — AUGUST 8 AND 10, 2012

virtual values
virtual price
E [optimal revenue]
E [second-price revenue|

—_—



— Approximation with reserve prices

Question: when is reserve pricing a good approximation?

Thm: second-price with reserve = constant virtual price with
Pr[no sale] = 1/2 is a 2-approximation.

[Chawla, Hartline, Malec, Sivan '10]
Proof: apply prophet inequality (tie-breaking by “v;”) to virtual values.

prophet inequality | second-price with reserves
prizes virtual values
threshold ¢ virtual price
E|[max prize| E [optimal revenue]
E [prize for ] E [second-price revenue|

Discussion:
e constant virtual price = bidder-specific reserves.
® simple: reserve prices natural, practical, and easy to find.

e robust: posted pricing with arbitrary tie-breaking works fine,
collusion fine, etc.
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— Anonymous Reserves

Question: for non-identical distributions, iIs anonymous reserve

approximately optimal?

(e.g., eBay)
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— Anonymous Reserves

Question: for non-identical distributions, iIs anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with anonymous
reserve price Is 4-approximation. [Hartline, Roughgarden '09]
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— Anonymous Reserves

Question: for non-identical distributions, iIs anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with anonymous
reserve price Is 4-approximation. [Hartline, Roughgarden '09]

Proof: more complicated extension of prophet inequalities.
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— Anonymous Reserves

Question: for non-identical distributions, iIs anonymous reserve
approximately optimal?

(e.g., eBay)

Thm: non-identical, regular distributions, second-price with anonymous
reserve price Is 4-approximation. [Hartline, Roughgarden '09]

Proof: more complicated extension of prophet inequalities.
Discussion:
e theorem is not tight, actual bound is in |2, 4].

e justifies wide prevalence.
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— Extensions

Beyond single-item auctions: general feasibility constraints.
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— Extensions

Beyond single-item auctions: general feasibility constraints.
Thm: non-identical (possibly irregular) distributions, posted pricing

mechanisms are often constant approximations.
[Chawla, Hartline, Malec, Sivan '10; Yan '11]
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— Extensions

Beyond single-item auctions: general feasibility constraints.
Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10; Yan '11]
Proof technique:

e optimal mechanism is a virtual surplus maximizer.

® reserve-price mechanisms are virtual surplus approximators.
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— Extensions

Beyond single-item auctions: general feasibility constraints.
Thm: non-identical (possibly irregular) distributions, posted pricing
mechanisms are often constant approximations.

[Chawla, Hartline, Malec, Sivan '10; Yan '11]
Proof technique:

e optimal mechanism is a virtual surplus maximizer.

® reserve-price mechanisms are virtual surplus approximators.

Basic Open Question: to what extent do simple mechanisms approxi-
mate (well understood but complex) optimal ones?

Challenges: non-downward-closed settings, negative virtual values.
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Questions?



Part IlIb: Approximation for multi-dimensional Bayesian mechanism
design

(where agent preferences are given by values for each available
service, zero for no service; preferences drawn from distribution)



— Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing
® a single, unit-demand consumer.
® 1 items for sale.

e adist F = F; X --- x F}, from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F'.
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— Example 3: unit-demand pricing

Problem: Bayesian Unit-Demand Pricing
® a single, unit-demand consumer.
e 1 items for sale.

e adist F = F; X --- X Fj,, from which the con-
sumer’s values for each item are drawn.

Goal: seller optimal item-pricing for F'.

Question: What is optimal pricing?
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— Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!
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— Optimal Pricing

Optimal Pricing: consider distribution, feasibility constraints, incentive
constraints, and solve!

Discussion:
e little conceptual insight and

e not generally tractable.
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— Analogy

Challenge: approximate optimal but we do not understand it?
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— Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Problem: Bayesian Single-item
Pricing (a.k.a., MD-PRICING) Auction (a.k.a., SD-AUCTION)

e a single, unit-demand buyer, ® a single item for sale,

e 1 items for sale, and e 1 buyers, and

e a dist. F' from which the con- e a dist. F from which the con-
sumer’s value for each item is sumers’ values for the item are
drawn. drawn.

Goal: seller opt. item-pricing for F'.  Goal: seller opt. auction for F.
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— Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Problem: Bayesian Single-item
Pricing (a.k.a., MD-PRICING) Auction (a.k.a., SD-AUCTION)

e a single, unit-demand buyer, ® a single item for sale,

e 1 items for sale, and e 1 buyers, and

e a dist. F' from which the con- e a dist. F from which the con-
sumer’s value for each item is sumers’ values for the item are
drawn. drawn.

