
15-896: Algorithms, Games and Networks April 4, 2013

Lecture 19

Lecturer: Ariel Proccacia Scribe: Arda Antikacioglu

1 Overview

In the last lecture we didn’t think of hospitals as players in a national-scale transplant game, and
just focused on optimizing the number of exchanges that happened with whatever patients were
registered to the exchange. In this lecture, we’ll think of hospitals as selfish players who above all
want to maximize the number of transplants their patients receive. This might lead hospitals to
hide their patients from the system, and we’ll describe the following strategyproof mechanisms to
deal with issue:

• MATCH{{1},{2}} mechanism for two players.

• MATCH{Π1,Π2} mechanism for n-players.

• MIX-AND-MATCH mechanism for n-players.

2 Background and Motivation

In practice, hospitals care about their own track record. They want to save as many of their own
patients as possible, which makes sense since those patients are lives the hospitals is directly in
control of. Therefore, if a hospital can match a pair of patients without having to go through a
kidney exchange, then they will go ahead and perform the transplants. There are two problems with
this. The first is that this can lead to a suboptimal number of kidney transplants being performed.
The second and harder to measure consequence is that easy to match transplants are repeatedly
performed locally while hard to match patients stay for a long time in the kidney exchanges which
degrades their quality and decreases their usefulness.

So instead of focusing on the average case behavior of kidney exchanges, we’ll look at the how they
can be gamed, and how we can incentivize hospitals to tell the always report all of their transplant
candidates to the exchange. Unfortunately, this is a really hard to solve problem. It’s so hard to
We want to maximize the total number of patients that get kidneys, and make hospitals not benefit
from hiding their patients. This isn’t solved at all. The result we’ll describe is very partial, we
can’t even do 3-cycles.

The model we will be working with is called the strategic model. There is an underlying graph
G = (

⋃
Vi, E) where each vertex represents a patient/donor pair. Edges on the graph represent

compatibility. Each hospital controls a subset Vi of the patient/donor pairs and a strategy for
hospital i is some set V ′i ⊆ Vi of patients that it reveals to the mechanism. An edge is called
internal if it’s between two patients at the same hospital and external otherwise. Note that while
hospitals can hide patients, they can’t hide the edges between two unhidden vertices because this
information can just be looked up in the medical database. A mechanism is any procedure that

1



looks at the subgraph induced on the revealed vertices and returns a matching (so only 2-cycles
are allowed). The utility of a matching to a hospital is the number of patients it matches from that
hospital. Finally, a mechanism is strategyproof if revealing all the patients is a dominant strategy
for all hospitals.

To see that this problem is hard, we prove note that a deterministic stratefyproof mechanism cannot
do better than a 2-approximation for this problem even with only two hospitals. Consider the graph
G in figure (a). Every maximum matching of G has size 3 and leaves some vertex out. This means
that either the mechanism gives the grey hospital 2 matches or the white hospital 3 matches.

If the former is true, then the G′ in figure (b) can only match one pair because otherwise the
white hospital can hide the dashed vertices and guarantee themselves a utility of 4, contradicting
strategyproofness. Similarly, if the latter is true, then G′′ in figure (c) can only match one pair
because otherwise the grey hospital could hide the dashed vertices and guarantee themselves a
utility of 3, contradicting strategyproofness. However, OPT is size 2 for both G′ and G′′ which
shows that strategizing can hurt the optimum. However, Ariel doesn’t know any examples where
one hospital’s strategizing leads to a decrease in social welfare so all of them must strategize and
all at the same time.

In the homework, we’re asked to prove that a randomized algorithm cannot do better than 1n
8/7-approximation, but we can actually get a 6/5 lower bound with marginally more effort.

3 MATCH{{1},{2}}

Our first attempt at solving this problem will be a deterministic one. Consider matchings that
maximize the number of ”internal edges”. Then among these matchings pick the one that gives the
best cardinality. This mechanism is called the MATCH{{1},{2}} mechanism. We’ll first prove that
it’s strategyproof. then that it is a 2-approximation mechanism.

Theorem 3.1. MATCH{{1},{2}} is strategyproof.

Proof. Let M be the OPT and M ′ the matching after player 1 manipulated his set. M ′ includes
the hidden edges and the mechanism edges. Consider the symmetric difference M4M ′ of M and
M ′. Since both M and M ′ are matchings, their M4M ′ is a maximum degree 2 graph. These
graphs are fully characterized as the disjoint union of paths and cycles. Again since M and M ′ are
matchings, two edges that are incident on the same vertex in M4M ′ cannot both come from M
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or both come from M ′. This means that each path or cycle in M4M ′ is made up of alternating
edges from M and M ′. So cycles are of even size and have just as many edges in M and M ′. This
means every vertex of a cycle in M4M ′ is matched by either matching, so each player would be
indifferent to the choice between the two matchings.

