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Outline

What is machine learning?



Introduction: digit classification

The task: write a program that, given a 28x28 grayscale image of a
digit, outputs the string representation
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Digits from MNIST dataset
(http://yann.lecun.com/exdb/mnist/)


http://yann.lecun.com/exdb/mnist/

One approach: try to write a program by hand that uses your a priori
knowledge of digits to properly classify the images

Alternative method (machine learning): collect a bunch of images
and their corresponding digits, write a program that uses this data to
build its own method for classifying images

(More precisely, this is a subset of machine learning called
supervised learning)
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A supervised learning pipeline



A supervised learning pipeline
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Unsupervised learning
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Outline

Supervised learning: regression



A simple example: predicting electricity use

What will peak power consumption be in the Pittsburgh area
tomorrow?

Collect data of past high temperatures and peak demands
High Temperature (F) | Peak Demand (GW)

76.7 1.87
72.7 1.92
71.5 1.96
86.0 2.43
90.0 2.69

87.7 2.50
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Several days of peak demand vs. high temperature in Pittsburgh



Hypothesize model
Peak demand ~ 6 - (High temperature) + 6o

for some numbers 67 and 65

Then, given a forecast of tomorrow’s high temperature, we can
predict the likely peak demand by plugging it into our model



Equivalent to “drawing a line through the data”
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Notation

Input features: z() e R”, i=1,...,m
high temperature for day ¢

- Eg:z( eR?= 1

Output: y(*) € R (regression task)
- Eg.: ¥ € R = {peak demand for day i}

Model Parameters: 0 ¢ R"

Hypothesis function: hy(z) : R” — R
- Hypothesis function: hg () returns a prediction of the output y, e.g.
linear regression

ho(z) =276 = inei
i=1



Loss functions

How do we measure how “good” a hypothesis is on the training
data?

Typically done by introducing a loss function

(:RxR >R,

Intuitively, this function outputs a “small” value if hy () is “close” to
y, alarge value if it is “far” from y

E.g., for regression, squared loss

(ho(x),y) = (ho(z) — 3)?



The canonical machine learning problem

Given a collection of input features and outputs (z(*), y()),
i =1,...,m, and a hypothesis function hy, find parameters 6 that
minimize the sum of losses

minimize ie (hg(:c“)), y(i)>

i1=1

Virtually all learning algorithms can be described in this form, we just
need to specify three things:

1. The hypothsis class: hg
2. The loss function: ¢

3. The algorithm for solving the optimization problem (often
approximately)



Return to power demand forecasting

X Observed data
Linear regression prediction
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Linear hypothesis class: hg(z) = z76
Squared loss function: £(hg(y), y) = (he(z) — y)?

Resulting optimization problem

miniemize gﬁ <h9(x(i)), y(i)) = miniamize Z (x(")Ta _ y(i)>2



Linear regression

Gradient descent to solve optimization problem
2 : ) ( 2
C . (i 1 9 — i))
mlnbmlze et (ZL‘ Yy

Gradient is given by

T S )

=1

Gradient descent, repeat: 8 + 0 — « Z z(0) (ac(") T9 - y(i))
i=1



In this case, we can also directly solve for Vg f(6) = 0

1=1
— (Z xmm(i)T) 0r =3 2y
i=1 i=1
m -1 m
— P = (Z xmw(z’)T) (Z $<z>y<z>>
i=1 i=1

Squared loss is one of the few cases that such directly solutions are
possible, usually need to resort to gradient descent or other
methods
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Alternative loss functions

Why did we choose the squared loss function

0 (hg(x),y) = (ho(z) — )7

Some other alternatives
Absolute loss:  £(hg(z),y) = |hg(x) — y|
Deadband loss:  £(hg(z),y) = max{0, |hg(z) — y| — €}, e € Ry

4 —— Squared Loss
—— Absolute Loss
Deadband Loss

Loss
N

20



For these loss functions, no closed-form expression for 6*, but
(sub)gradient descent can still be very effective

