15-381/781
Fall 2016

Deep Learning

Instructors: Ariel Procaccia and Emma Brunskill
Slides courtesy of Zico Kolter

Emma

Emma

Emma
15-381/781
Fall 2016

Deep Learning

Instructors: Ariel Procaccia and Emma Brunskill
Slides courtesy of Zico Kolter

Outline

Introduction

0.6 #neural network / #machine learning

0.5}

0.4t

0.3}

0.2t

0.1}

0

.0
1980 1985 1990 1995 2000 2005 2010 2015

Google scholar counts of papers containing “neural network” divided
by count of papers containing “machine learning”

#neural network / #machine learning

0.6
Facebook launches Al research
05 center, Google buys DeepMind
0.4
“AlexNet” deep neural network
wins ImageNet 2012 contest
0.3F

Popularization of backprop

for training neural networks . .
Academic papers on unsupervised

pre-training for deep networks

0.0
1980 1985 1990 1995 2000 2005 2010 2015

A non-exhaustive list of some of the important events that impacted
this trend

“AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012
competition with a Top-5 error rate of 15.3% (next best system with
highly engineered features based upon SIFT got 26.1% error)

Max
pooling

mite

container ship

motor scooter

mite container ship motér scooter pard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

= 5 7 ~

-

y
grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey
pickup Jjelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Some classification results from AlexNet

Google Deep Dream software: adjust input images (by gradient
descent) to strengthen the activations that are present in an image

"f

Question answering network (Vinyals and Le, 2015), using sequence
to sequence learning method (Sutskever et al., 2014)

<eos>

—>Xx

N U o B

L]

C <eos>

]

z

T
S
!

=—>
X—> =<

Context
(Previous Sentences)

Machine: hi
Human: hello
Machine: could you please let me know what are
the operating systems you are using ?

Human: i am using linux

Machine: ok it was in the ssi vpn on which you
stated it was broken

Machine: please check if you are logged in to
corp network

Machine: what is the error that you are running
please

Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?
Human: conneci

refused or hing like

Reply

Machine: is the network connect prompting for
any user certificate

Machine: ?

Human:
Machine: are you at home or at work at the mo-

es

ment ?
Machine: office ?
Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !
ine: great

that

Machine: may i know the version of network
connect you connect ?

Human: i am not sure i know that

Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> :)
Machine: have a nice night

AlphaGo (Silver et al., 2016) beats Lee Sedol in 5 game competition

Artificial intelligence: Google's AlphaGo
beats Go master Lee Se-dol

® 12 March 2016 = Technology

W
«00:00:27

A computer program has beaten a master Go player 3-0 in a best-of-five
competition, in what is seen as a landmark moment for artificial intelligence.

Google's AlphaGo program was playing against Lee Se-dol in Seoul, in South
Korea.

Outline

Machine learning with neural networks

Supervised learning setup

Input features z(9) € R™

Outputs ¥ € Y (e.9. R, {—1,+1}, {1,...,p})
Model parameters 6 € R*

Hypothesis function hg : R — R

Loss function £ : R x YV — R

Machine learning optimization problem

C i)y ()
minimize ;f(he(x) yt)

We mainly considered the linear hypothesis class
ho(z) = 6T p(2V)

for some set of non-linear features ¢ : R™ — R*

(Note: previously, we just directly included the non-linear features in
(9, but here we separate them for clarity)

Example

2" = [temperature for day]

Challenges with linear models

Linear models crucially depend on choosing “good” features

Some “standard” choices: polynomial features, radial basis
functions, random features (surprisingly effective)

But, many specialized domains required highly engineered special
features

- E.g., computer vision tasks used Haar features, SIFT features, every

10 years or so someone would engineer a new set of features

Key question: can we come up with an algorithm that will
automatically learn the features themselves?

