

ARIEL PROCACCIA

WITH THANKS TO DAN KLEIN (BERKELEY), PERCY LIANG (STANFORD) AND PAST 15-381 INSTRUCTORS FOR SOME SLIDE CONTENT, AND RUSSELL & NORVIG

WHAT YOU SHOULD KNOW

- Define probabilistic inference
- How to define a Bayes Net given a real example
- How joint can be used to answer any query
- Complexity of exact inference
- Approximation inference (direct, likelihood, Gibbs)
 - Be able to implement and run algorithm
 - Compare benefits and limitations of each

BAYESIAN NETWORK

- Compact representation of the joint distribution
- Conditional independence relationships explicit
 - Each var conditionally independent of all its nondescendants in the graph given the value of its parents

JOINT DISTRIBUTION EX.

- Variables: Cloudy, Sprinkler, Rain, Wet Grass
- Domain of each variable: 2 (true or false)
- Joint encodes probability of all combos of variables & values

P(Cloudy=false & Sprinkler = true & Rain = false & WetGrass = True)

+c	+s	+r	+w	.01
+c	+s	+r	-W	.01
+c	+s	-r	+w	.05
+c	+s	-r	-W	.1
+c	-s	+r	+w	#
+c	-s	+r	-W	#
+c	-s	-r	+w	#
+c	-s	-r	-W	#
-с	+s	+r	+w	#
-с	+s	+r	-W	#
-c	+s	-r	+w	#
-C	+s	-r	-W	#
-c	-s	+r	+w	#
-с	-s	+r	-W	#
-с	-s	-r	+w	#
-с	-s	-r	-W	#

JOINT AS PRODUCT OF CONDITIONALS (CHAIN RULE)

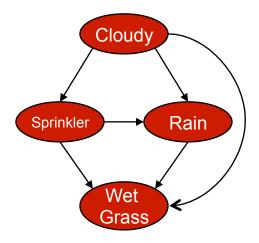
			_
+s	+r	+w	.01
+s	+r	-W	.01
+s	-r	+w	.05
+s	-r	-W	.1
-S	+r	+w	#
-S	+r	-W	#
-s	-r	+w	#
-s	-r	-W	#
+s	+r	+w	#
+s	+r	-W	#
+s	-r	+w	#
+s	-r	-W	#
-s	+r	+w	#
-s	+r	-W	#
-s	-r	+w	#
-s	-r	-W	#
	+s +s +s +s -s -s -s +s +s +s +s -s -s -s -s -s	+s +r +s -r +s -r +s -r -s +r -s +r -s -r +s +r +s +r +s +r +s -r +s -r -s +r -s -r -s -r	+s +r -w +s -r +w +s -r -w -s +r +w -s +r -w -s -r +w -s -r +w +s +r +w +s +r -w +s -r +w -s +r +w -s +r +w -s -r +w -s -r +w -s +r +w -s +r +w -s +r +w -s +r +w

P(WetGrass|Cloudy,Sprinkler,Rain)* P(Rain|Cloudy,Sprinkler)* P(Sprinkler|Cloudy)* P(Cloudy)

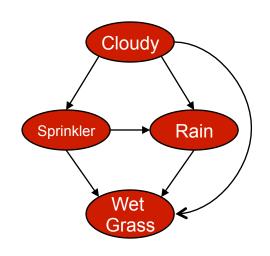
JOINT AS PRODUCT OF CONDITIONALS

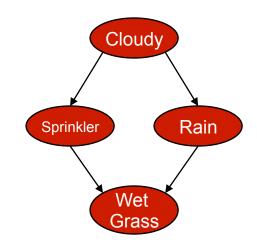
+s	+r	+w	.01
+s	+r	-W	.01
+s	-r	+w	.05
+s	-r	-W	.1
-8	+r	+w	#
-\$	+r	-W	#
-s	-r	+w	#
-s	-r	-W	#
+s	+r	+w	#
+s	+r	-W	#
+s	-r	+w	#
+s	-r	-W	#
-8	+r	+w	#
-S	+r	-W	#
-S	-r	+w	#
-s	-r	-W	#
	+ s + s + s + s + s + s + s + s + s + s	+s +r +s -r +s -r +s -r -s +r -s +r -s -r +s +r +s +r +s +r +s +r +s -r -s +r -s +r -s -r -s +r -s -r	+s +r -w +s -r +w +s -r -w -s +r +w -s +r -w -s -r +w -s -r +w +s +r +w +s +r +w +s +r -w +s -r +w -s +r +w

