
6\[SPUL

0U[YVK\J[PVU

4HJOPUL�SLHYUPUN�^P[O�UL\YHS�UL[^VYRZ

;YHPUPUN�UL\YHS�UL[^VYRZ

*VU]VS\[PVUHS�UL\YHS�UL[^VYRZ

9LJ\YYLU[�UL\YHS�UL[^VYRZ

+LLW�YLPUMVYJLTLU[�SLHYUPUN

�

Emma

Emma

Emma
15-381/781
Fall 2016

Deep Learning

Instructors: Ariel Procaccia and Emma Brunskill
Slides courtesy of Zico Kolter



6\[SPUL

0U[YVK\J[PVU

4HJOPUL�SLHYUPUN�^P[O�UL\YHS�UL[^VYRZ

;YHPUPUN�UL\YHS�UL[^VYRZ

*VU]VS\[PVUHS�UL\YHS�UL[^VYRZ

9LJ\YYLU[�UL\YHS�UL[^VYRZ

+LLW�YLPUMVYJLTLU[�SLHYUPUN

�



.VVNSL�ZJOVSHY�JV\U[Z�VM�WHWLYZ�JVU[HPUPUN�¸UL\YHS�UL[^VYR¹�KP]PKLK
I`�JV\U[�VM�WHWLYZ�JVU[HPUPUN�¸THJOPUL�SLHYUPUN¹

�



Popularization of backprop
for training neural networks

Academic papers on unsupervised
pre-training for deep networks

“AlexNet” deep neural network 
wins ImageNet 2012 contest

Facebook launches AI research
center, Google buys DeepMind

( UVU�L_OH\Z[P]L�SPZ[�VM�ZVTL�VM�[OL�PTWVY[HU[�L]LU[Z�[OH[�PTWHJ[LK
[OPZ�[YLUK

�



¸(SL_5L[¹��2YPaOL]ZR`�L[�HS�� ������ ^PUUPUN�LU[Y`�VM�0THNL5L[�����
JVTWL[P[PVU�^P[O�H�;VW���LYYVY�YH[L�VM��������UL_[�ILZ[�Z`Z[LT�^P[O
OPNOS`�LUNPULLYLK�MLH[\YLZ�IHZLK�\WVU�:0-; NV[�������LYYVY�

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.
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used for neural machine translation and achieves im-
provements on the English-French and English-German
translation tasks from the WMT’14 dataset (Luong et al.,
2014; Jean et al., 2014). It has also been used for
other tasks such as parsing (Vinyals et al., 2014a) and
image captioning (Vinyals et al., 2014b). Since it is
well known that vanilla RNNs suffer from vanish-
ing gradients, most researchers use variants of Long
Short Term Memory (LSTM) recurrent neural net-
works (Hochreiter & Schmidhuber, 1997).

Our work is also inspired by the recent success of neu-
ral language modeling (Bengio et al., 2003; Mikolov et al.,
2010; Mikolov, 2012), which shows that recurrent neural
networks are rather effective models for natural language.
More recently, work by Sordoni et al. (Sordoni et al., 2015)
and Shang et al. (Shang et al., 2015), used recurrent neural
networks to model dialogue in short conversations (trained
on Twitter-style chats).

Building bots and conversational agents has been pur-
sued by many researchers over the last decades, and it
is out of the scope of this paper to provide an exhaus-
tive list of references. However, most of these systems
require a rather complicated processing pipeline of many
stages (Lester et al., 2004; Will, 2007; Jurafsky & Martin,
2009). Our work differs from conventional systems by
proposing an end-to-end approach to the problem which
lacks domain knowledge. It could, in principle, be com-
bined with other systems to re-score a short-list of can-
didate responses, but our work is based on producing an-
swers given by a probabilistic model trained to maximize
the probability of the answer given some context.

3. Model
Our approach makes use of the sequence-to-sequence
(seq2seq) framework described in (Sutskever et al., 2014).
The model is based on a recurrent neural network which
reads the input sequence one token at a time, and predicts
the output sequence, also one token at a time. During train-
ing, the true output sequence is given to themodel, so learn-
ing can be done by backpropagation. The model is trained
to maximize the cross entropy of the correct sequence given
its context. During inference, given that the true output se-
quence is not observed, we simply feed the predicted output
token as input to predict the next output. This is a “greedy”
inference approach. A less greedy approach would be to
use beam search, and feed several candidates at the previ-
ous step to the next step. The predicted sequence can be
selected based on the probability of the sequence.

