

15-381/781 BAYESIAN NETWORKS

EMMA BRUNSKILL (THIS TIME)

ARIEL PROCACCIA

WITH THANKS TO DAN KLEIN (BERKELEY), PERCY LIANG (STANFORD) AND PAST 15-381 INSTRUCTORS FOR SOME SLIDE CONTENT, AND RUSSELL & NORVIG

QUESTION

- Eating a poppy seed bagel or taking opium are independent events that can cause a positive drug test.
- John Doe gets a positive drug test.
- How does learning that John Doe ate a bagel earlier today change your beliefs?
 - A) It increases the probability that John took opium
 - B) It decreases the probability than John took opium
 - C) It does not change the probability John took opium

REASONING & INFERENCE

- Key part of intelligence
- Drawing conclusions based on information
 - All kings are mortal
 - James is a king
 - Is James mortal?
- Logic is one framework
- But real world involves uncertainty
 - Sensors imperfect, actuators imperfect,...

REASONING UNDER UNCERTAINTY

- Inference given noisy, uncertain info
- Probability of different conclusions

 Compute probability of a query variable (or variables) taking on a value (or set of values) given some evidence

- Compute probability of a query variable (or variables) taking on a value (or set of values) given some evidence
- Often interested in:
 - Posterior probability of taking on any value given some evidence: Pr[Q | E₁=e₁,...,E_k=e_k]
 - **Most likely explanation** given some evidence: $argmax_{o} Pr[Q=q \mid E_1=e1,...,E_k=e_k]$

 Compute probability of a query variable (or variables) taking on a value (or set of values) given some evidence

- How do we do probabilistic inference in complex domains?
- How can we do this efficiently?

Using the Joint To Answer **QUERIES**

 Joint distribution is sufficient to answer any probabilistic inference question involving variables described in joint

EXAMPLE

- Probability car is red given that it's a sedan?
- What rules can we use?

	Sedan	VUS	Coupe	Truck
Red	.05	.2	0	.1
White	. l	0	.1	0
Blue	0	. I	0.05	.l
Beige	. I	0	.1	0

EXAMPLE

$P(Color = \text{Re } d \mid Type = Sedan)$		edan	VUS	oupe	ruck
$= \frac{P(Color = \text{Re } d \& Type = Sedan)}{P(Sedan)}$	Red	.05	.2	0	.1
Use Bayes rule and Sum rule	White	.1	0	.1	0
	Blue	0	. I	0.05	.1
	Beige	.l	0	.l	0

EXAMPLE

$P(Color = \text{Re} d \mid Type = Sedan)$		edan	VUS	oupe	ruck
$= \frac{P(Color = \text{Re } d \& Type = Sedan)}{P(Sedan)}$	Red	.05	.2	0	.l
Use Bayes rule	White	.1	0	.l	0
and Sum rule	Blue	0	.1	0.05	. l
= 0.2	Beige	.1	0	.l	0

PATIENT VISIT INFERENCE

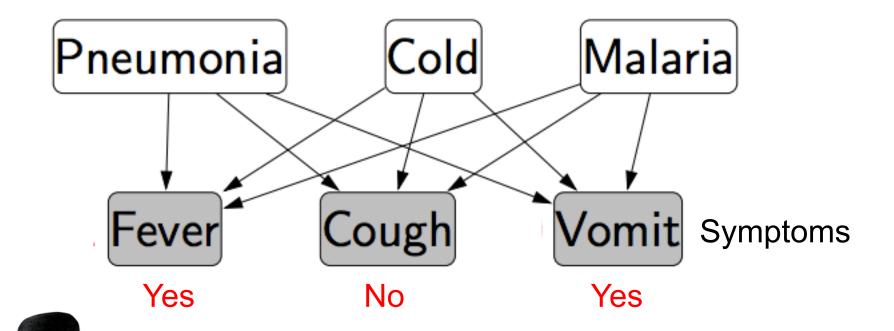
- Joint distribution over:
 - LastName, FirstName, Gender, Height, Birthdate, Weight, Fever, Subcounty, HIV status, HIV assay, Headache, UTI diagnosis, Vomiting, Diarrhea, Malaria, Cipro, Productive cough, Civil Status, TransportMode
- How many parameters need to represent joint?
- Potential computational cost?