Goal: seller opt. item-pricing for F'.  Goal: seller opt. auction for F.

Note: Same informational structure.
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— Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Problem: Bayesian Single-item
Pricing (a.k.a., MD-PRICING) Auction (a.k.a., SD-AUCTION)

e a single, unit-demand buyer, ® a single item for sale,

e 1 items for sale, and e 1 buyers, and

e a dist. F' from which the con- e a dist. F from which the con-
sumer’s value for each item is sumers’ values for the item are
drawn. drawn.

Goal: seller opt. item-pricing for F'.  Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING < SD-AUCTION.
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— Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Problem: Bayesian Single-item
Pricing (a.k.a., MD-PRICING) Auction (a.k.a., SD-AUCTION)

e a single, unit-demand buyer, ® a single item for sale,

e 1 items for sale, and e 1 buyers, and

e a dist. F' from which the con- e a dist. F from which the con-
sumer’s value for each item is sumers’ values for the item are
drawn. drawn.

Goal: seller opt. item-pricing for F'.  Goal: seller opt. auction for F.

Note: Same informational structure.
Thm: for any indep. distributions, MD-PRICING < SD-AUCTION.

Thm: a constant virtual price for MD-PRICING is 2-approx.
[Chawla,Hartline,Malec,Sivan’10]
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— Analogy

Challenge: approximate optimal but we do not understand it?

Problem: Bayesian Unit-demand Problem: Bayesian Single-item
Pricing (a.k.a., MD-PRICING) Auction (a.k.a., SD-AUCTION)

e a single, unit-demand buyer, ® a single item for sale,

e 1 items for sale, and e 1 buyers, and

e a dist. F' from which the con- e a dist. F from which the con-
sumer’s value for each item is sumers’ values for the item are
drawn. drawn.

Goal: seller opt. item-pricing for F'.  Goal: seller opt. auction for F.

Note: Same informational structure.

Thm: for any indep. distributions, MD-PRICING < SD-AUCTION.

Thm: a constant virtual price for MD-PRICING is 2-approx.

Proof: prophet inequality (tie-break by “—p,)Chawla,Hartline,Malec,Sivan'10]
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Sequential Posted Pricing: agents arrive in sed., offer posted prices.
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— Multi-item Auctions

Sequential Posted Pricing: agents arrive in sed., offer posted prices.
Thm: in many unit-demand settings, sequential posted pricings are a

constant approximation to the optimal mechanism.
[Chawla, Hartline, Malec, Sivan '10; Alaei '11]
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— Multi-item Auctions

Sequential Posted Pricing: agents arrive in sed., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a

constant approximation to the optimal mechanism.
[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)
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— Multi-item Auctions

Sequential Posted Pricing: agents arrive in sed., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a
constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION > MD-PRICING

(competition increases revenue)
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— Multi-item Auctions

Sequential Posted Pricing: agents arrive in sed., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a

constant approximation to the optimal mechanism.

[Chawla, Hartline, Malec, Sivan '10; Alaei '11]
Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION > MD-PRICING

(competition increases revenue)

3. Reduction: MD-PRICING > SD-PRICING

(pricings don’t use competition)
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— Multi-item Auctions

Sequential Posted Pricing: agents arrive in sed., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a

constant approximation to the optimal mechanism.
[Chawla, Hartline, Malec, Sivan '10; Alaei '11]

Approach:

1. Analogy: “single-dimensional analog”

(replace unit-demand agent with many single-dimensional agents)

2. Upper bound: SD-AUCTION > MD-PRICING

(competition increases revenue)

3. Reduction: MD-PRICING > SD-PRICING

(pricings don’t use competition)

4. Instantiation: SD-PRICING > %SD—AUCTION

(virtual surplus approximation)
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— Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in sed., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a

constant approximation to the optimal mechanism.
[Chawla, Hartline, Malec, Sivan '10; ; Alaei '11]
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— Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in sed., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a

constant approximation to the optimal mechanism.
[Chawla, Hartline, Malec, Sivan '10; ; Alaei '11]
Discussion:

e robust to agent ordering, collusion, etc.

e conclusive:
— competition not important for approximation.

— unit-demand incentives similar to single-dimensional incentives.

e practical: posted pricings widely prevalent. (e.g., eBay)
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— Sequential Posted Pricing Discussion

Sequential Posted Pricing: agents arrive in sed., offer posted prices.

