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WHAT YOU SHOULD KNOW

« Define probabilistic inference
« How to define a Bayes Net given a real example
 How joint can be used to answer any query
Complexity of exact inference
Approximation inference (direct, likelihood, Gibbs)
- Be able to implement and run algorithm
- Compare benefits and limitations of each
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BAYESIAN NETWORK

« Compact representation of the joint distribution

« Conditional independence relationships explicit

- Each var conditionally independent of all its non-
descendants in the graph given the value of its parents
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JOINT DISTRIBUTION EX.

« Variables: Cloudy, Sprinkler, o B B o
Rain, Wet Grass to |+s [+ |+w | 05
+c +s -r -W A
« Domain of each variable: 2 o |5 |+ |w |#
(true or false) P i B B B
* Joint encodes probability of all P e s
combos of variables & values o [os |or |w |#
-C +s | -r tw | #
/ -C +s | -r -w | #
P(Cloudy=false & Sprinkler = true c |-s [+ |+w |#
& Rain = false & WetGrass = True) < |- [+ |[-w |#
-C -S r tw | #
-C -S r -wW #
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JOINT AS PRODUCT OF
CONDITIONALS (CHAIN RULE)
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JOINT AS PRODUCT OF
CONDITIONALS
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...but there may be additional conditional independencies
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WHAT IF SOME VARIABLES ARE
CONDITIONALLY INDEP?

Explicitly shows any
conditional
iIndependencies
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CONDITIONAL INDEPENDENCIES

+c [ 0.5
+c +s +r +w 01 -c 0.5
+C +s +r -w .01
+C +s -r +w .05
+c +s -r -W A1
+C -s +r W #
+c 5 +r W # +C| +S | .1 .8
+c -s -r +W # +Cl -S |.9 Sprinkler 2
+c -s - -w # -C| +S | .5 2
c +s +r +w # % -C| -S [.5 .8
c +s +r W #
-C +s -r +w #
-C +s -r -W #
c S +r +w #
-C -s +r -W #
c s -r +w # +S|-r{ -w [.10
c s ol w # -S[+r|+w .90
-S|+r| -w |.10
-S|-r{+w]| 0
-S|-r|-w 1.0
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BAYESIAN NETWORK

« Compact representation of the joint distribution
« Conditional independence relationships explicit

 Still represents joint so can be used to answer any
probabilistic query
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PROBABILISTIC INFERENCE

« Compute probability of a query variable (or
variables) taking on a value (or set of values)
given some evidence

* PrlQ | E,=e,,....E,=€/]
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USING THE JOINT TO ANSWER

QUERIES

+ Joint distribution is sufficient to answer any
probabilistic inference question involving
variables described in joint

« Can take Bayes Net, construct full joint,
and then look up entries where evidence
variables take on specified values
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BUT CONSTRUCTING JOINT EXPENSIVE &
EXACT INFERENCE IS NP-HARD

= Consider the 3-SAT clause:
(z1VaaVz3)A(-z1VazV-zg )A(x2V-xoVa g )A(—x3V -z Vxs)A(zeVesVar)A(zgVesVag) A (x5 VeV -xy ) A(~xsV-zeVar)
which can be encoded by the following Bayes’ net:

Yi2sa=Y12/A Y5,

Y’. 878 = )y 6 N }” 8

Z=Y1234" Y5678
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SOLN: APPROXIMATE INFERENCE

« Use samples to approximate posterior
distribution Pr[Q | E;=e,,...,E,=€\]
« Last time
- Direct sampling
- Likelihood weighting

* Today
- Gibbs
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PoLL: WHICH ALGORITHM?

* Evidence: Cloudy=+c, Rain=+r
* Query variable: Sprinkler
« P(Sprinkler|Cloudy=+c,Rain=+r)
« Samples
o +C,+S,+r,-w
o +C,-S,-I,-w Sprinkler
o +C,*+S,-I,+w
o  *+C,-S,*r,-w

« What algorithm could’ve generated these samples?
1)  Direct sampling

2) Likelihood weighting

3) Both

4) No clue
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DIRECT SAMPLING RECAP

Algorithm:
1. Create a topological order of the variables in the Bayes Net
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TOPOLOGICAL ORDER

* Any ordering in directed acyclic graph
where a node can only appear after all
of its ancestors in the graph

 E.Q.
o Cloudy, Sprinkler, Rain, WetGrass Sprinkler
- Cloudy, Rain, Sprinkler, WetGrass
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DIRECT SAMPLING RECAP