P(WetGrass|Cloudy,Sprinkler,Rain)* P(Rain|Cloudy,Sprinkler)* P(Sprinkler|Cloudy)* P(Cloudy)



WHAT IF SOME VARIABLES ARE **CONDITIONALLY INDEP?**

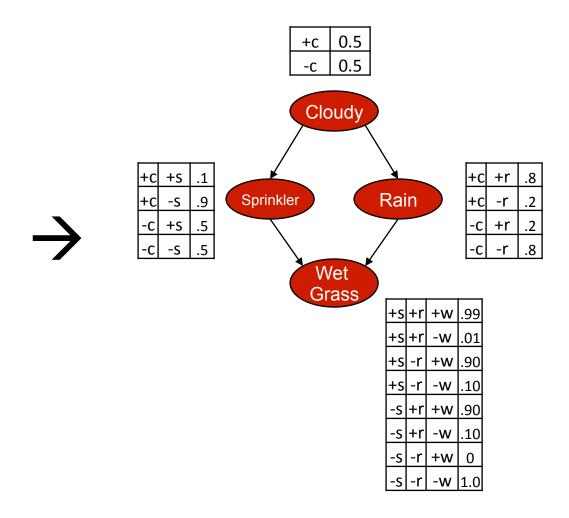




Explicitly shows any conditional independencies

CONDITIONAL INDEPENDENCIES

+c	+s	+r	+w	.01
+c	+s	+r	-W	.01
+c	+s	-r	+w	.05
+c	+s	-r	-W	.1
+c	-s	+r	+w	#
+c	-s	+r	-W	#
+c	-s	-r	+w	#
+c	-s	-r	-W	#
-c	+s	+r	+w	#
-c	+s	+r	-W	#
-c	+s	-r	+w	#
-c	+s	-r	-W	#
-c	-s	+r	+w	#
-c	-S	+r	-W	#
-c	-s	-r	+w	#
-c	-s	-r	-W	#



BAYESIAN NETWORK

- Compact representation of the joint distribution
- Conditional independence relationships explicit
- Still represents joint so can be used to answer any probabilistic query

PROBABILISTIC INFERENCE

- Compute probability of a query variable (or variables) taking on a value (or set of values) given some evidence
- $Pr[Q \mid E_1 = e_1, ..., E_k = e_k]$

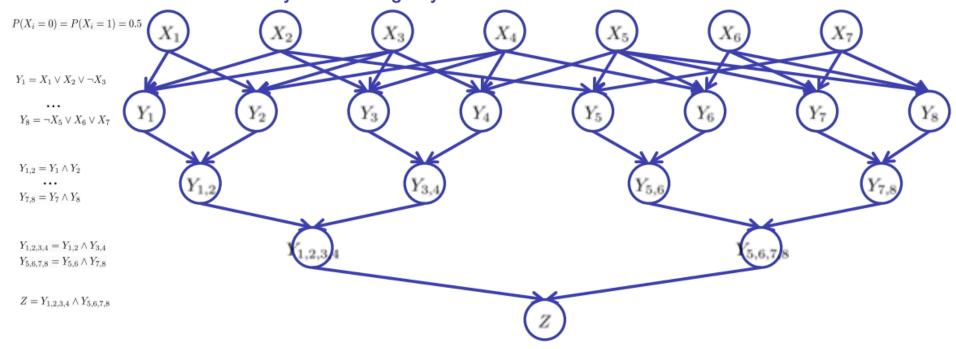
Using the Joint To Answer **QUERIES**

- Joint distribution is sufficient to answer any probabilistic inference question involving variables described in joint
- Can take Bayes Net, construct full joint, and then look up entries where evidence variables take on specified values

BUT CONSTRUCTING JOINT EXPENSIVE & EXACT INFERENCE IS NP-HARD

Consider the 3-SAT clause:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7)$ which can be encoded by the following Bayes' net:



If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

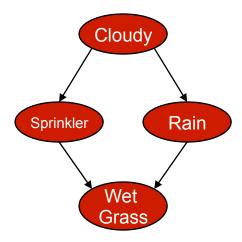
SOLN: APPROXIMATE INFERENCE

- Use samples to approximate posterior distribution $Pr[Q \mid E_1=e_1,...,E_k=e_k]$
- Last time
 - Direct sampling
 - Likelihood weighting
- Today
 - **Gibbs**

Poll: Which Algorithm?