Feature learning, take one

Instead of a simple linear classifier, let’s consider a two-stage
hypothesis class where one linear function creates the features,
another models the classifier

hg(.r) = W2¢(JJ) + by = WQ(W1$ + bl) + by
where

0= { W, e R b € R¥, W, € RY>** by € R}

Note that in this notation, we’re explicitly separating the parameters
on the “constant feature” into the b terms

Graphical depiction of the above function

But there is a problem:
ho(z) = Wo(Wiz + b)) + by = Wa + b (1)

in other words, we are still just using a normal linear classifier (the
apparent added complexity is not giving us any additional
representational power)

Neural networks

Neural networks are a simple extension of this idea, where we
additionally apply a non-linear function after each linear
transformation

ho(z) = fo(Wafi(Whz + b1) + b2)

where fi, fo : R — R are some non-linear functions (applied
elementwise to vectors)

Common choices for f; are hyperbolic tangent
tanh(z) = (e2* — 1)/(e?* + 1), sigmoid o(z) = 1/(1 + e~%), or
rectified linear unit f(z) = max{0, z}

tanh sigmoid relu

10 10— 40
35}
0.5t 0.8 30}
06l 1 st
0.0 2.0+
0.4 1 sl
-05 0ol 10f
0.5F

-1,

.0 0O0b—"". . . . oob—r v/
-4 -3-2-10 1 2 3 4 -4 -3-2-10 1 2 3 4 -4 -3-2-10 1 2 3 4

We draw these the same as before (non-linear functions are virtually
always implied in the neural network setting)

Middle layer z is referred to as the hidden layer or activations

These are the learned features, nothing in the data that prescribes
what values these should take, left up to the algorithm to decide

Properties of neural networks

It turns out that a neural network with a single hidden layer (and a
suitably large number of hidden units) is a universal function
approximator, can approximate any function over the input
arguments (but this is actually not very useful in practice, c.f.
polynomials fitting any sets of points for high enough degree)

The hypothesis class hg is not a convex function of the parameters
0 = {W;, b}, so we must resort to non-convex optimization
methods

Architectural choices (how many layers, how are they connected),
become important free parameters, more on this later

Deep learning

“Deep” neural networks refer to networks with multiple hidden layers

z9 24

>

21 =2
i@ ,
: | : e = hy(x)
d\ﬁ o

Wi, by W, by W, by

Mathematically, a k-layer network has the hypothesis function
Zig1 = fi(Wizi+ b;), i=1,....k—1, z1 =2
ho(x) = 2
where z; terms now indicate vectors, not entries into a vector

s@oel

20

Why use deep networks?

Motivation from circuits: many functions can be represented more
compactly using deep networks than one-hidden layer networks
(e.g. parity function would require (2™) hidden units in 3-layer
network, O(n) units in O(log n)-layer network)

Motivation from neurobiology: brain appears to use multiple levels of
interconnected neurons to process information (but careful, neurons
in brain are not just non-linear functions)

In practice: works better for many domains

21

Training neural networks

Outline

22

Optimizing neural network parameters

How do we optimize the parameters for the machine learning loss
minimization problem with a neural network

minimize Z;ahe(:c(“),y”))

now that this problem is non-convex?

Just do exactly what we did before: initialize with random weights
and run stochastic gradient descent

Now have the possibility of local optima, and function can be harder
to optimize, but we won’t worry about all that because the resulting
models still often perform better than linear models

23

Stochastic gradient descent for neural networks

Recall that stochastic gradient descent computes gradients with
respect to loss on each example, updating parameters as it goes

function SGD({ (2", y()}, hg, £,)
Initialize: W;, b; <~ Random, j =1,...,k
Repeat until convergence:
Fori:=1,...,m:
Compute Vi, 5, £(h(z), y M), j=1,... k-1
Take gradient steps in all directions:
W; + W; — aVw,l(hg(z¥), y @), j=1,...k
b + bj — aV, L(hg(z),y D), j=1,...k
return { W}, b;}

So how do we compute the gradients Vv, s, £(hg(z(")), y(*)), this
is a complex function of the parameters

24

Backpropagation

Backpropagation is a method for computing all the necessary
gradients using one “forward pass” (just computing all the values at
layers), and one “backward pass” (computing gradients backwards
in the network)

The equations sometimes look complex, but it’s just an application
of the chain rule of calculus

25

The Jacobian

One (last!) bit of multivariate calculus will help us derive the
backpropagation algorithm using purely matrix and vector

operations

For a multivariate, vector-valued function f : R — R™, the

Jacobian is a m x n matrix

Ofi(z) Ofi(z)
011

ox:

Ofa(z Ofa(z

Gf(x) c Rmxn — 32!151) 32$2)
Ox : :