BAYES NETWORKS

- Compact representation of the joint distribution
- Make conditional independence relationships explicit

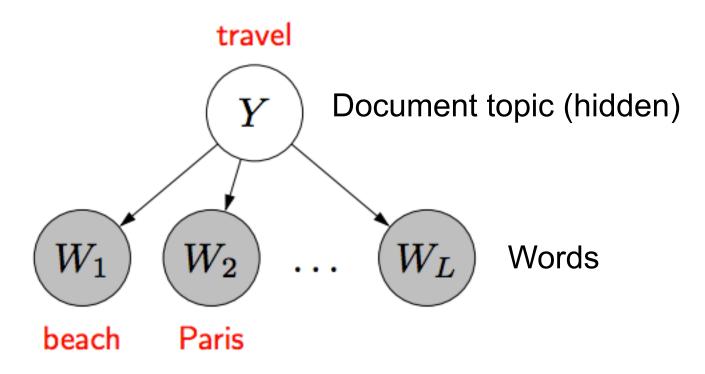
MEDICAL DIAGNOSIS

 Given a patient's symptoms, what might conditions or diseases might he have?



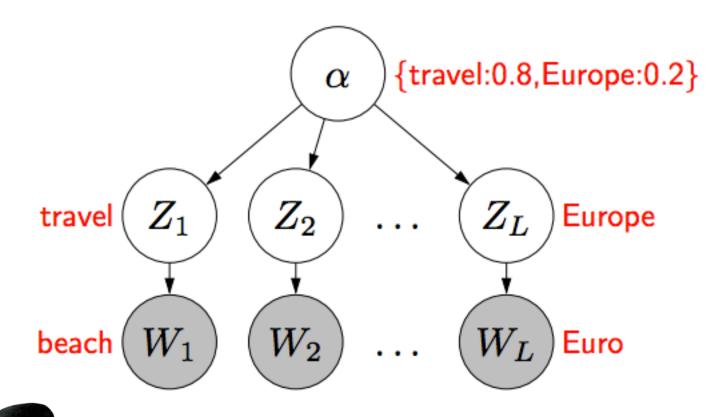
DOCUMENT CLASSIFICATION

Given the words in a document, what is it about?



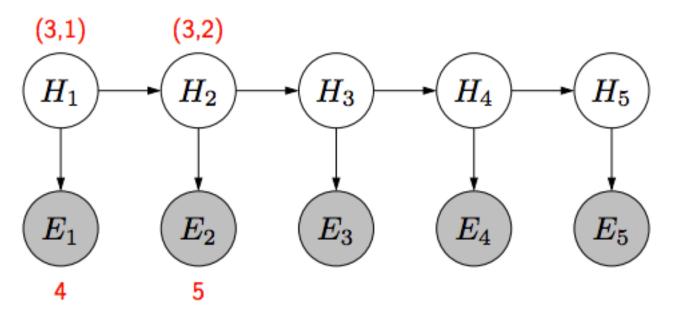
TOPIC MODELING

Given the words in a document, what topics is it about?



OBJECT TRACKING

 Given some observations, what was the path the agent went through?

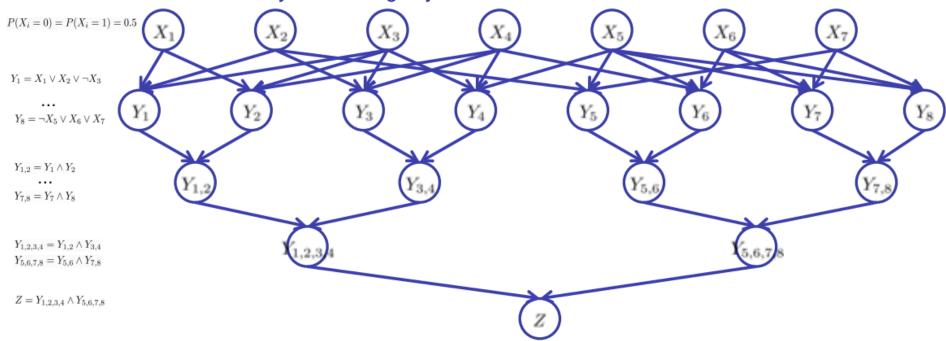


 Compute probability of a query variable (or variables) taking on a value (or set of values) given some evidence

EXACT INFERENCE IS NP-HARD

Consider the 3-SAT clause:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7)$ which can be encoded by the following Bayes' net:



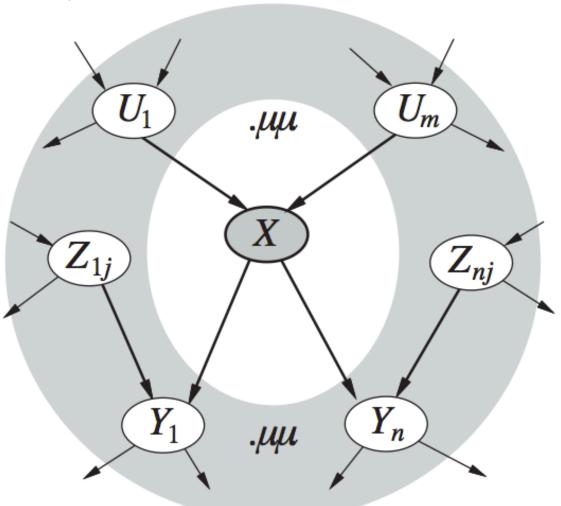
If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

Compute probability of a query variable(s) given some evidence

 But in large networks, exact inference is often computationally intractable

MARKOV BLANKET

- Markov blanket
 - Parents
 - 。 Children
 - Children's parents
- Variable conditionally independent of all other nodes given its Markov Blanket

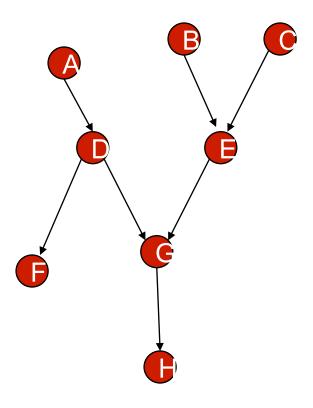


MARKOV BLANKET POLL

- Markov blanket
 - Parents
 - Children
 - Children's parents

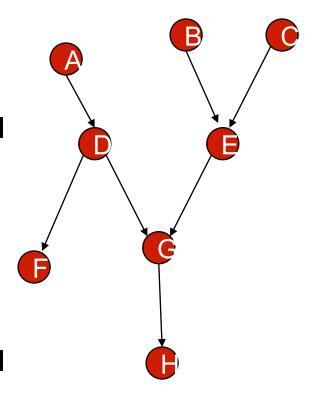
What is the Markov blanket of D?

- 1. A,F,G
- 2. A,F,G,E
- 3. A,F,G,E,B,C
- 4. Not sure



MARKOV BLANKET & INDEPENDENCE

- Markov blanket: Parents, Children, Children's parents
- Variable conditionally independent of all other nodes given its Markov Blanket
- Ex: Evidence is G=True. Is E conditionally independent of A given G=True?
- Not necessarily
- Variable conditionally independent of all other nodes given know values of all variables in its Markov Blanket



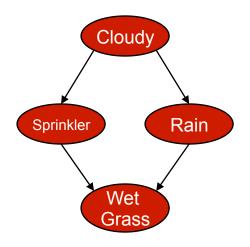
OVERVIEW

- Approximate inference through sampling
 - Direct
 - Rejection
 - Likelihood weighting
 - Gibbs sampling
- Know why each approach is consistent
- Be able to analyze cost of generating a sample in each method
- Tradeoffs in efficiency (# of samples need to get a good estimate)

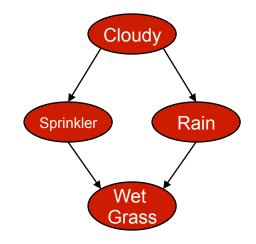
APPROXIMATE INFERENCE

- Often interested in:
 - Posterior probability of taking on any value given some evidence: $Pr[Q \mid E_1=e_1,...,E_k=e_k]$
 - Most likely explanation given some evidence: argmax_q Pr[Q=q | E₁=e1,...,E_k=e_k]
- Imagine we could get samples from the posterior distribution of the query variable given some evidence
- Could use these samples to approximate posterior distribution and/or most likely explanation

WET GRASS EXAMPLE



PR(CLOUDY | SPRINKLER=T, RAIN=T)?



