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Deep Learning & Computer Vision:
Review & Overview

Neural networks & nodes as features
Nonlinearity: choices, implications for learning
Benefits of deep over shallow

How to train/fit/learn

New ideas for tackling vision applications
What if we don’t have much data?



Deep Learning & Computer Vision:
Review & Overview

* Neural networks & nodes as features



Recall: Supervised ML

Input features z(%) € R™

Outputs ¥(¥ € Y (e.g. R, {—1,+1}, {1,...,p})
Model parameters 0 € R*

Hypothesis function hg : R* — R

Loss function£: R x Y — R

Machine learning optimization problem

m
e (3)y ,,(%)
minimize ;zl L(ho(z\"), y*")



Neural Networks for Classification

Can interpret “z”s as features

Output class is
computed based on
these features
instead of directly on
input x




Why Do We Want Hidden “Features”?

 May help us generalize to new input (easier
and more robust to identify people by wearing
hats than that pixel346 is red)

— Can be useful for interpretation

e Can equivalently just be viewed as allowing
more complex function class to relate input x
and outputy



Object detection

Where are
the objects of
Interest?




Improvements in Object Detection
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HOG: Dalal-Triggs 2005
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Better Models of
Complex Categories

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012



Improvements in Object Detection
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Key Advance: Learn effective features from Better Features
massive amounts of labeled data and
adapt to new tasks with less data

HOG: Dalal-Triggs 2005 DPM: Felzenszwalb et al. 2008-2012 Regionlets: Wang et al. 2013  R-CNN: Girshick et al. 2014



CONV NETS: EXAMPLES

- Scene Parsing

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013



Deep Learning & Computer Vision:
Review & Overview

* Nonlinearity: choices, implications for learning



Ideal Features Are Non-Linear

ideal - club, angle = 90

- man, frontal pose

- club, angle = 270

- man, frontal pose
Extractor

Ideal - club, angle = 360
=g Feature - man, side pose

Extractor
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Ideal Features Are Non-Linear

Ideal - club, angle = 90

- man, frontal pose

INPUT IS |
NOT THE
AVERAGE! *

- club, angle = 270
- man, frontal pose

- club, angle = 360
- man, side pose
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Ideal Features Are Non-Linear

Ideal
, Blag Feature
: Extractor

- club, angle = 90
- man, frontal pose

Ideal
e g Feature
Extractor

- club, angle = 270
- man, frontal pose

e

Ideal - club, angle = 360
- man, side pose
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NonLinear Transformation

* Increases expressive power

— Universal function approximator with 1 hidden
layer

* When chaining nonlinear transformations,
makes optimization harder
— Not convex

— Potentially lots of local optima



Which NonLinear Functions to Use?

Activation Functions o(z)=1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a

G saturating “firing rate” of a neuron

10F e —

2 BIG problems:
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Which NonLinear Functions to Use?

Activation Functions o(z) =1/(1+e™7)
- Squashes numbers to range [0,1]
o - Historically popular since they
st / have nice interpretation as a
osf/ saturating “firing rate” of a neuron

2 BIG problems:

..........

1. Saturated neurons “kill” the
Sigmoid gradients



Which NonLinear Functions to Use?

Activation Functions o(z)=1/(1+e")
- Squashes numbers to range [0,1]
e - Historically popular since they
o have nice interpretation as a
osff saturating “firing rate” of a neuron

2 BIG problems:
o 5 |
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1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered



Consider what happens when the input to a neuron is
always positive...

f Z’wzﬂ?z‘ +b

What can we say about the gradients on w?



Consider what happens when the input to a neuron is

always positive... owed
gradient
update
directions
|
f E wz :Bz _I_ b allowed 219 za9 path
- gradient
(] update
directions
hypothetical
What can we say about the gradients on w? optimal w
vector

Always all positive or all negative :(
(this is also why you want zero-mean data!)



Activation Functions

f - Squashes numbers to range [-1,1]
....... FT—— - zero centered (nice)
- - still kills gradients when saturated :(




Activation Functions

....................