Algorithm:
1. Create a topological order of the variables in the Bayes Net
2. Sample each variable conditioned on the values of its parents

3. Use samples which match evidence variable values to
estimate probability of query variable

e.g. P(Sprinkler=+s|Cloudy=+c,Rain=+r) ~ # samples with +s,+c,
+r /[ # samples with +c, +r

« Consistent in limit of infinite samples
* Inefficient (why?)
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CONSISTENCY

* In the limit of infinite samples, estimated
Pr[Q | E,=e,,....E,=€e,] will converge to true
posterior probability

* Desirable property (otherwise always have
some error)
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LIKELIHOOD WEIGHTING RECAP

1. Create array Total\Weights
1. Initialize value of each array element to O
2. Forj=1:N
1. Wypp =1
2. Set evidence variables in sample z=<z,,...z, > to observed values

3. For each variable z; in topological order

1. If x; is an evidence variable
1. Wiy = Wi, "P(Z; = €, |Parents(Z) = x(Parents(Z,)))

2. Else
1. Sample x; conditioned on the values of its parents

4. Update weight of resulting sample
1. TotalWeights[z]=TotalWeights[z]+w;,,

3. Use weights to compute probability of query variable
P(Sprinkler=+s|Cloudy=+c,Rain=+r) ~ Sum, ., TotalWeight(+s,c,r,w)/Sum, . ., TotalWeight(s,c,r,w)
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LW CONSISTENCY

* Probability of getting a sample (z,e) where z is a set of
values for the non-evidence variables and e is the vals of

evidence vars

S_am_plin.g !
distribution fora Sws(z, e) _ H P(z |pa’rent3(Z¢))

weighted sample
(WS) 1=1
 |Is this the true posterior distribution P(z|e)?

o No, why?
- Doesn’t consider evidence that is not an ancestor...

-  Weights fix this!
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WEIGHTED PROBABILITY
« Samples each non-evidence variable z according to

l
Sws(z,e) = H P(z; | parents(Z;))

=1

* Weight of a sample is Z

w(z,e) = ﬂ P(e; | parents(E;))

i=1

» Weighted probability of a sample is

z

Sws(z,e)w(z,e) = H P(z; | parents(Z;)) H P(e; | parents(E;))

1=1 1=1

P(z,e) From chain rule & conditional indep

Carnegie Mellon University 21




DOES LIKELIHOOD WEIGHTING PRODUCE
CONSISTENT ESTIMATES? YES

X is query var(s)
PX=xle)e PE=%0) o pix _xe) E is evidence var(s)
P(e) Y is non-query vars

P(X=xle)x P(X =x,e)= EyNWS(x,y,e)w X,y,€) 4 of samples where query

variables=x, non-query=y,

~ ¥ nESy(xy.ewlx,y,e) - EVidenoese
y \
as # samples n = infinit
— EyP(x,y,e) P y

= P(x,e)
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EXAMPLE

« When sampling S and R the evidence W=t is
ignored
- Samples with S=f and R=f although evidence rules
this out
« Weight makes up for this difference
- above weight would be 0

 |f we have 100 samples with R=t and total
weight 1, and 400 samples with R=f and total
weight 2, what is estimate of R=t?
o =1/3
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LIMITATIONS OF LIKELIHOOD
WEIGHTING

» Poor performance if evidence vars occur later in
ordering

 Why?
* Not being used to influence samples!
* Yields samples with low weights
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MARKOV CHAIN MONTE CARLO
METHODS

* Prior methods generate each new sample
from scratch

« MCMC generate each new sample by
making a random change to preceding

sample

« Can view algorithm as being in a particular
state (assignment of values to each
varjable)
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REVIEW: MARKOV BLANKET

 Markov blanket

- Parents
o Children

- Children’s
parents

« Variable
conditionally
independent of all
other nodes given
its Markov Blanket
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GIBBS SAMPLING:. CoMPUTE P(X]e)

local variables: N, a vector of counts for each value of X, initially zero
Z, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Z

mb(Z,) = Markov Blanket of Z,

> from Russell & Norvig
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GIBBS SAMPLING EXAMPLE

« Want Pr(R|S=t,W=t) oz
* Non-evidence variables are C & R < |05
 Initialize randomly: C=t and R=f
 [|nitial state (C,S,R,W)= [t,1,f,1]

« Sample C given current values of e +s .1 8
its Markov Blanket AEBRSIN  Sprinkler .2