Thm: in many unit-demand settings, sequential posted pricings are a

constant approximation to the optimal mechanism.
[Chawla, Hartline, Malec, Sivan '10; ; Alaei '11]
Discussion:

e robust to agent ordering, collusion, etc.

e conclusive:
— competition not important for approximation.

— unit-demand incentives similar to single-dimensional incentives.

e practical: posted pricings widely prevalent. (e.g., eBay)

Open Question: identify upper bounds beyond unit-demand settings:
e analytically tractable and

® approximable.
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Questions?



Part llc: Approximation for prior-independent mechanism design.

(mechanisms should be good for any set of agent preferences, not just
given distributional assumptions)



— The trouble with priors

The trouble with priors:
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The trouble with priors:

e where does prior come from?
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e where does prior come from?

® IS prior accurate?
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The trouble with priors:
e where does prior come from?
® IS prior accurate?

e prior-dependent mechanisms are non-robust.
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— The trouble with priors

The trouble with priors:
e where does prior come from?
® IS prior accurate?
e prior-dependent mechanisms are non-robust.

e what if one mechanism must be used in many scenarios?
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— The trouble with priors

The trouble with priors:
e where does prior come from?
® IS prior accurate?
e prior-dependent mechanisms are non-robust.
e what if one mechanism must be used in many scenarios?

Question: can we design good auctions without knowledge of
prior-distribution?
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— Optimal Prior-independent Mechs

Optimal Prior-indep. Mech: (a.k.a., non-parametric implementation)
1. agents report value and prior,
2. shoot agents if disagree, otherwise
3. run optimal mechanism for reported prior.
Discussion:
e complex, agents must report high-dimensional object.
® non-robust, e.qg., if agents make mistakes.

® inconclusive, begs the question.
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— Resource augmentation

First Approach: “resource” augmentation.
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— Resource augmentation

First Approach: “resource” augmentation.

Thm: for iid, regular, single-item, the second-price auctiononn + 1

bidders has more revenue than the optimal auction on n bidders.
[Bulow, Klemperer '96]
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— Resource augmentation

First Approach: “resource” augmentation.
Thm: for iid, regular, single-item, the second-price auctiononn + 1
bidders has more revenue than the optimal auction on n bidders.
[Bulow, Klemperer '96]
Discussion: [Dhangwatnotal, Roughgarden, Yan '10]
® “recruit one more bidder” is prior-independent strategy.

e “bicriteria” approximation result.

® conclusive: competition more important than optimization.
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— Resource augmentation

First Approach: “resource” augmentation.
Thm: for iid, regular, single-item, the second-price auctiononn + 1
bidders has more revenue than the optimal auction on n bidders.
[Bulow, Klemperer '96]
Discussion: [Dhangwatnotal, Roughgarden, Yan '10]
® “recruit one more bidder” is prior-independent strategy.
® “Dbicriteria” approximation result.

® conclusive: competition more important than optimization.

e non-general: e.g., for k-unit auctions, need £k additional bidders.
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— Special Case: . = | R—

Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.
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— Special Case: . = | R—

Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]
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— Special Case: . = | R—

Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.

Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]

e each bidder in second-price views other bid as “random reserve”.
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— Special Case: . = | R—
Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.
Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]
e each bidder in second-price views other bid as “random reserve”.

e second-price revenue = 2 X random reserve revenue.
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— Special Case: . = | R—
Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.
Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]
e each bidder in second-price views other bid as “random reserve”.

e second-price revenue = 2 X random reserve revenue.

e random reserve revenue > %X optimal reserve revenue:
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— Special Case: . = | R—
Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.
Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]
e each bidder in second-price views other bid as “random reserve”.

e second-price revenue = 2 X random reserve revenue.

e random reserve revenue > %x optimal reserve revenue:

! R(q)

Recall: revenue curve
R(qg)=q-F'(1—q)
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Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.
Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]
e each bidder in second-price views other bid as “random reserve”.

e second-price revenue = 2 X random reserve revenue.

e random reserve revenue > %x optimal reserve revenue:

| R(q)

Recall: revenue curve
R(qg)=q-F'(1—q)
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— Special Case: . = | R—
Special Case: for regular distribution, the second-price revenue from
two bidders is at least the optimal revenue from one bidder.
Geometric Proof: [Dhangwatnotai, Roughgarden, Yan '10]
e each bidder in second-price views other bid as “random reserve”.

e second-price revenue = 2 X random reserve revenue.

e random reserve revenue > %x optimal reserve revenue:

| R(q)

Recall: revenue curve
R(qg)=q-F'(1—q)

0
0 q" 1

® So second-price on two bidders > optimal revenue on one bidder.
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— Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?
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— Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ¢~ 1(0). [Myerson '81]
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— Example 4: digital goods

Question: how should a profit-maximizing seller sell a digital good (n
bidder, n copies of item)?