E.g., for absolute loss and linear hypothesis class

Repeat : 6 + 6 — « in: z@sign (g;(i) Ty _ y(i))
=1

Can also solve for nonsmooth losses using constrained optimization
(and libraries like cvxpy)

21
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Probabilistic interpretation

Suppose that the each output y in our data really is equal to the
hypothesis function for that example hg (), just corrupted by
Gaussian noise €

y=hy(z)+e

The probability density of a Gaussian variable given by
(©) 1 €2
€) = exp | —=—
P 2mo P 202

Subsituting terms, we can use this expression to write the
probability of y given = (parameterized by 6)

) — )2
p(ylz;0) = J;%exp<_W>

23



Consider the joint probability of all training data (assuming samples
are independent and identically distributed)

m

[Tr(y"1=1;0)

i=1

p(y(l), . y(m)|x(1), . ,x(m); 0)

Find the parameters that 8 maximize the probability of the data

max(igmize il;[lp(y(“\x“);e) = minigmize —;logp(y(i)]x(i);e)

VR 1 ; .
= minimize ; <log(\/ﬂo) + ﬁ(he(x( )) _ y( )) )

= minimize Z(he(x(i)) ON

=1

24



This is a procedure known as maximum likelihood estimation, a
common statistical technique

Note that we still just pushed the question of “which loss” to “which
distribution”

- But some distributions, like Gaussian, may have reasonable empirical
or theoretical justifications for certain problems

25



Stochastic gradient descent

As mentioned, the optimization problems we deal with in machine
learning are of the form

m

inimi (1) (8

minimize Zé(hg(x ), y**)
=1

Procedurally, gradient descent then takes the form:

function # = Gradient-Descent({(z("), (")}, hy, £, )
Initialize: 8 < 0
Repeat until convergence

g+« 0
For:=1,...,m:

g < g+ Vol(hg(z")), y)
0+ 0—ag

return 0

26



If the number of samples m is large, computing a single gradient
step is costly

An alternative approach, stochastic gradient descent (SGD), update
the parameters based upon gradient each sample:

function § = SGD({(z", y())}, hy, £, @)
Initialize: 6 « 0
Repeat until convergence

Fori=1,...,m:
0« 0 — aVel(hg(z™), y®)
return 0

Can be viewed as taking many more steps along noisy estimates of
the gradient, and often converges to a “good” parameter value after
relatively few passes over the data set

27
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Supervised learning: classification

47



Classification problems

Sometimes we want to predict discrete outputs rather than
continuous

Is the email spam or not? (YES/NO)

What digit is in this image? (0/1/2/3/4/5/6/7/8/9)

48



Example: classifing household appliances

Differentiate between two refrigerators using their power
consumption signatures
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Notation

Input features: () ¢ R", i=1,...,m
- E.g.: () € R® = (Duration i, Power i, 1)

Output: y(i) € {—1,+1} (binary classification task)
- Eg. y() =Isit fridge 1?

Model Parameters: 0 ¢ R"

Hypothesis function: hy(z) : R” — R
- Returns continuous prediction of the output y, where the value
indicates how “confident” we are that the example is —1 or +1;
sign(hy(z)) is the actual binary prediction

- Again, we will focus initially on linear predictors hg(z) = zT

50



Loss functions

Loss function £ : R x {—1,+1} — R4

Do we need a different loss function?
Y
+1 X X

51



Loss functions

Loss function £ : R x {—1,+1} — R4

Do we need a different loss function?
Y
+1 X X X

0 >
—— Least squares

X
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Loss functions

Loss function £ : R x {—1,+1} — R4

Do we need a different loss function?
Y
+1 X X X

0 >
—— Least squares
—1+X X —— Perfect classifier

X

51



The simplest loss (0/1 loss, accuracy): count the number of
mistakes we make

0 otherwise

g(h@(ﬂ?), y) _ { L ify 7& sign(hg(x))