The only other thing M4M ′ can contain is alternating paths. So, take a path and let P be its M
edges and P ′ be its M ′ edges. Denote by Pij the edges of P between players i and j. Similarly,
denote by P ′ij the edges of P between players i and j. Now we do some casework:

• Suppose first that |P11| = |P ′11|. We also know that |P22| = |P ′22| since player 2 didn’t
hide anything. We also know that M is a maximum cardinality matching subject to being
maximum cardinality on V1 and V2 individually, so we also have |P12| ≥ |P ′12| for the remaining
edges. Putting it all together shows that M is at least as good as M ′ for player 1:

u1(P ) = 2|P11|+ |P12| ≥ 2|P ′11|+ |P ′12| = u1(P ′)

• Or we can have |P11| > |P ′11| (alternatively |P11| ≥ |P ′11|+ 1) . We claim that |P12| ≥ P ′12− 2.
To see this, we first decompose the path into subpaths P1, . . . , Pn which are alternately
contained in V1 and V2 and connected by edges that cross the different hospital sets. Any
such subpath completely contained in V2 must have even length. Otherwise we can switch to
the edges of one of the matchings and make get a matching that’s higher cardinality on V2.
But this is impossible since player 2 is gave perfect information and the mechanism optimized
for the number of matches in V2. This means that every time we switch back and forth
between V1 and V2, whenever we enter V2 with an edge in M , we leave with M ′ and vice
versa. This pairs up the vertices of M and M ′. The only difference can be in the first and
last edges where we may lose 2 edges, i.e. |P12| ≥ P ′12 − 2. Once again M is at least as good
as M ′ for player 1:

u1(P ) = 2|P11|+ |P12| ≥ 2(|P ′11|+ 1) + |P ′12| − 2 = u1(P ′)

Since in each case player 1 is just as well off by revealing all patients, the mechanism is strategyproof.

Theorem 3.2. MATCH{{1},{2}} is a 2-approximation mechanism.

Proof. Any matching by the mechanism is inclusion maximal. Given any maximum matching on
G and any edge in that matching, an inclusion maximal matching must match one of the endpoints
of that edge or it wouldn’t be maximal. So there are at most 2 vertices in a maximum matching
for each vertex in a maximal matching and we have a 2-approximation as claimed.

Since we proved above that a deterministic mechanism cannot give an approximation guarantee
better than a factor of 2, this is the limit of what can be done deterministically. The algorithm
generalizes naturally to n-players and the approximation guarantee is still valid for any number
of players. However, if there are more than 2 players, then the mechanism is not necessarily
strategyproof so we need a different idea to go on.

This motivates the MATCHΠ which is a different generalization of the MATCH{1},{2} mechanism.
With this new mechanism, we fix a partition Π = (Π1,Π2) be a bipartition of the players. The
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mechanism then rules out external edges between different players on the same side of the partition
and returns a maximal cardinality matching from among the matchings that match a maximal
number of patients at each hospital internally. This turns out to be strategyproof for any parti-
tioning of the players. However, there’s no approximation guarantee. This can easily be seen from
the fact that all players can end up on the same side of the partition and that there might be no
internal transplants to be made at any of the hospitals.

4 MIX-AND-MATCH

To solve the problems mentioned above, we introduce a mechanism called MIX-AND-MATCH.
This new mechanism is strategyproof and gives a 2-approximation, but is randomized. It works
by picking a random partition Π of the players and running MATCHΠ. Note we’re not using ran-
domness here to achieve strategyproofness. As we mentioned above, regardless of the partition we
choose, MATCHΠ is strategy proof already. We’re introducing randomness to fix the approxima-
tion guarantee of MATCHΠ. So a hospital isn’t just making its expected utility better by being
honest, it’s making its actual utility in every case better.

Theorem 4.1. MIX-AND-MATCH is a 2-approximation mechanism.

Proof. Let M∗ be the optimal matching and M∗∗ be the union of the maximum cardinality match-
ings of V1, . . . , Vn using only internal edges. We will create a new matching M ′ as follows. For each
path P in M∗4M∗∗, if M∗∗ has more internal edges in P then we add M∗∗ ∩ P to M ′. Otherwise
we add M∗∗ ∩ P to M ′. As with MATCH{{1},{2}}, we don’t need to worry about cycles. With this
construction, M ′ has the following properties:

• M ′ is maximum cardinality on each Vi individually.

• For every internal edge M ′ gains relative to the optimal matching, it loses at most 2 external
edges. For a matching M , we use the notation Mij to denote M ∩ G[V1, V2]. Using this
notation:

∑
i

|M ′ii| − |M∗ii| ≥
1

2

∑
i 6=j
|M∗ij | − |M ′ij |

∑
i

|M ′ii|+
1

2

∑
i 6=j
|M ′ij | ≥

∑
i

|M∗ii|+
1

2

∑
i 6=j
|M∗ij |

Now we fix Π and let Mπ be the matching returned by MATCHΠ. Since our mechanism returns
the highest cardinality matching on the given graph subject to returning a maximum cardinality
matching for each hospital individually:∑

i

|MΠ
ii |+

∑
i∈Π1,j∈Π2

|MΠ
ij | >

∑
i

|M ′ii|+
∑

i∈Π1,j∈Π2

|M ′ij |

Finally, we can calculate the expected size of the matching Mπ returned by the mechanism. Noting
that all external edges must be crossing the partition:
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E[|M |Π] =
1

2n

∑
Π

∑
i

|MΠ
ii |+

∑
i∈Π1,j∈Π2

|MΠ
ij |


≥ 1

2n

∑
Π

∑
i

|M ′ii|+
∑

i∈Π1,j∈Π2

|M ′ij |


≥

∑
i

|M ′ii|+
1

2n

∑
Π

∑
i∈Π1,j∈Π2

|M ′ij |

≥
∑
i

|M ′ii|+
1

2

∑
i 6=j
|M ′ij |

≥
∑
i

|M∗ii|+
1

2

∑
i 6=j
|M∗ij |

≥ 1

2

∑
i

|M∗ii|+
1

2

∑
i 6=j
|M∗ij | =

1

2
|M∗|

where we went from line 3 to 4 by noting that an edge crosses a random partition with probability
1/2 and all the other inequalities follow from ones mentioned above. This completes the proof.

Unlike with the deterministic case, we didn’t get a tight approximation guarantee and there’s still
quite a gap from 6/5 to 2 to close up.
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