- Evidence: Cloudy=+c, Rain=+r
- Query variable: Sprinkler
- P(Sprinkler|Cloudy=+c,Rain=+r)
- Samples

- What algorithm could've generated these samples?
- Direct sampling 1)
- 2) Likelihood weighting
- 3) Both
- 4) No clue



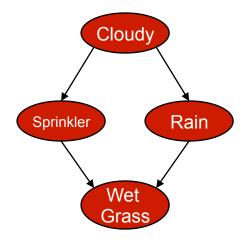
DIRECT SAMPLING RECAP

Algorithm:

1. Create a topological order of the variables in the Bayes Net

TOPOLOGICAL ORDER

- Any ordering in directed acyclic graph where a node can only appear after all of its ancestors in the graph
- E.g.
 - Cloudy, Sprinkler, Rain, WetGrass
 - Cloudy, Rain, Sprinkler, WetGrass



DIRECT SAMPLING RECAP

Algorithm:

- 1. Create a topological order of the variables in the Bayes Net
- 2. Sample each variable conditioned on the values of its parents
- 3. Use samples which match evidence variable values to estimate probability of query variable
- e.g. P(Sprinkler=+s|Cloudy=+c,Rain=+r) ~ # samples with +s,+c, +r / # samples with +c, +r
- Consistent in limit of infinite samples
- Inefficient (why?)

CONSISTENCY

- In the limit of infinite samples, estimated $Pr[Q \mid E_1=e_1,...,E_k=e_k]$ will converge to true posterior probability
- Desirable property (otherwise always have some error)

LIKELIHOOD WEIGHTING RECAP

- Create array TotalWeights
 - 1. Initialize value of each array element to 0
- 2. For j=1:N
 - 1. $W_{tmp} = 1$
 - Set evidence variables in sample $z = \langle z_1, ... z_n \rangle$ to observed values
 - \mathbf{z}_{i} For each variable \mathbf{z}_{i} in topological order
 - 1. If x_i is an evidence variable

1.
$$w_{tmp} = w_{tmp} *P(Z_i = e_i | Parents(Z) = \mathbf{x}(Parents(Z_i)))$$

- 2. Else
 - 1. Sample x_i conditioned on the values of its parents
- Update weight of resulting sample
 - 1. TotalWeights[z]=TotalWeights[z]+w_{tmn}
- 3. Use weights to compute probability of query variable

 $P(Sprinkler=+s|Cloudy=+c,Rain=+r) \sim Sum_{c,r,w} TotalWeight(+s,c,r,w)/Sum_{s,c,r,w} TotalWeight(s,c,r,w)/Sum_{s,c,r,w} TotalWeight(s,c,r,w)/Sum_{s,c,r,w}$

LW CONSISTENCY

 Probability of getting a sample (z,e) where z is a set of values for the non-evidence variables and e is the vals of evidence vars

Sampling distribution for a weighted sample (WS)
$$S_{WS}(\mathbf{z},\mathbf{e}) = \prod_{i=1}^l P(z_i \, | \, parents(Z_i))$$

- Is this the true posterior distribution P(z|e)?
 - o No, why?
 - Doesn't consider evidence that is not an ancestor...
 - Weights fix this!

WEIGHTED PROBABILITY

Samples each non-evidence variable z according to

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

· Weight of a sample is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$$

· Weighted probability of a sample is

$$S_{\mathit{WS}}(\mathbf{z},\mathbf{e})w(\mathbf{z},\mathbf{e}) \ = \ \prod_{i=1}^l P(z_i \, | \, parents(Z_i)) \prod_{i=1}^m P(e_i \, | \, parents(E_i))$$