— 1{y - hy(z) < 0}

Loss
-

0.5

52



Unfortunately, minimizing sum of 0/1 losses leads to a hard
optimization problem

Because of this, a whole range of alternative “approximations” to 0/1
loss are used instead

Hinge loss:  ¢(hg(z),y) = max{1l — y - hy(z),0}
Squared hinge loss:  £(hg(z), y) = max{1 — y - hy(z),0}?
Logistic loss:  £(hg(z),y) =log(1 + e~ ¥ he(x))
Exponential loss:  £(hg(z),y) = e ¥"(@)

53
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Common loss functions for classification
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Support vector machines

Support vector machine is just regularized hinge loss and linear
prediction (caveat, also common to use “kernel” hypothesis
function, more later)

mini@mize Z max{1 — y@ . z() T9, 0} + A Z 62
i=1 =1

Gradient descent update, repeat:

0:=0—« (— Z y g1 {40 ORI 1} + 2)\291')
i=1

=1

55
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Logistic regression

Logistic regression uses logistic loss

m n
aT
miniemize + Z log(1 + ey DR Z 6?
i=1 i=1

Again, gradient descent is a reasonable algorithm (can you derive an
equation for the gradient?)

57
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Probabilistic interpretation of logistic regression

Like least squares, logistic regression has a probabilistic
interpretation

For binary classification problem, suppose that

1
p(yle:0) = 1 exp(—y - ho(z))

and for each data point z(*), (%) is sampled randomly from this
distribution

hen
inimize — Y 1 (1.9
minimize ; 1 og p(y'"|z\";0)
pr— ] ] 1 —_— (l) . (7/)
= minimize log (1 + exp ( y\" - hy(z )))

59



Multi-class classification

When classification is not binary y € 0,1, ..., k (i.e., classifying digit
images), a common approach is “one-vs-all” method

Create a new set of y’s for the binary classification problem “is the
label of this example equal to j”

o f 1 iy =y
Y71 =1 otherwise

and solve for the corresponding parameter 67

For input z, classify according to the hypothesis with the highest
confidence: argmax; hg; (z)

60



Non-linear classification

Same exact approach as in the regression case: use non-linear
features of input to capture non-linear decision boundaries

2500

2000

1500

1000

Duration (seconds)

500

120 160 180 200
Power (watts)

Classification boundary of support vector machine using non-linear
features
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Outline

“Non-linear” regression, overfitting, and model selection
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Peak Hourly Demand (GW)

Several days of peak demand vs. high temperature in Pittsburgh over
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Overfitting

Though they may seem limited, linear hypothesis classes are very
powerful, since the input features can themselves include non-linear
features of data

| (high temperature for day i)?
W e R? = high temperature for day
1

In this case, hg(z) = 270 will be a non-linear function of “original”
data (i.e., predicted peak power is a a non-linear function of high
temperature)

Same solution method as before, gradient descent or (for squared
loss) analytical solution

31
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Training and validation loss

Fundamental problem: we are looking for parameters that optimize
m
nimize o (i),(i)
minimiz ;1 (ho(z'"), y'*)

but what we really care about is loss of prediction on new examples
(z',y") (also called generalization error)

Divide data into training set (used to find parameters for a fixed
hypothesis class hy), and validation set (used to choose hypothesis
class)

- (Slightly abusing notation here, we're going to wrap the “degree” of
the input features into the hypothesis class hy)

35
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General intuition for training and validation loss

A
— Training
— Validation

Loss

Model Complexity

We would like to choose hypothesis class that is at the “sweet spot”
of minimizing validation loss

39



10

Training
Validation

10

0 5 10 15 20 25 30
Degree of polynomial

Training and validation loss on peak demand prediction

40



Model complexity and regularization

A number of different ways to control “model complexity”

An obvious one we have just seen: keep the number of features
(number of parameters) low

A less obvious method: keep the magnitude of the parameters small

41



Intuition: a 30th degree polynomial that passes exactly through
many of the data points requires very large entries in 6
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We can directly prevent large entries in 6 by penalizing the
magnitude of its entries