Concretely, suppose that we observe a conversation with
two turns: the first person utters “ABC”, and second person
replies “WXYZ”. We can use a recurrent neural network,

Figure 1. Using the seq2seq framework for modeling conversa-
tions.

and train to map “ABC” to “WXYZ” as shown in Figure 1
above. The hidden state of the model when it receives the
end of sequence symbol “<eos>” can be viewed as the
thought vector because it stores the information of the sen-
tence, or thought, “ABC”.

The strength of this model lies in its simplicity and gener-
ality. We can use this model for machine translation, ques-
tion/answering, and conversations without major changes
in the architecture. Applying this technique to conversa-
tion modeling is also straightforward: the input sequence
can be the concatenation of what has been conversed so far
(the context), and the output sequence is the reply.

Unlike easier tasks like translation, however, a model
like sequence-to-sequence will not be able to successfully
“solve” the problem of modeling dialogue due to sev-
eral obvious simplifications: the objective function being
optimized does not capture the actual objective achieved
through human communication, which is typically longer
term and based on exchange of information rather than next
step prediction. The lack of a model to ensure consistency
and general world knowledge is another obvious limitation
of a purely unsupervised model.

4. Datasets
In our experiments we used two datasets: a closed-domain
IT helpdesk troubleshooting dataset and an open-domain
movie transcript dataset. The details of the two datasets are
as follows.

4.1. IT Helpdesk Troubleshooting dataset

In our first set of experiments, we used a dataset which was
extracted from a IT helpdesk troubleshooting chat service.
In this service, costumers face computer related issues, and
a specialist help them by conversing and walking through
a solution. Typical interactions (or threads) are 400 words
long, and turn taking is clearly signaled. Our training set
contains 30M tokens, and 3M tokens were used as valida-
tion. Some amount of clean up was performed, such as
removing common names, numbers, and full URLs.

A Neural Conversational Model

4.2. OpenSubtitles dataset

We also tested our model on the OpenSubtitles
dataset (Tiedemann, 2009). This dataset consists of
movie conversations in XML format. It contains sen-
tences uttered by characters in movies. We applied a
simple processing step removing XML tags and obvi-
ous non-conversational text (e.g., hyperlinks) from the
dataset. As turn taking is not clearly indicated, we treated
consecutive sentences assuming they were uttered by
different characters. We trained our model to predict the
next sentence given the previous one, and we did this for
every sentence (noting that this doubles our dataset size,
as each sentence is used both for context and as target).
Our training and validation split has 62M sentences (923M
tokens) as training examples, and the validation set has
26M sentences (395M tokens). The split is done in such a
way that each sentence in a pair of sentences either appear
together in the training set or test set but not both. Unlike
the previous dataset, the OpenSubtitles is quite large, and
rather noisy because consecutive sentences may be uttered
by the same character. Given the broad scope of movies,
this is an open-domain conversation dataset, contrasting
with the technical troubleshooting dataset.

5. Experiments
In this section, we describe the experimental results with
the two datasets and show some samples of the interac-
tions with the system that we trained. We also compare
the performance of our system against a popular rule-based
bot (CleverBot1) using human evaluations on a set of 200
questions.

5.1. IT Helpdesk Troubleshooting experiments

In this experiment, we trained a single layer LSTM with
1024 memory cells using stochastic gradient descent with
gradient clipping. The vocabulary consists of the most
common 20K words, which includes special tokens indi-
cating turn taking and actor.

At convergence, this model achieved a perplexity of 8,
whereas an n-grammodel achieved 18. Below is a few sam-
ples of simulated troubleshooting sessions for most three
of the most common IT problems (remote access, software
crashes, and password issues). In these conversations,Ma-
chine is our Neural ConversationalModel, andHuman the
human actor interacting with it.

Conversation 1: VPN issues.