Deep Learning & Computer Vision:
Review & Overview

e Benefits of deep over shallow



Learning Non-Linear Features

features

Q.: which class of non-linear functions shall we consider?



Learning Non-Linear Features

Given a dictionary of simple non-linear functions: g,,..., g,
Proposal #1: linear combination f(x)~2, g,
| | f\

Proposal #2: composition f(x)~g,(g,(...g, (x)...))

e




Learning Non-Linear Features

Given a dictionary of simple non-linear functions: g,,..., g,

Proposal #1: linear combination f(x)~, g,
» Kernel learning \0\“
= Boosting 0\
. S

Proposal #2: composition f(x)~g,(g,(...g (x)...))

s Deep learning
s Scattering networks (wavelet cascade) QQ
»S.C. Zhou & D. Mumford “grammar” 9

16



# Theoretician's dilemma: “We can approximate any function as close as we
want with shallow architecture. Why would we need deep ones?”

P
y=> oKX, X) y=FW" .FW"X))
1=1

» kernel machines (and 2-layer neural nets) are “universal”,

& Deep learning machines

y=FW" FOW* LR F(WY.X)...)))

@l Deep machines are more efficient for representing certain classes of
functions, particularly those involved in visual recognition

» they can represent more complex functions with less “hardware”

@ We need an efficient parameterization of the class of functions that are
useful for “AI"” tasks (vision, audition, NLP...)



Computer Vision: Earlier Approaches
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Solution #1:  Freeze first N-1 layers (engineer the features)
Essentially turns it into shallow learning



Computer Vision: Now

Optimization is difficult: non-convex, non-linear system

Solution #2: live with it!
It will converge to a local minimum.

It iIs much more powerful!!



Deep Learning in Practice

Optimization is easy, need to know a few tricks of the trade.

Q: What's the feature extractor? And what's the classifier?

A No distinction, end-to-end learning!



Deep Learning & Computer Vision:
Review & Overview

 How to train/fit/learn



Stochastic gradient descent for neural networks

Recall that stochastic gradient descent computes gradients with
respect to loss on each example, updating parameters as it goes

function SGD({(z®), y(V)}, ke, £, @)
Initialize: Wj, b; <~ Random, j =1,...,k
Repeat until convergence:
Fori:=1,...,m:
Compute Vw, 5, £(he(z)),y ), j=1,...,k—1
Take gradient steps in all directions:
Wj < W — aVw,L(hg(z),yV), j=1,... .k
bj < b; — aVy L(hg(zV),yD), j=1,...,k
return { W}, b; }

So how do we compute the gradients V iy, 5, £(hg(z(¥), y(*)), this
IS a complex function of the parameters



Backpropagation

Backpropagation is a method for computing all the necessary
gradients using one “forward pass” (just computing all the values at
layers), and one “backward pass” (computing gradients backwards

in the network)

The equations sometimes look complex, but it's just an application
of the chain rule of calculus



Deep Learning & Computer Vision:
Review & Overview

* New ideas for tackling vision applications



tional Neural Network

Convolu

RELU RELU
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http://cs231n.github.io/



Standard Neural Network

iInput layer

hidden layer 1 hidden layer 2

 Each internal node is connected to all nodes in prior layer
 Each node in the same layer independent (separate set of weights)



CNN
- uses volumes

- - > > T
.I.A.ﬂ.

OOOQOK:

Output is scores for each

E%j :eight End. Of the possible classes
width are the size Depth ~= # of classes

of the image Height=width=1
Depth = 3 color

values per pixel



FULLY CONNECTED NEURAL NET

Example: 1000x1000 image

node which is a linear
combination of input?

e How many weight
O parameters for a single
®
®
®

w
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FULLY CONNECTED NEURAL NET

Example: 1000x1000 image
~ 1M hidden units
m) 10712 parameters!!!