Leads to regularized loss minimization problem

mlmmlze Z ¢ (h,g ) + A Z 92

where \ € R is a regularization parameter that weights the relative
penalties of the size of 8 and the loss

43
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Peak Hourly Demand (GW)
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Evaluating ML algorithms

The proper way to evaluate an ML algorithm:

1. Break all data into training/testing sets (e.g., 70%/30%)
2. Break training set into training/validation set (e.g., 70%/30% again)
3. Choose hyperparameters using validation set

4. (Optional) Once we have selected hyperparameters, retrain using all
the training set

5. Evaluate performance on the testing set

46



Outline

Other machine learning algorithms
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Kernel methods

Kernel methods are a very popular approach to non-linear
classification, though they are still “linear” in some sense

ho(z) =Y 0:K(z,27)
=1

where K : R" x R™ — R is a kernel function that measures the
similarity between x and z(?) (larger values for more similar)

For certain K, can be interpreted as working in a high dimensional
feature space without explicitly forming features

Still linear in 6, can use many of the same algorithms as before

Important: 6 € R™, as many parameters as examples
(nonparametric approach)

63



Nearest neighbor methods

Predict output based upon closest example in training set
he(z) = y(argmini lle—z()||2)

where ||z|? = Y0, 22

Can also average over k closest examples: k-nearest neighbor

Requires no separate “training” phase, but (like kernel methods) it is
nonparametric, requires that we keep around all the data

64



Neural networks
Non-linear hypothesis class
ho(z) = o (63 o(O] x))

for a 2-layer network, where § = {©; € R"*? §, € RP and
o : R — Ris a sigmoid function o(z) = 1/(1 + exp(—2)) (applied
elementwise to vector)
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Non-convex optimization, but smooth (gradient and similar methods
can work very well)

Some major recent success stories in speech recognition, image
classification

66



Decision trees

Hypothesis class partitions space into different regions

x222
d

Can also have linear predictors (regression or classification) at the
leaves

Greedy training find nodes that best separate data into distinct
classes

67



Ensemble methods

Combine a number of different hypotheses
k
ho(z) =) Oisign(hy(x))
i=1

Popular instances

- Random forests: ensemble of decision trees built from different
subsets of training data

- Boosting: iteratively train multiple classifiers/regressors on reweighted
examples based upon performance of the previous hypothesis

68



Unsupervised learning

Outline
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Problem setting

Input features: () e R", i=1,...,m
Model parameters: § ¢ R”

How do we specify a hypothesis class or loss function without
outputs?
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One way to interpret many unsupervised learning algorithms is that
they try to “re-create” the input using a limited hypothesis class

Hypothesis function: hy : R” — R"”

- Want hg(z(V) ~ z(*) for all training data

Loss function: /: R" x R" — R

- Eg., U(ho(2),7) = |[ho(z) — ||

In order to prevent the trivial solution hg(z) = z, we need to restrict
the class of allowable functions Ay

73



k-means
Parameters are a set of k£ “centers” in the data
0=1{uW,....u®}, p e R

Hypothesis class picks the closest center

ho(z) = plereming [z—O)

With this framework, training looks the same as supervised learning

. (i) _ (4)y]12
mlnlemlzeZHJU ho(z')||

=1

Not a convex problem, but can solve by iteratively finding the closest
,u(i) for each example, then setting ,u(i) to be the mean of all
examples assigned to it
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Principal component analysis

Parameters are two matrices that reduce the effective dimension of
the data, = {©; € R"** 0, ¢ R¥*"} with k < n

Hypothesis class hg(z) = ©102z

Interpretation: to reconstruct data, ©,z € R¥ needs to preserve
“most” of the information in z (dimensionality reduction)

Minimizing loss
01,02

minirélizez1 |z — ©,092"|2

is not a convex problem, but can be solved (exactly) via an
eigenvalue decomposition
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