 $= P(\mathbf{z}, \mathbf{e})$ From chain rule & conditional indep

DOES LIKELIHOOD WEIGHTING PRODUCE CONSISTENT ESTIMATES? YES

$$P(X = x \mid e) = \frac{P(X = x, e)}{P(e)} \propto P(X = x, e)$$

$$\tilde{P}(X = x \mid e) \propto \tilde{P}(X = x, e) = \sum_{y} N_{WS}(x, y, e) w(x, y, e)$$

$$\approx \sum_{y} n * S_{WS}(x, y, e) w(x, y, e)$$

$$= \sum_{y} P(x, y, e)$$

$$= \sum_{y} P(x, y, e)$$

$$= P(x, e)$$

$$X \text{ is query var(s)}$$

$$Y \text{ is non-query vars}$$

$$\# \text{ of samples where query variables=x, non-query=y, Evidence=e}$$

$$= \sum_{y} P(x, y, e)$$

$$= P(x, e)$$

EXAMPLE

- When sampling S and R the evidence W=t is ignored
 - Samples with S=f and R=f although evidence rules this out
- Weight makes up for this difference
 - above weight would be 0
- If we have 100 samples with R=t and total weight 1, and 400 samples with R=f and total weight 2, what is estimate of R=t?
 - 。 = 1/3

LIMITATIONS OF LIKELIHOOD WEIGHTING

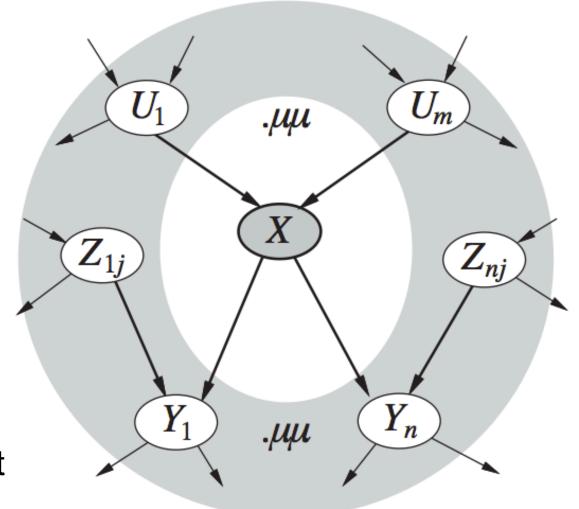
- Poor performance if evidence vars occur later in ordering
- Why?
- Not being used to influence samples!
- Yields samples with low weights

MARKOV CHAIN MONTE CARLO METHODS

- Prior methods generate each new sample from scratch
- MCMC generate each new sample by making a random change to preceding sample
- Can view algorithm as being in a particular state (assignment of values to each variable)

REVIEW: MARKOV BLANKET

- Markov blanket
 - Parents
 - Children
 - Children's parents
- Variable conditionally independent of all other nodes given its Markov Blanket



GIBBS SAMPLING: COMPUTE P(X | e)

local variables: N, a vector of counts for each value of X, initially zero

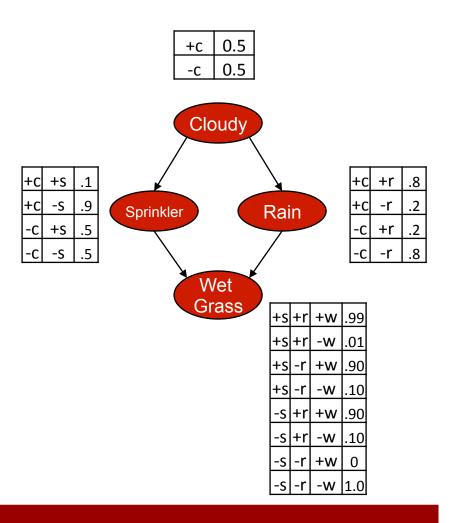
Z, the nonevidence variables in bn

x, the current state of the network, initially copied from e

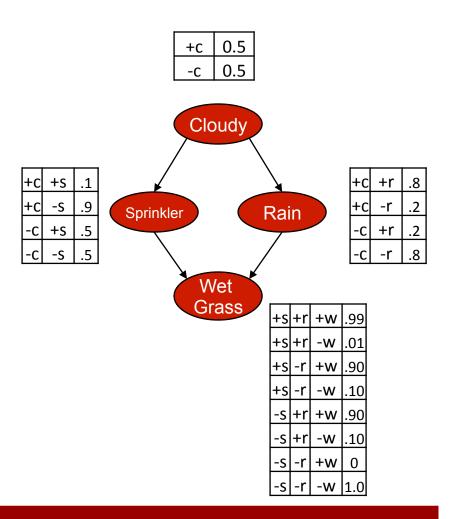
initialize x with random values for the variables in Z