Ofm(z) Ofm(z)
8%1 8z2

Ofi(z)
oz,
f ()
Oz

Oxy,

For a scalar-valued function f : R™ — R, the Jacobian is the

T
transpose of the gradient 8’(;(;3)

= V.f(x)

26

We'll use a few simple properties of the Jacobian to derive the
backpropagation algorithm for neural networks

Chain rule

9f(g(z)) _ 0f(9(x)) 9g(x)

Ox dg(z) Oz

Jacobian of a linear transformation, for A € R™*n

0Azx

=A
ox

If f is a function applied elementwise,

1) _ giagls'(2)

27

Derivation of backpropagation

Using the chain rule to compute derivatives:
(hg(x),y) _ Oz, y)

ob oby
8‘6(2/6) Y) azk
sz @bl

0z, y) Oz 5%—1 ' 3z3 02z
azk 8zk_1 6zk_2 822 abl

Furthermore, for any ¢
O0ziv1 Ofi(Wizi + b;) OWiz + by
0z; N OW;z; + b; 0z;
and
8Z¢+1 B afz(WzZl + bz) OW,z + b;
ob; N OW;z + b; 0b;

= diag(ﬁ(Wiz + bl)) Wi

= dlag(f (Wizi + bi))

If we compute derivatives with respect to all b;, and W; just using
this formula, we’d be repeating a lot of work (e.g. all the a%; terms
that appear in multiple derivatives)

Backpropagation caches these intermediate products, specifically
defining
T _ O0l(z,,y) Oz '”822'-&-1

9i = 3Zk 8zk_1 8zi
which can be computed recursively via the relationship
0z

9i = W (giz10f (Wiz + b))
where o denotes elementwise multiplication of vectors

Gradients can then be computed via
Vi l(hg(z),y) = git1 o f'(Wizi + bi)
Vwl(ho(x),y) = (gir10f' (Wizi + b))z

As mentioned, algorithmically backpropagation takes the form of
one forward pass (to compute z; terms) and one backward pass (to
compute g; terms) through the network
function Backpropagation(z, y, { W, bi,fi}f:_f,)
Initialize: z1 < x
Fori=1,...,k—1
Ziv1, % Ji(Wiz + bi), f(Wizi + b;)
L« Uz, y)
Ik < ng};’y)
Fori=%k—1,...,1
9i = WiT(giJrl o Zz(+1)
Vi, < git10 2,4
Vi, < (gi410 Z{+1)Zz‘T
return L, {vbz‘7 sz}fgll

30

Gradients can still get somewhat tedious to derive by hand,
especially for the more complex models that follow

Fortunately, a lot of this work has already been done for you

Tools like Theano
(http://deeplearning.net/software/theano/), Torch
(http://torch.ch/), TensorFlow
(http://www.tensorflow.org/) all let you specify the network
structure and then automatically compute all gradients (and use
GPUs to do so)

Autograd package for Python
(https://github.com/HIPS/autograd) lets you compute the
derivative of (almost) any arbitrary function using numpy operations
using automatic backpropagation

31

http://deeplearning.net/software/theano/
http://torch.ch/
http://www.tensorflow.org/
https://github.com/HIPS/autograd

What’s changed since the 80s?

All these algorithms (and most of the extensions in later slides), were
developed in the 80s or 90s

So why are these just becoming more popular in the last few years?

- More data
- Faster computers

- (Some) better optimization techniques

32

Unsupervised pre-training (Hinton et al., 2006): “Pre-train” the
newtork have the hidden layers recreate their input, one layer at a
time, in an unsupervised fashion
- This paper was partly responsible for re-igniting the interest in deep
neural networks, but the general feeling now is that it doesn’t help
much

Dropout (Hinton et al., 2012): During training and computation of
gradients, randomly set about half the hidden units to zero (a
different randomly selected set for each stochastic gradient step)

- Acts like regularization, prevents the parameters for overfitting to
particular examples

Different non-linear functions (Nair and Hinton, 2010): Use
non-linearity f () = max{0, z} instead of f(x) = tanh(z)

33

	Introduction
	Machine learning with neural networks
	Training neural networks
	Convolutional neural networks
	Recurrent neural networks
	Deep reinforcement learning