Bayesian Optimal Solution: if values are iid from known distribution,
post the monopoly price ¢~ 1(0). [Myerson '81]

Discussion:
e optimal,
e simple, but

e not prior-independent
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— Approximation via Single Sample

Single-Sample Auction: (for digital goods)

: : [Dhangwatnotai, Roughgarden, Yan '10]
1. pick random agent 7z as sample.
2. offer all other agents price v;.

3. reject .
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— Approximation via Single Sample

Single-Sample Auction: (for digital goods)

: : [Dhangwatnotai, Roughgarden, Yan '10]
1. pick random agent 7z as sample.
2. offer all other agents price v;.

3. reject .

Thm: for iid, regular distributions, single sample auction on

(n + 1)-agents is 2-approx to optimal on n agents.
[Dhangwatnotai, Roughgarden, Yan '10]
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— Approximation via Single Sample

Single-Sample Auction: (for digital goods)
[Dhangwatnotai, Roughgarden, Yan '10]

1. pick random agent 7 as sample.
2. offer all other agents price v;.

3. reject .

Thm: for iid, regular distributions, single sample auction on

(n + 1)-agents is 2-approx to optimal on n agents.

_ [Dhangwatnotai, Roughgarden, Yan '10]
Proof: from geometric argument.
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— Approximation via Single Sample

Single-Sample Auction: (for digital goods)

: : [Dhangwatnotai, Roughgarden, Yan '10]
1. pick random agent 7z as sample.
2. offer all other agents price v;.
3. reject .

Thm: for iid, regular distributions, single sample auction on

(n + 1)-agents is 2-approx to optimal on n agents.
_ [Dhangwatnotai, Roughgarden, Yan '10]
Proof: from geometric argument.

Discussion:
® prior-independent.

e conclusive,

— learn distribution from reports, not cross-reporting.

— don’t need precise distribution, only need single sample for
approximation. (more samples can improve approximation/robustness.)

® generic, applies to general settings.
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— Extensions

Recent Extensions:
e non-identical distributions. [Dhangwatnotai, Roughgarden, Yan "10]
® position auctions, matroids, downward-closed environments.

[Hartline, Yan '11; Ha, Hartline '11]

e multi-item auctions (multi-dimensional preferences).
[Devanur, Hartline, Karlin, Nguyen '11; Roughgarden, Talgam-Cohen, Yan '12]
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— Extensions

Recent Extensions:
e non-identical distributions. [Dhangwatnotai, Roughgarden, Yan "10]

® position auctions, matroids, downward-closed environments.
[Hartline, Yan '11; Ha, Hartline '11]

e multi-item auctions (multi-dimensional preferences).
[Devanur, Hartline, Karlin, Nguyen '11; Roughgarden, Talgam-Cohen, Yan '12]

Open Question: non-downward-closed environments?
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— Extensions

Recent Extensions:
e non-identical distributions. [Dhangwatnotai, Roughgarden, Yan "10]
® position auctions, matroids, downward-closed environments.

[Hartline, Yan '11; Ha, Hartline '11]

e multi-item auctions (multi-dimensional preferences).
[Devanur, Hartline, Karlin, Nguyen '11; Roughgarden, Talgam-Cohen, Yan '12]

Open Question: non-downward-closed environments?

Questions?
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Part IId: Computational Tractability in Bayesian mechanism design

(where the optimal mechanism may be computationally intractable)



— Example 5: single-minded combinatorial auction —

Problem: Single-minded combinatorial auction
® 1 agents,
® 1 items for sale.
e Agent ¢ wants only bundle S; C {1,...,m}.
e Agent ?’s value v; drawn from F;.

Goal: auction to maximize social surplus (a.k.a., welfare).
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— Example 5: single-minded combinatorial auction —

Problem: Single-minded combinatorial auction
® 1 agents,
® 1 items for sale.
e Agent ¢ wants only bundle S; C {1,...,m}.
e Agent ?’s value v; drawn from F;.

Goal: auction to maximize social surplus (a.k.a., welfare).