Describe your problem: i am having issues ac-
cessing vpn

1http://www.cleverbot.com/

Machine: hi
Human: hello
Machine: could you please let me know what are
the operating systems you are using ?
Human: i am using linux
Machine: ok it was in the ssl vpn on which you
stated it was broken
Machine: please check if you are logged in to
corp network
Machine: what is the error that you are running
please
Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?
Human: connection refused or something like
that
Machine: may i know the version of network
connect you connect ?
Human: i am not sure i know that
Machine: is the network connect prompting for
any user certificate
Machine: ?
Human: yes
Machine: are you at home or at work at the mo-
ment ?
Machine: office ?
Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !
Machine: great
Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> : )
Machine: have a nice night

(The <URL> indeed contains information about vpn ac-
cess.)

Conversation 2: Browser issues.

Describe your problem: browser keeps crashing
Machine: hi
Human: hi
Machine: could you please let me know what is
the operating system you are using ?
Human: linux
Machine: ok this is the issue with the system per-
formance , nasser , tools .
Human: what is that ?

A Neural Conversational Model
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ILJVTL�PTWVY[HU[�MYLL�WHYHTL[LYZ� TVYL�VU�[OPZ�SH[LY

� 



+LLW�SLHYUPUN
¸+LLW¹�UL\YHS�UL[^VYRZ�YLMLY�[V�UL[^VYRZ�^P[O�T\S[PWSL�OPKKLU�SH`LYZ

z1 = x

���
���

W1, b1

z5��� ���

z2 z3 z4

W3, b3

W4, b4

= hθ(x)

W2, b2

4H[OLTH[PJHSS �̀ H k �SH`LY�UL[^VYR�OHZ�[OL�O`WV[OLZPZ�M\UJ[PVU
zi+1 = fi(Wizi + bi), i = 1, . . . , k − 1, z1 = x

hθ(x ) = zk

^OLYL zi [LYTZ�UV^�PUKPJH[L ]LJ[VYZ� UV[�LU[YPLZ�PU[V�H�]LJ[VY
��



>O`�\ZL�KLLW�UL[^VYRZ&

4V[P]H[PVU�MYVT�JPYJ\P[Z! THU`�M\UJ[PVUZ�JHU�IL�YLWYLZLU[LK�TVYL
JVTWHJ[S`�\ZPUN�KLLW�UL[^VYRZ�[OHU�VUL�OPKKLU�SH`LY�UL[^VYRZ
�L�N� WHYP[`�M\UJ[PVU�^V\SK�YLX\PYL (2n) OPKKLU�\UP[Z�PU���SH`LY
UL[^VYR� O(n) \UP[Z�PU O( n)�SH`LY�UL[^VYR�

4V[P]H[PVU�MYVT�UL\YVIPVSVN`! IYHPU�HWWLHYZ�[V�\ZL�T\S[PWSL�SL]LSZ�VM
PU[LYJVUULJ[LK�UL\YVUZ�[V�WYVJLZZ�PUMVYTH[PVU��I\[�JHYLM\S� UL\YVUZ
PU�IYHPU�HYL�UV[�Q\Z[�UVU�SPULHY�M\UJ[PVUZ�

0U�WYHJ[PJL! ^VYRZ�IL[[LY�MVY�THU`�KVTHPUZ

��



6\[SPUL

0U[YVK\J[PVU

4HJOPUL�SLHYUPUN�^P[O�UL\YHS�UL[^VYRZ

;YHPUPUN�UL\YHS�UL[^VYRZ

*VU]VS\[PVUHS�UL\YHS�UL[^VYRZ

9LJ\YYLU[�UL\YHS�UL[^VYRZ

+LLW�YLPUMVYJLTLU[�SLHYUPUN

��



6W[PTPaPUN�UL\YHS�UL[^VYR�WHYHTL[LYZ
/V^�KV�^L�VW[PTPaL�[OL�WHYHTL[LYZ�MVY�[OL�THJOPUL�SLHYUPUN�SVZZ
TPUPTPaH[PVU�WYVISLT�^P[O�H�UL\YHS�UL[^VYR

θ

m∑

i=1

"(hθ(x
(i)), y(i))