 $mb(Z_i) = Markov Blanket of Z_i$

- Want Pr(R|S=t,W=t)
- Non-evidence variables are C & R
- Initialize randomly: C= t and R=f
- Initial state (C,S,R,W)= [t,t,f,t]
- Sample C given current values of its Markov Blanket



- Want Pr(R|S=t,W=t)
- Non-evidence variables are C & R
- Initialize randomly: C= t and R=f
- Initial state (C,S,R,W)= [t,t,f,t]
- Sample C given current values of its Markov Blanket
- Markov blanket is parents, children and children's parents: for C=S & R
- Sample C given P(C|S=t,R=f)
- First have to compute P(C|S=t,R=f)
- Use exact inference to do this



EXERCISE: COMPUTE P(C=T|S=T,R=F)?

- Quick refresher
- Sum rule

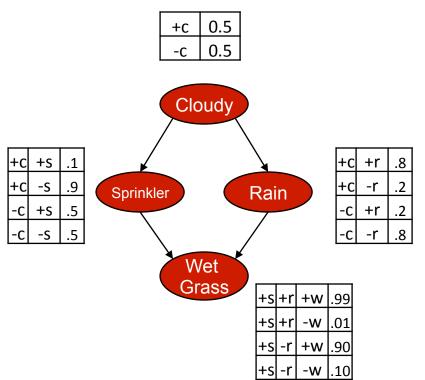
$$p(X) = \sum_{Y} p(X, Y)$$

Product/Chain rule

$$p(X,Y) = p(Y|X)p(X)$$

Bayes rule

$$p(X|Y) = \frac{p(Y|X)p(X)}{p(Y)}$$



-s|+r|+w|.90

EXACT INFERENCE EXERCISE

- P(C|S=t,R=f)
- What is the probability P(C=t | S=t, R= f)?
- = P(C=t, S=t, R=f) / (P(S=t,R=f))

Proportional to P(C=t, S=t, R=f)

Use normalization trick, & compute the above for C=t and C=f

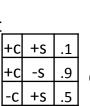
P(C=t, S=t, R=f) = P(C=t) P(S=t|C=t) P (R=f | C=t, S=t) productrule

- = P(C=t) P(S=t|C=t) P (R=f | C=t) (BN independencies)
- = 0.5 * 0.1 * 0.2 = 0.01
- P(C=f, S=t, R=f) = P(C=f) P (S=t|C=f) P(R=f|C=f)
- = 0.5 * 0.5 * 0.8 = 0.2

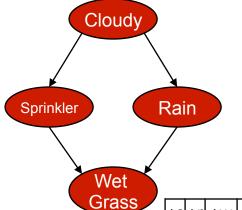
(P(S=t,R=f)) use sum rule = P(C=f,S=t,R=f) + P(C=t,S=t,R=f)

P(C = t | S=t, R=f) = 0.21

 $P(C=t \mid S=t, R=f) = 0.01 / 0.21 \sim 0.0476$



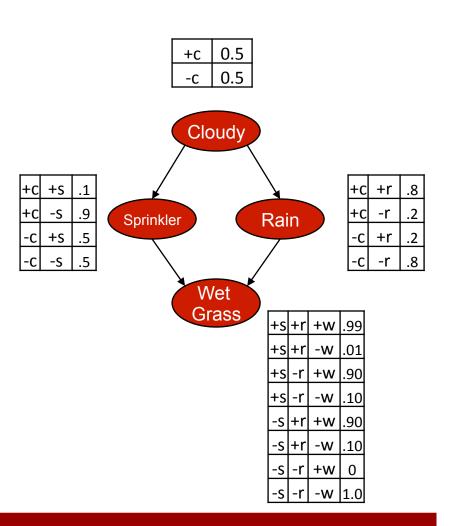
+c	0.5	
-C	0.5	



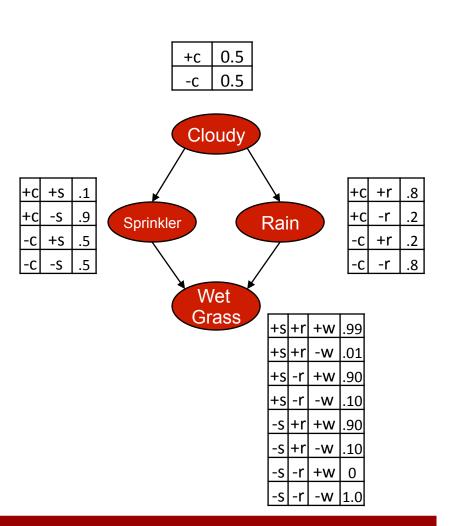
+s	+r	+w	.99
+S	+r	-W	.01
+S	-r	+w	.90
+s	-r	-W	.10
-S	+r	+W	.90
-S	+r	-W	.10
-S	-r	+w	0
-s	-r	-W	1.0