- Samples of Cloudy given Sprinkler=T & Rain=T): 1 0 1 1 1 1 1 1 0
- Posterior probability of taking on any value given some evidence:
 Pr[Q | E₁=e₁,...,E_k=e_k]
 - ∘ Pr(Cloudy = T | Sprinkler=T, Rain=T) ≈ .7
 - o Pr(Cloudy = F | Sprinkler=T, Rain=T) ≈ .3

SAMPLING AS APPROXIMATE INFERENCE

 http://onlinestatbook.com/stat_sim/ sampling_dist/index.html

SAMPLING FROM A DISTRIBUTION

- We'll spend time today talking about different ways to obtain samples from posterior distribution from a Bayes Net
- But first, how to sample the value of a single variable

SAMPLING SINGLE VARIABLE

 Consider when have a CPT (conditional probability table) that specifies the probability of C being true or false

+c	0.5
-С	0.5

P(C)

- Want to sample values from this distribution
- Simple approach
 - r = random # generator between (0,1)
 - If(r < 0.5) sample = c+ (c=true)
 - Else sample = c- (c=false)

SAMPLING SINGLE VARIABLE 2

- Want to sample s when C=-c (c is false)
- Simple approach
 - r = random # generator between (0,1)
 - If(r < 0.5) sample = s+
 - Else sample = s-

P(S|C)

+c	+\$	0.90
+c	- S	0.10
-C	+\$	0.5
-с	-S	0.5

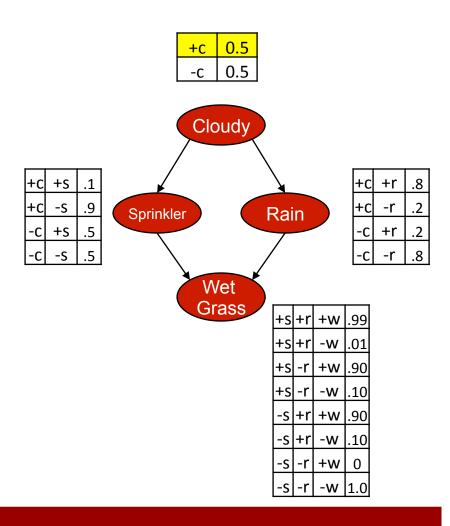
Note: can be a bit more complicated for certain parametric distributions

SAMPLING

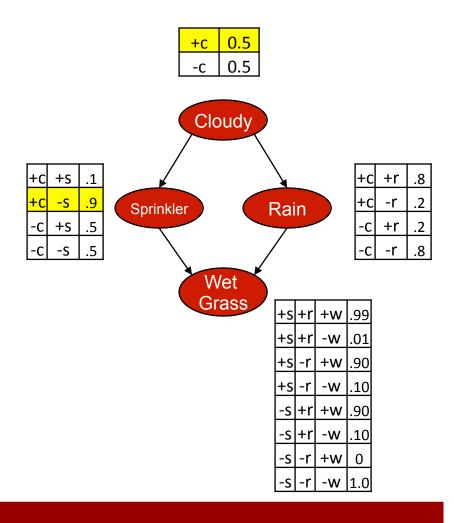
- Have some method for generating samples given a known probability distribution
- Sample will be an assignment of values to each variable in the network
 - Generally will only be interested in query variables after finish sampling
- Use samples to approximately compute posterior probabilities

- Generate samples from a network with no evidence
- Create a topological order of the variables in the Bayes Net
- Sample each variable conditioned on the values of its parents

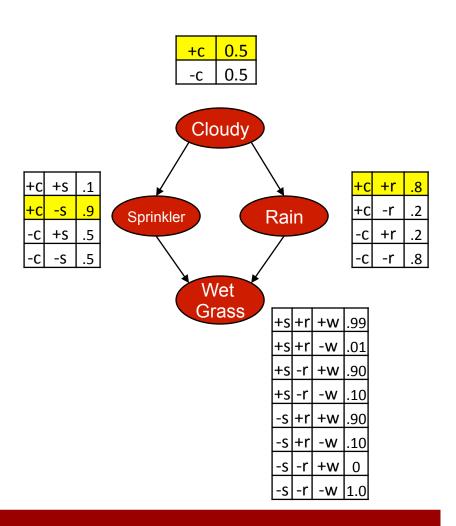
Sample Pr[C]=(.5,.5)⇒ true



- Sample Pr[C]=(.5,.5)
 - \Rightarrow true
- Sample Pr[S|C=t]=(.1,.9)
 - \Rightarrow false