UV^�[OH[�[OPZ�WYVISLT�PZ�UVU�JVU]L_&

1\Z[�KV�L_HJ[S`�^OH[�^L�KPK�ILMVYL! PUP[PHSPaL�^P[O�YHUKVT�^LPNO[Z
HUK�Y\U�Z[VJOHZ[PJ�NYHKPLU[�KLZJLU[

5V^�OH]L�[OL�WVZZPIPSP[`�VM�SVJHS�VW[PTH� HUK�M\UJ[PVU�JHU�IL�OHYKLY
[V�VW[PTPaL� I\[�^L�^VU»[�^VYY`�HIV\[�HSS�[OH[�ILJH\ZL�[OL�YLZ\S[PUN
TVKLSZ�Z[PSS�VM[LU�WLYMVYT�IL[[LY�[OHU�SPULHY�TVKLSZ

��



:[VJOHZ[PJ�NYHKPLU[�KLZJLU[�MVY�UL\YHS�UL[^VYRZ
9LJHSS�[OH[�Z[VJOHZ[PJ�NYHKPLU[�KLZJLU[�JVTW\[LZ�NYHKPLU[Z�^P[O
YLZWLJ[�[V�SVZZ�VU�LHJO�L_HTWSL� \WKH[PUN�WHYHTL[LYZ�HZ�P[�NVLZ

M\UJ[PVU :.+({(x (i), y(i))}, hθ, ",α)
0UP[PHSPaL! Wj , bj ← 9HUKVT, j = 1, . . . , k
9LWLH[ \U[PS�JVU]LYNLUJL!

-VY i = 1, . . . ,m !
*VTW\[L ∇Wj ,bj "(hθ(x

(i)), y(i)), j = 1, . . . , k − 1
;HRL�NYHKPLU[�Z[LWZ�PU�HSS�KPYLJ[PVUZ!
Wj ←Wj − α∇Wj "(hθ(x

(i)), y(i)), j = 1, . . . , k
bj ← bj − α∇bj "(hθ(x

(i)), y(i)), j = 1, . . . , k
YL[\YU {Wj , bj }

:V�OV^�KV�^L�JVTW\[L�[OL�NYHKPLU[Z ∇Wj ,bj "(hθ(x
(i)), y(i))� [OPZ

PZ�H�JVTWSL_�M\UJ[PVU�VM�[OL�WHYHTL[LYZ
��



)HJRWYVWHNH[PVU

)HJRWYVWHNH[PVU�PZ�H�TL[OVK�MVY�JVTW\[PUN�HSS�[OL�ULJLZZHY`
NYHKPLU[Z�\ZPUN�VUL�¸MVY^HYK�WHZZ¹��Q\Z[�JVTW\[PUN�HSS�[OL�]HS\LZ�H[
SH`LYZ�� HUK�VUL�¸IHJR^HYK�WHZZ¹��JVTW\[PUN�NYHKPLU[Z�IHJR^HYKZ
PU�[OL�UL[^VYR�

;OL�LX\H[PVUZ�ZVTL[PTLZ�SVVR�JVTWSL_� I\[�P[»Z�Q\Z[�HU�HWWSPJH[PVU
VM�[OL�JOHPU�Y\SL�VM�JHSJ\S\Z

��



;OL�1HJVIPHU
6UL��SHZ[�� IP[�VM�T\S[P]HYPH[L�JHSJ\S\Z�^PSS�OLSW�\Z�KLYP]L�[OL
IHJRWYVWHNH[PVU�HSNVYP[OT�\ZPUN�W\YLS`�TH[YP_�HUK�]LJ[VY
VWLYH[PVUZ

-VY�H�T\S[P]HYPH[L� ]LJ[VY�]HS\LK�M\UJ[PVU f : Rn → Rm � [OL
1HJVIPHU PZ�H m × n TH[YP_

(
∂f (x )

∂x

)
∈ Rm×n =





∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn���

��� � � � ���
∂fm (x)
∂x1

∂fm (x)
∂x2

· · · ∂fm (x)
∂xn





-VY�H�ZJHSHY�]HS\LK�M\UJ[PVU f : Rn → R� [OL�1HJVIPHU�PZ�[OL
[YHUZWVZL�VM�[OL�NYHKPLU[ ∂f (x)