-C| +s| .5 2

-C| -S |.5 8

+s|-r] -
+r{ +w (.90
+r[ -w |.10

—
3
=
o

ﬂ
+
=
o

1 1 1 1
nw un uv |un
1 1

Carnegie Mellon University 28




GIBBS SAMPLING EXAMPLE

« Want Pr(R|S=t,W=t) oz
* Non-evidence variables are C & R < |05
 Initialize randomly: C=t and R=f
 [|nitial state (C,S,R,W)= [t,1,f,1]

« Sample C given current values of e +s .1 8
its Markov Blanket 7 2
« Markov blanket is parents, children | 5|5 8

and children’s parents: for C=S & R
« Sample C given P(C|S=t,R=f)
« First have to compute P(C|S=t,R=f)
« Use exact inference to do this

+s|-r] -
+r{ +w (.90
+r[ -w |.10

—
3
=
o

1
+
<
o

1 1 1 1
nw un uv |un
1 1
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EXERCISE: COMPUTE P(C=T|S=T,R=F)?

e Quick refresher i Tos
e Sum rule
p(X) =) p(X)Y)
Y +C|+s|.1 .8
e Product/Chain rule s ;
p(X,Y) = p(Y|X)p(X)
» Bayes rule Y 1X)p(X) e
p p +s|-r| -w |.10
p XY p— -s|+r| +w .90
) p(Y) R
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EXACT INFERENCE EXERCISE

+  P(C|S=t,R=f)
«  What is the probability P(C=t | S=t, R= f)? +c 1 0.5
= P(C=t, S=t, R=f) / (P(S=t,R=f)) € 105
Proportional to P(C=t, S=t, R=f)

Use normalization trick, & compute the above for C=t and C=f
P(C=t, S=t, R=f) = P(C=t) P(S=t|C=t) P (R=f | C=t, S=t) product

rule +cl +s|.1 8
= P(C=t) P(S=t|C=t) P (R=f | C=t) (BN independencies) SN AN Sprinkler 2
=0.5%0.1*0.2=0.01 C[¥S].5 2
P(C=f, S=t, R=f) = P(C=f) P (S=t|C=f) P(R=f|C=f) €l S].5 8

=05*05708=0.2

(P(S=t,R=f)) use sum rule = P(C=f, S=t, R=f) + P(C=t, S=t, R=f)
P(C=t]|S=t,R=f)=0.21

P(C=t|S=t,R=f)=0.01/0.21 ~0.0476 S|+ +W .90
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GIBBS SAMPLING EXAMPLE

« Want Pr(R|S=t,W=t) oz
* Non-evidence variables are C & R < |05
 Initialize randomly: C=t and R=f
 [|nitial state (C,S,R,W)= [t,1,f,1]

« Sample C given current values of e +s .1 8
its Markov Blanket 7 2
« Markov blanket is parents, children | 5|5 8

and children’s parents: for C=S & R
« Exactly compute P(C|S=t,R=f)
« Sample C given P(C|S=t,R=f) i
« GetC=f =i

r{-wi.10

-S|+r|+wW|.90

 New state (ft,f,t) s|+r| -w |10
-S|-r{+w| 0

-S|-r{ -w|1.0
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GIBBS SAMPLING EXAMPLE

« Want Pr(R|S=t,W=t) wc |05

* |nitialize non-evidence variables < |os
(C and R) randomly tot and f

 [|nitial state (C,S,R,W)= [t,t,f,1]

« Sample C given current values of +d +s ] .1 8
its Markov Blanket, p(C|S=t,R=f) SR RETN S rinker 2

-C| +s | .5 2

« Suppose result is C=f | -s | 5 8

* New state (ft,f,t)
« Sample Rain given its MB
« What is its Markov blanket?

+s|-r] -
+r{ +w (.90
+r[ -w |.10

—
3
=
o

ﬂ
+
=
o

1 1 1 1
nw un uv |un
1 1
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GIBBS SAMPLING EXAMPLE

« Want Pr(R|S=t,W=t) wc |05

* |nitialize non-evidence variables < |os
(C and R) randomly tot and f

 [|nitial state (C,S,R,W)= [t,t,f,1]

« Sample C given current values of +d +s ] .1 8
its Markov Blanket, p(C|S=t,R=f) SR RETN S rinker 2

-C| +s | .5 2

« Suppose result is C=f | -s | 5 8

* New state (ft,f,t)

« Sample Rain given its MB,
p(R|C=f,S=t,W=t)

e Suppose result is R=t #s|-r| -w |.10
-S|+r| +w|[.90
* New state (f,t,t,t) s|+r| -w |10
-s[-ri+w| o
-s[-ri-w 1.0
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PoLL: GIBBS SAMPLING EX.