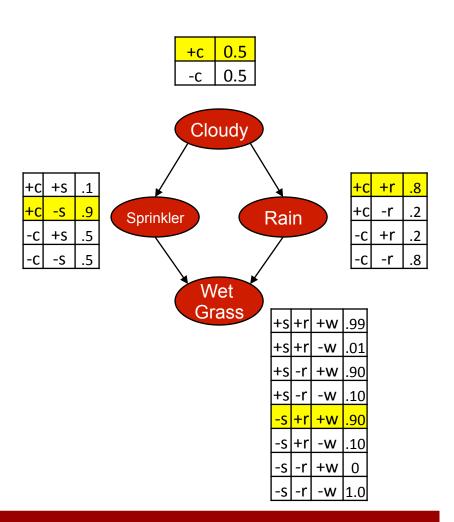


- Sample Pr[C]=(.5,.5)
 - \Rightarrow true
- Sample Pr[S|C=t]=(.1,.9)
 - \Rightarrow false
- Sample Pr[R|C=t]=(.8,.2)
 - ⇒ true



DIRECT SAMPLING

- Sample Pr[C]=(.5,.5)
 - \Rightarrow true
- Sample Pr[S|C=t]=(.1,.9)
 - ⇒ false
- Sample Pr[R|C=t]=(.8,.2)
 - ⇒ true
- Sample Pr[W|S=f,R=t]=(.9,.1)
 - ⇒ true
- Sampled [t,f,t,t]



DIRECT SAMPLING

- Sampling process generates samples from prior joint distribution specified by BN
- Use samples to estimate probability of a specific event
 - Reminder: event is assignment of values to variables
- $Pr[X_1=x_1,...,X_5=x_5] \approx \#(x_1,...,x_5)/\#samples$
 - ≈ means becomes exact in large-sample limit
 - Implies estimate is consistent

REJECTION SAMPLING

- What about when we have evidence?
- Want to estimate Pr[Rain=t|Sprinkler=t] using 100 direct samples
- 73 have S=f, of which 12 have R=t
- 27 have S=t, of which 8 have R=t

What's the estimate?

A) 20/100

B) 12 / 73

C) 8 / 27

D) Not sure

REJECTION SAMPLING

- What about when we have evidence?
- Use direct sampling
- Reject all samples inconsistent with evidence, and estimate probability of events in remaining samples
- Problem: try to estimate Pr[Rain| RedSkyAtNight=t]!

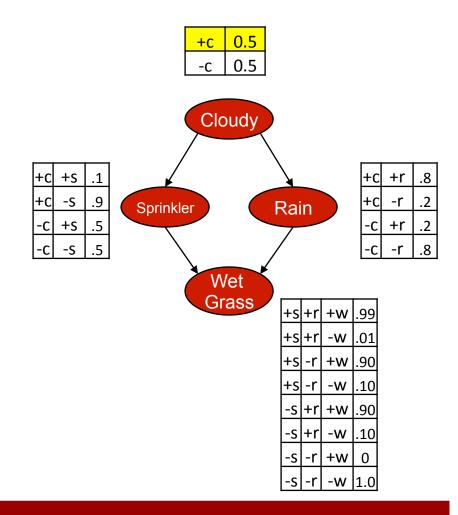
SOLUTION: LIKELIHOOD WEIGHTING

- Current approach: generate samples until have many that agree with evidence
- Proposed approach:
 - Generate only samples that agree with evidence
 - Weight them according to likelihood of evidence

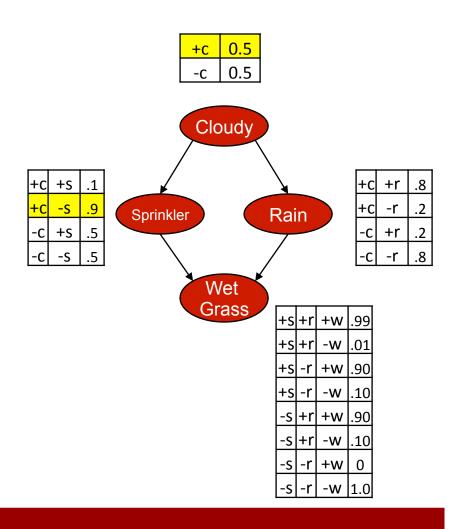
GENERATING A SAMPLE USING LIKELIHOOD WEIGHTING

- Select a topological ordering of variables
- Set w = 1
- x ← event with evidence variables set
- For each variable X_i in order (X₁,X₂,...):
 - o If X_i is an evidence variable
 Update w ← w * P(X_i = e_i |Parents(X_i) = x(Parents(X_i)))
 - ∘ Else $\mathbf{x}[i]$ ← sample from $P(X_i | Parents(X_i) = \mathbf{x}(Parents(X_i))$