∂x

T
= ∇x f (x )
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>L»SS�\ZL�H�ML^�ZPTWSL�WYVWLY[PLZ�VM�[OL�1HJVIPHU�[V�KLYP]L�[OL
IHJRWYVWHNH[PVU�HSNVYP[OT�MVY�UL\YHS�UL[^VYRZ

*OHPU�Y\SL
∂f (g(x ))

∂x
=

∂f (g(x ))

∂g(x )

∂g(x )

∂x

1HJVIPHU�VM�H�SPULHY�[YHUZMVYTH[PVU� MVY A ∈ Rm×n

∂Ax

∂x
= A

0M f PZ�H�M\UJ[PVU�HWWSPLK�LSLTLU[^PZL�

∂f (x )

∂x
= (f ′(x ))
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+LYP]H[PVU�VM�IHJRWYVWHNH[PVU
<ZPUN�[OL�JOHPU�Y\SL�[V�JVTW\[L�KLYP]H[P]LZ!

∂"(hθ(x ), y)

∂b1
=

∂"(zk , y)

∂b1

=
∂"(zk , y)

∂zk

∂zk
∂b1

=
∂"(zk , y)

∂zk

∂zk
∂zk−1

∂zk−1

∂zk−2
· · · ∂z3

∂z2

∂z2
∂b1

-\Y[OLYTVYL� MVY�HU` i
∂zi+1

∂zi
=

∂fi(Wizi + bi)

∂Wizi + bi

∂Wizi + bi
∂zi

= (f ′i (Wizi + bi))Wi

HUK
∂zi+1

∂bi
=

∂fi(Wizi + bi)

∂Wizi + bi

∂Wizi + bi
∂bi

= (f ′i (Wizi + bi))

��



0M�^L�JVTW\[L�KLYP]H[P]LZ�^P[O�YLZWLJ[�[V HSS bi � HUK Wi Q\Z[�\ZPUN
[OPZ�MVYT\SH� ^L»K�IL�YLWLH[PUN�H�SV[�VM�^VYR��L�N� HSS�[OL ∂zi+1

∂zi
[LYTZ

[OH[�HWWLHY�PU�T\S[PWSL�KLYP]H[P]LZ�

)HJRWYVWHNH[PVU�JHJOLZ�[OLZL�PU[LYTLKPH[L�WYVK\J[Z� ZWLJPÄJHSS`
KLÄUPUN

gTi =
∂"(zk , y)

∂zk

∂zk
∂zk−1

· · · ∂zi+1

∂zi
^OPJO�JHU�IL�JVTW\[LK�YLJ\YZP]LS`�]PH�[OL�YLSH[PVUZOPW

gk =
∂"(zk , y)

∂zk
gi = W T

i (gi+1 ◦ f ′(Wizi + bi))

^OLYL ◦ KLUV[LZ�LSLTLU[^PZL�T\S[PWSPJH[PVU�VM�]LJ[VYZ

.YHKPLU[Z�JHU�[OLU�IL�JVTW\[LK�]PH
∇bi "(hθ(x ), y) = gi+1 ◦ f ′(Wizi + bi)

∇Wi "(hθ(x ), y) = (gi+1 ◦ f ′(Wizi + bi))z
T
i � 



(Z�TLU[PVULK� HSNVYP[OTPJHSS`�IHJRWYVWHNH[PVU�[HRLZ�[OL�MVYT�VM
VUL�MVY^HYK�WHZZ��[V�JVTW\[L zi [LYTZ��HUK�VUL�IHJR^HYK�WHZZ��[V
JVTW\[L gi [LYTZ��[OYV\NO�[OL�UL[^VYR

M\UJ[PVU )HJRWYVWHNH[PVU(x , y , {Wi , bi , fi}k−1
i=1 , ")