Question: What is optimal mechanism?
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— Optimal Combinatorial Auction

Optimal Combinatorial Auction:  Vickrey-Clarke-Groves (VCG):
1. allocate to maximize reported surplus,

2. charge each agent their “critical value”.
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— Optimal Combinatorial Auction

Optimal Combinatorial Auction:  Vickrey-Clarke-Groves (VCG):
1. allocate to maximize reported surplus,
2. charge each agent their “critical value”.
Discussion:
e distribution is irrelevant (for welfare maximization).
e Step 1 is NP-hard weighted set packing problem.

e Cannot replace Step 1 with approximation algorithm.
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BNE reduction

—

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?
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BNE reduction

—

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE <> allocation rule x; (v;) is monotone in v;.
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— BNE reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE <> allocation rule x; (v;) is monotone in v;.

Challenge: x;(v;) for alg A with v_; ~ F_; may not be monotone.
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— BNE reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE <> allocation rule x; (v;) is monotone in v;.
Challenge: x;(v;) for alg A with v_; ~ F_; may not be monotone.

Approach:
e Run A(o1(v1),...,0n(vn)).
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— BNE reduction

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE <> allocation rule x; (v;) is monotone in v;.
Challenge: x;(v;) for alg A with v_; ~ F_; may not be monotone.

Approach:
e Run A(o1(v1),...,0n(vn)).

e 0, calculated from max weight matching on 7’s type space.
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BNE reduction

—

Question: Can we convert any algorithm into a mechanism without
reducing its social welfare?

Recall: BNE <> allocation rule x; (v;) is monotone in v;.

Challenge: x;(v;) for alg A with v_; ~ F_; may not be monotone.

Approach:
e Run A(o1(v1),...,0n(vn)).

e o; calculated from max weight matching on ¢'s type space.
— stationary with respect to F;.
— x;(0;(v;)) monotone.

— welfare preserved.
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— Example: 0; mmm—

Example:

Fi(vi) | vi || zi(vs)

25 1 0.1
25 4 0.5
25 5 0.4

25 10 1.0
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— Example: 0; mmm—

Example:

Fi(vi) | vi || @i(vs) || oi(vs)
.25 1 0.1 1
.25 4 0.5 5
.25 5 0.4 4
.25 10 1.0 10
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— Example: 0; mmm—

Example:

Fi(vy) | vi || xi(vy) || oi(vs) || xi(oi(v;))
25 1 0.1 1 0.1
25 4 0.5 5 0.4
25 5 0.4 4 0.5
25 10 1.0 10 1.0
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— Example: 0; mmm—

Example:

Fi(vy) | vi || xi(vy) || oi(vs) || xi(oi(v;))
25 1 0.1 1 0.1
25 4 0.5 5 0.4
25 5 0.4 4 0.5
25 10 1.0 10 1.0

Note:

e o, is from max weight matching between v; and x;(v; ).

® U, is stationary.

e 0, (weakly) improves welfare.
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— BNE reduction discussion

Thm: Any algorithm can be converted into a mechanism with no loss in
expected welfare. Runtime is polynomial in size of agent’s type space.

[Hartline, Lucier '10; Hartline, Kleinberg, Malekian '11; Bei, Huang '11]
Discussion:
e applies to all algorithms not just worst-case approximations.

e BNE incentive constraints are solved independently.

e works with multi-dimensional preferences too.
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— Extensions

Extension:

e impossibility for dominant strategy reduction.

APPROX. MECH. DESIGN — AUGUST 8 AND 10, 2012

[Chawla, Immorlica, Lucier '12]
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— Extensions

Extension:

e impossibility for dominant strategy reduction.
[Chawla, Immorlica, Lucier '12]

Open Questions:
® non-brute-force in type-space? e.g., for product distributions?

e other objectives, e.g., makespan? [Chawla, Immorlica, Lucier '12]
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Extension:

e impossibility for dominant strategy reduction.
[Chawla, Immorlica, Lucier '12]

Open Questions:
® non-brute-force in type-space? e.g., for product distributions?

e other objectives, e.g., makespan? [Chawla, Immorlica, Lucier '12]

Questions?
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— Part || Conclusions

Conclusions:

approximation pinpoints salient characteristics of good
mechanisms.

reserve-price-based auctions are approximately optimal.
posted-pricings are approximately optimal.
good mechanisms can be designed without prior information.

good algorithms can be converted into good mechanisms.
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Conclusions:

® approximation pinpoints salient characteristics of good
mechanisms.

® reserve-price-based auctions are approximately optimal.
® posted-pricings are approximately optimal.
e good mechanisms can be designed without prior information.

e good algorithms can be converted into good mechanisms.

Questions?
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