- Spatial correlation is local
- Better to put resources elsewhere! .

w
Ranzato"



LOCALLY CONNECTED NEURAL NET

S\ Example: 1000x1000 image
— N & 1M hidden units
Filter size: 10x10

100M parameters

Filter/Kernel/Receptive field:
‘ input patch which the hidden unitis _,
connected to.

]
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Volumes and Depths

Ao
|| E===Seyelore
AN

Each node here has the same input but
different weight vectors (e.g. computing
different features of same input)




Z( wo

Nodes: same structure as before, but input i
is only over a restricted width and height Son oM & newion WoZo
(but the complete depth) of a prior volume
m : (Zw,—,mi +b>

Think of node as a filter over input e - S wizi +b|f " g

: output axon

activation
Wy Ty function
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What is the size of the volume in the next
layer? Depth, Stride, Zero Padding

32
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Each node here has the same input but
different weight vectors (e.g. computing
different features of same input)




Stride and Zero Padding

Ouptut

1

E3
/0

Input

4

XU

-3

Stride: how far (spatially) move over filter

Zero padding: how many Os to add to either side of input layer




Stride and Zero Padding
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Input
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Stride: how far (spatially) move over filter

Zero padding: how many Os to add to either side of input layer




What is the Stride and the Values in
the Second Example?







LOCALLY CONNECTED NEURAL NET

STATIONARITY? Statistics are
similar at different locations
(translation invariance)

73
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CONVOLUTIONAL NET
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CONVOLUTIONAL NET

E.g.: 1000x1000 image
100 Filters

Filter size: 10x10
10K parameters

75
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CONVOLUTIONAL LAYER

output feature map

3D kernel

77

Input feature maps 8
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CONVOLUTIONAL LAYER

output feature maps

&
\\-—
Input feature maps
NOTE: the nr. of output feature maps is e

usually larger than the nr. of input feature maps Ranzato® 4




Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)

X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0 0 O i 11 6 2
o 128 12 9 6 3
0 2 O 121 6N &2
0O 0 O o[:,:,1]
0 2 1 -1 1 1
0 1 1 4 0 |-3
0 0 0 -6 -6 -3
X[:,:,1]
0 0 O
0N 2
0 1 O
0 1 1
L R
L R
0 0 O




Special Layers

* Pooling

e Contrast Normalization (No More Used It
Seems)



224x224x64
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pool
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112x112x64
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e 112
downsampling
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MAX POOLING

Single depth slice

>

How many model parameters does this introduce into learning model?

1112 4
max pool with 2x2 filters
S| 6|7 |8 and stride 2
312 (1|0
112 | 3| 4
y




Fully Connected
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Last Layer

RELU RELU
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Deep Learning & Computer Vision:
Review & Overview

e What if we don’t have much data?



 Want to build a “is parking spot 3A outside of
Wean Hall free” detector

* Have 100 pictures (1 an hr, taken over last few
days) with labels as free or not free

* Can deep learning help?



Yes! Transfer Learning



Yes! Transfer Learning

e Use features from a really large dataset (e.g.
N-1 layers of CNN) and just retrain final fully

connected layer

e Start from an existing trained CNN and then
train a bit further



Predicting Poverty Using Deep Transfer




What You Should Know

Neural networks & nodes as features

— Internal nodes can be viewed as features

— Make more complicate function mapping input to output
Benefits of deep over shallow

— Number of parameters need to express complicated function may be way smaller

— Important in terms of amount of data to train / fit classifier
Nonlinearity: choices, implications for learning

— Sigmoid (bad), ReLu (good)

— Increases ezpressive power (1 hidden layer, universal approximator)

— Optimization harder (not convex, many local optima)
How to train/fit/learn

— Gradient descent, backpropagation

— Be able to derive gradient for simple case and use to update w
New ideas for tackling vision applications

— Convolutional networks

— Reduce # parameters, exploit nodes as filters

— How many parameters are involved?

— Define common node types: conv, pooling, fully connected
What if we don’t have much data?

— Transfer learning!

— Learn features using big data, then use for other applications