0UP[PHSPaL! z1 ← x
-VY i = 1, . . . , k − 1

zi+1, z ′i+1 ← fi(Wizi + bi), f ′i (Wizi + bi)
L← "(zk , y)

gk ← ∂#(zk ,y)
∂zk

-VY i = k − 1, . . . , 1!
gi = W T

i (gi+1 ◦ z ′i+1)
∇bi ← gi+1 ◦ z ′i+1
∇Wi ← (gi+1 ◦ z ′i+1)z

T
i

YL[\YU L, {∇bi ,∇Wi}k−1
i=1
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.YHKPLU[Z�JHU�Z[PSS�NL[�ZVTL^OH[�[LKPV\Z�[V�KLYP]L�I`�OHUK�
LZWLJPHSS`�MVY�[OL�TVYL�JVTWSL_�TVKLSZ�[OH[�MVSSV^

-VY[\UH[LS �̀ H�SV[�VM�[OPZ�^VYR�OHZ�HSYLHK`�ILLU�KVUL�MVY�`V\

;VVSZ�SPRL�;OLHUV
� �� ;VYJO
� �� ;LUZVY-SV^
� ��HSS�SL[�`V\�ZWLJPM`�[OL�UL[^VYR
Z[Y\J[\YL�HUK�[OLU�H\[VTH[PJHSS`�JVTW\[L�HSS�NYHKPLU[Z��HUK�\ZL
.7<Z�[V�KV�ZV�

(\[VNYHK�WHJRHNL�MVY�7`[OVU
� ��SL[Z�`V\�JVTW\[L�[OL
KLYP]H[P]L�VM��HSTVZ[��HU`�HYIP[YHY`�M\UJ[PVU�\ZPUN�U\TW`�VWLYH[PVUZ
\ZPUN�H\[VTH[PJ�IHJRWYVWHNH[PVU
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http://deeplearning.net/software/theano/
http://torch.ch/
http://www.tensorflow.org/
https://github.com/HIPS/autograd


>OH[»Z�JOHUNLK�ZPUJL�[OL���Z&

(SS�[OLZL�HSNVYP[OTZ��HUK�TVZ[�VM�[OL�L_[LUZPVUZ�PU�SH[LY�ZSPKLZ�� ^LYL
KL]LSVWLK�PU�[OL���Z�VY� �Z

:V�^O`�HYL�[OLZL�Q\Z[�ILJVTPUN�TVYL�WVW\SHY�PU�[OL�SHZ[�ML^�`LHYZ&

� 4VYL�KH[H

� -HZ[LY�JVTW\[LYZ

� �:VTL��IL[[LY�VW[PTPaH[PVU�[LJOUPX\LZ
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<UZ\WLY]PZLK�WYL�[YHPUPUN��/PU[VU�L[�HS�� �����! ¸7YL�[YHPU¹�[OL
UL^[VYR�OH]L�[OL�OPKKLU�SH`LYZ�YLJYLH[L�[OLPY�PUW\[� VUL�SH`LY�H[�H
[PTL� PU�HU�\UZ\WLY]PZLK�MHZOPVU

� ;OPZ�WHWLY�^HZ�WHY[S`�YLZWVUZPISL�MVY�YL�PNUP[PUN�[OL�PU[LYLZ[�PU�KLLW
UL\YHS�UL[^VYRZ� I\[�[OL�NLULYHS�MLLSPUN�UV^�PZ�[OH[�P[�KVLZU»[�OLSW
T\JO

+YVWV\[��/PU[VU�L[�HS�� �����! +\YPUN�[YHPUPUN�HUK�JVTW\[H[PVU�VM
NYHKPLU[Z� YHUKVTS`�ZL[�HIV\[�OHSM�[OL�OPKKLU�\UP[Z�[V�aLYV��H
KPMMLYLU[�YHUKVTS`�ZLSLJ[LK�ZL[�MVY�LHJO�Z[VJOHZ[PJ�NYHKPLU[�Z[LW�

� (J[Z�SPRL�YLN\SHYPaH[PVU� WYL]LU[Z�[OL�WHYHTL[LYZ�MVY�V]LYÄ[[PUN�[V
WHY[PJ\SHY�L_HTWSLZ

+PɈLYLU[�UVU�SPULHY�M\UJ[PVUZ��5HPY�HUK�/PU[VU� �����! <ZL
UVU�SPULHYP[` f (x ) = {0, x} PUZ[LHK�VM f (x ) = (x )
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