« Want Pr(R|S=t,W=t) wc |05

* |nitialize non-evidence variables < |os
(C and R) randomly tot and f

 [|nitial state (C,S,R,W)= [t,t,f,1]

« Current state (f,t,t,t) +d +s |1 8
+c| -s | .9 Sprinkler 2
c|+s|.5 2
 What is not a possible next state | 5|5 8
« 1. (ft1)
o 2. (ttt1)
« 3. (f,1,ft)
. 4. (ff1) (inconsistent wievid) “eledwlog
5. Not sure N
-S[-r| -w |1.0
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GIBBS SAMPLING

local variables: N, a vector of counts for each value of X, initially zero
Z., the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Z This i
. Is involve
for j=1to N do inference!
for each Z; in Z do -
set the value of Z; in x by sampling from P(Z;|mb(Z;))
N[z]| <~ N|z] 4+ 1 where z is the value of X in x

return NORMALIZE(N)
mb(Z,) = Markov Blanket of Z,

> from Russell & Norvig
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POLL

ARE GIBBS SAMPLES INDEPENDENT?
1.YES 2.NO 3. NOT SURE

local variables: N, a vector of counts for each value of X, initially zero
Z., the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Z
for j=1to N do

for each Z; in Z do
set the value of Z; in x by sampling from P(Z;|mb(Z;))
N[z]| <~ N|z] 4+ 1 where z is the value of X in x
return NORMALIZE(N)
mb(Z,) = Markov Blanket of Z,

‘_ " from Russell & Norvig
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MARKOV BLANKET SAMPLING

» Want to show P(Z| mb(Z) ) is same as
P(Z; | all other variables)

- Implies conditional independence of Z; from
rest of network given its Markov Blanket

 Derive equation for computing P(Z| mb(Z)) )
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PROBABILITY GIVEN MARKOV
BLANKET

P(z; | mb(X;)) = a P(z, | parents(X;)) x H P(y; | parents(Y}))
Y;€Children(X;)
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WHY IS GIBBS CONSISTENT?

« Sampling process settles into a stationary
distribution where long-term fraction of
time spent in each state is exactly equal to

posterior probability

- =2 Implies that if draw enough samples from
this stationary distribution, will get consistent
estimate because sampling from true
posterior
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MARKOV CHAIN

« Let P(x = Xx’) be probability the sampling process
makes a transition from x (some state) to x’ (some
other state)

- E.qg. (t,t,ft) 2 (t,f1,1)
* Run sampling for t steps
» P,(X) is probability system is in state x at time t
* Next state P,,(x’) = Sum, P,(x) P(x = x’)
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STATIONARY DISTRIBUTION

+ Let P(x = Xx’) be probability the process makes a
transition from x to x’

* P(x) is probability system is in state x at time t
¢ P.,(X’) =Sum, P(x) P(x = X)
» Reached stationary distribution if P, ,(x’)=P(x)
« Call stationary distribution 1T
o Must satisfy 1(x’) = \sum_{x} m(x) P(x = x’) for all X’
« If P(x = X’) is ergodic, exactly one such 11 for any
given P(x = X')
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DETAILED BALANCE

+ Let P(x = Xx’) be probability the process makes a
transition from x to x’

* P(x) is probability system is in state x at time t
« Stationary distribution
> Satisfies 1(x’) = \sum_{x} m(x) P(x = x’) for all X’
* Detailed balance: inflow = outflow
« (X)) P(x 2 x’) = 11(X’) P(x’ = x) for all x, X’

Exjr(x‘)P(x— > x') = Exyr(x‘)P(x'— > x) = (x")
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 Proof on board
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PROVING GIBBS SAMPLES FROM

TRUE POSTERIOR

* General Gibbs: sample the value of a new
variable conditioned on all the other variables

« Can prove this version of Gibbs satisfies
detailed balance equation with stationary
distribution of P(X|e)

* Then use prior result that sampling conditioned
on all variables is equivalent to sampling given
Markov Blanket for Bayes Nets

« See text for recap
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GIBBS SAMPLING

« Samples are valid once reach stationary
distribution

* When do we reach stationary distribution?
- Unclear...
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WHAT YOU SHOULD KNOW

« Define probabilistic inference
« How to define a Bayes Net given a real example
 How joint can be used to answer any query
Complexity of exact inference
Approximation inference (direct, likelihood, Gibbs)
- Be able to implement and run algorithm
- Compare benefits and limitations of each
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