+r|

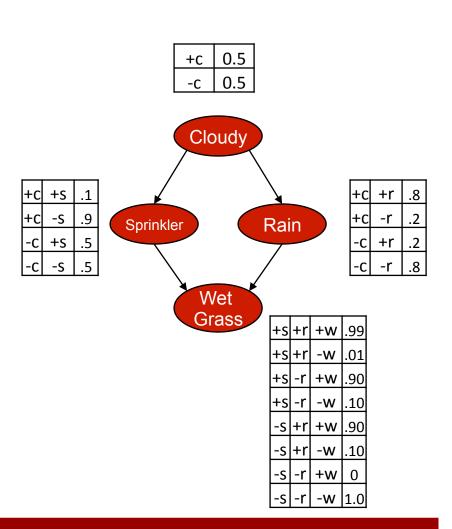
- Want Pr(R|S=t,W=t)
- Non-evidence variables are C & R
- Initialize randomly: C= t and R=f
- Initial state (C,S,R,W)= [t,t,f,t]
- Sample C given current values of its Markov Blanket
- Markov blanket is parents, children and children's parents: for C=S & R
- Exactly compute P(C|S=t,R=f)
- Sample C given P(C|S=t,R=f)
- Get C = f
- New state (f,t,f,t)



- Want Pr(R|S=t,W=t)
- Initialize non-evidence variables (C and R) randomly to t and f
- Initial state (C,S,R,W)= [t,t,f,t]
- Sample C given current values of its Markov Blanket, p(C|S=t,R=f)
- Suppose result is C=f
- New state (f,t,f,t)
- Sample Rain given its MB
- What is its Markov blanket?

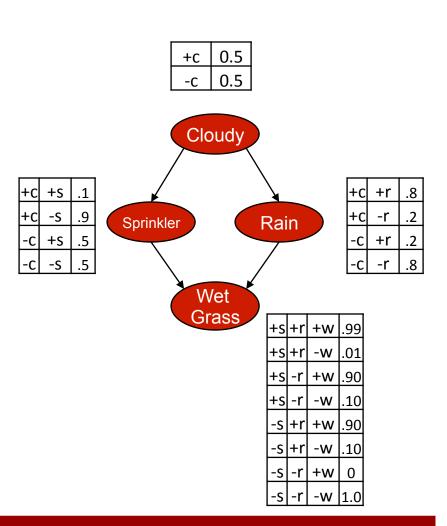


- Want Pr(R|S=t,W=t)
- Initialize non-evidence variables (C and R) randomly to t and f
- Initial state (C,S,R,W)= [t,t,f,t]
- Sample C given current values of its Markov Blanket, p(C|S=t,R=f)
- Suppose result is C=f
- New state (f,t,f,t)
- Sample Rain given its MB, p(R|C=f,S=t,W=t)
- Suppose result is R=t
- New state (f,t,t,t)



POLL: GIBBS SAMPLING EX.

- Want Pr(R|S=t,W=t)
- Initialize non-evidence variables (C and R) randomly to t and f
- Initial state (C,S,R,W)= [t,t,f,t]
- Current state (f,t,t,t)
- What is **not** a possible next state
- 1. (f,t,t,t)
- 2. (t,t,t,t)
- 3. (f,t,f,t)
- 4. (f,f,t,t) (inconsistent w/evid)
- 5. Not sure



GIBBS SAMPLING

local variables: N, a vector of counts for each value of X, initially zero \mathbf{Z} , the nonevidence variables in bn \mathbf{x} , the current state of the network, initially copied from \mathbf{e}

initialize x with random values for the variables in Z

for j = 1 to N do

for each Z_i in \mathbf{Z} do

set the value of Z_i in **x** by sampling from $P(Z_i|mb(Z_i))$

 $N[x] \leftarrow N[x] + 1$ where x is the value of X in x

return NORMALIZE(N)

 $mb(Z_i) = Markov Blanket of Z_i$

This involve

inference!