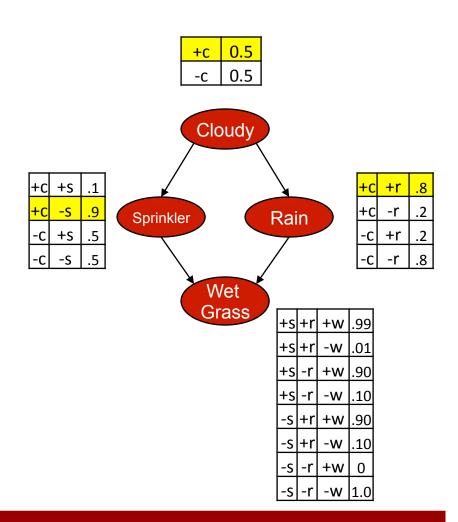
- Evidence: C=t,W=t
- C is evidence var ⇒ w = 1·Pr[C=t] = 0.5



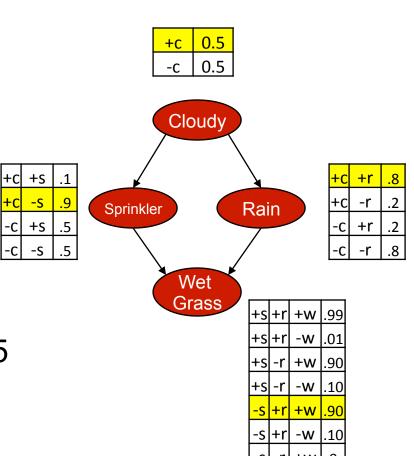
- Evidence: C=t,W=t
- C is evidence var
 ⇒ w = 1·Pr[C=t] = 0.5
- Sample Pr[S|C=t]=(.1,.9)
 ⇒ false



- Evidence: C=t,W=t
- C is evidence var
 ⇒ w = 1·Pr[C=t] = 0.5
- Sample Pr[S|C=t]=(.1,.9)
 ⇒ false
- Sample Pr[R|C=t]=(.8,.2)
 ⇒ true



- Evidence: C=t,W=t
- C is evidence var
 ⇒ w = 1·Pr[C=t] = 0.5
- Sample Pr[S|C=t]=(.1,.9)
 ⇒ false
- Sample Pr[R|C=t]=(.8,.2)
 ⇒ true
- W is evidence var
 ⇒ w = 0.5·Pr[W=t|S=f,R=t] = .45
- Sampled [t,f,t,t] with weight .45, tallied under R=t



LIKELIHOOD WEIGHTING: COMPUTING P(X|e)

```
inputs: X, the query variable \mathbf{e}, observed values for variables \mathbf{E} bn, a Bayesian network specifying joint distribution \mathbf{P}(X_1,\ldots,X_n) N, the total number of samples to be generated local variables: \mathbf{W}, a vector of weighted counts for each value of X, initially zero for j=1 to N do \mathbf{x}, w \leftarrow \mathrm{WEIGHTED\text{-}SAMPLE}(bn,\mathbf{e}) \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in \mathbf{x} return NORMALIZE(\mathbf{W})
```


CONSISTENCY

 Samples each non-evidence variable z in a sample according to

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

- Is this the true posterior distribution P(z|e)?
 - No, but weights fix this!

WEIGHTED PROBABILITY

Samples each non-evidence variable z according to

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

· Weight of a sample is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | parents(E_i))$$

Weighted probability of a sample is

$$S_{WS}(\mathbf{z}, \mathbf{e})w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i)) \prod_{i=1}^{m} P(e_i | parents(E_i))$$

= $P(\mathbf{z}, \mathbf{e})$

DOES LIKELIHOOD WEIGHTING PRODUCE CONSISTENT ESTIMATES?

Yes, see book

EXAMPLE

- When sampling S and R the evidence W=t is ignored
 - Samples with S=f and R=f although evidence rules this out
- Weight makes up for this difference
 - above weight would be 0
- If we have 100 samples with R=t and total weight 1, and 400 samples with R=f and total weight 2, what is estimate of R=t?
 - 。 = 1/3

LIMITATIONS OF LIKELIHOOD WEIGHTING

 Poor performance if evidence vars occur later in ordering