Poll

ARE GIBBS SAMPLES INDEPENDENT?

1. YES 2. NO 3. NOT SURE

local variables: N, a vector of counts for each value of X, initially zero

Z, the nonevidence variables in bn

x, the current state of the network, initially copied from **e**

initialize x with random values for the variables in Z

for
$$j = 1$$
 to N do

for each Z_i in \mathbf{Z} do

set the value of Z_i in **x** by sampling from $P(Z_i|mb(Z_i))$

 $N[x] \leftarrow N[x] + 1$ where x is the value of X in x

return NORMALIZE(N)

 $mb(Z_i) = Markov Blanket of Z_i$

from Russell & Norvig

MARKOV BLANKET SAMPLING

- Want to show P(Z_i| mb(Z_i)) is same as P(Z_i | all other variables)
 - Implies conditional independence of Z_i from rest of network given its Markov Blanket
- Derive equation for computing P(Z_i| mb(Z_i))

PROBABILITY GIVEN MARKOV BLANKET

$$P(x_i' | mb(X_i)) = \alpha P(x_i' | parents(X_i)) \times \prod_{Y_j \in Children(X_i)} P(y_j | parents(Y_j))$$

WHY IS GIBBS CONSISTENT?

- Sampling process settles into a stationary distribution where long-term fraction of time spent in each state is exactly equal to posterior probability
 - → Implies that if draw enough samples from this stationary distribution, will get consistent estimate because sampling from true posterior

MARKOV CHAIN

- Let $P(x \rightarrow x')$ be probability the sampling process makes a transition from x (some state) to x' (some other state)
 - $_{\circ}$ E.g. $(t,t,f,t) \rightarrow (t,f,f,t)$
- Run sampling for t steps
- P_t(x) is probability system is in state x at time t
- Next state $P_{t+1}(x') = Sum_x P_t(x) P(x \rightarrow x')$

STATIONARY DISTRIBUTION

- Let P(x → x') be probability the process makes a transition from x to x'
- P_t(x) is probability system is in state x at time t
- $P_{t+1}(\mathbf{x'}) = Sum_{\mathbf{x}} P_t(\mathbf{x}) P(\mathbf{x} \rightarrow \mathbf{x'})$
- Reached stationary distribution if P_{t+1}(x')=P_t(x)
- Call stationary distribution π
 - _∞ Must satisfy $\pi(\mathbf{x'}) = \sum_{\mathbf{x}} \pi(\mathbf{x}) P(\mathbf{x} \rightarrow \mathbf{x'})$ for all $\mathbf{x'}$
- If P(x → x') is ergodic, exactly one such π for any given P(x → x')

DETAILED BALANCE

- Let P(x → x') be probability the process makes a transition from x to x'
- P_t(x) is probability system is in state x at time t
- Stationary distribution π
 - Satisfies $\pi(x')$ = \sum_{x} $\pi(x)$ P(x → x') for all x'
- Detailed balance: inflow = outflow
- $\pi(\mathbf{x}) P(\mathbf{x} \rightarrow \mathbf{x}') = \pi(\mathbf{x}') P(\mathbf{x}' \rightarrow \mathbf{x})$ for all \mathbf{x}, \mathbf{x}'

$$\sum_{x} \pi(x') P(x -> x') = \sum_{x} \pi(x') P(x' -> x) = \pi(x')$$

Proof on board

PROVING GIBBS SAMPLES FROM TRUE POSTERIOR

- General Gibbs: sample the value of a new variable conditioned on all the other variables
- Can prove this version of Gibbs satisfies detailed balance equation with stationary distribution of P(X|e)
- Then use prior result that sampling conditioned on all variables is equivalent to sampling given Markov Blanket for Bayes Nets
- See text for recap

GIBBS SAMPLING

- Samples are valid once reach stationary distribution
- When do we reach stationary distribution?
 - o Unclear...

WHAT YOU SHOULD KNOW

- Define probabilistic inference
- How to define a Bayes Net given a real example
- How joint can be used to answer any query
- Complexity of exact inference
- Approximation inference (direct, likelihood, Gibbs)
 - Be able to implement and run algorithm
 - Compare benefits and limitations of each

