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MOTION PLANNING

* Navigating between two
points while avoiding
obstacles

* A first approach: define a

discrete grid “lelelellely
e Mark cells that intersect ool . o
obstacles as blocked oo oo

* Find path through centers
of remaining cells o oo oo
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Is this approach
optimal?
Complete?
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CELL DECOMPOSITION

* Distinguish between
o Cells that are contained in obstacles

o Cells that intersect obstacles

* If no path found, subdivide the mixed cells
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IS IT COMPLETE NOW?

* An algorithm is resolution complete when:
.. If a path exists, it finds it in finite time
b. If a path does not exist, it returns in finite
time
e Poll 1: Cell decomposition satisties:
@ a but not b
2. b but not a
5. Both a and b

1. Neither a nor b
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CELL DECOMPOSITION
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— Shortest paths through cell centers
----- Shortest path
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SOLUTION 1: A* SMOOTHING

* Allows connection to further states than
neighbors on the grid
* Key observation:
o If xq,...,x, is valid path
o And x is visible from Xx;

o Then x4, ey Xjy Xfgy ey Xpp 18 @ valid path

© @ @ /, (] (]
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SMOOTHING WORKS!
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— A shortest path through cell centers
----- Shortest path
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SMOOTHING DOESN’T WORK!
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— A shortest path through cell centers
----- Shortest path
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SOLUTION 2: THETA™®

* Allow parents that are non-neighbors in the grid
to be used during search

e Standard A*

o g¥) = glx) tclxy)
o Insert y with estimate

f)=9&x) +c(xy)+h(y)
* Theta™

o If parent(x) is visible from y, insert y with estimate
f(y) = g(parent(x)) + c(parent(x),y) + h(y)
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THETA™ WORKS!

Theta™ path, I think ©
----- Shortest path
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THETA™ WORKS!
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[Nash, AlGameDev 2010]
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THE OPTIMAL PATH

* Polygonal path: sequence of
connected straight lines

* Inner vertex of polygonal
path: vertex that is not
beginning or end

* Theorem: assuming
polygonal obstacles, shortest
path is a polygonal path

whose Inner vertices are
vertices of obstacles
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PROOF OF THEOR!

* Suppose for contradiction that
shortest path is not polygonal

* Obstacles are polygonal =
dpoint p in interior of free space
such that “path through p is
curved”

&

e ddisc of free space around p

* Path through disc can be
shortened by connecting points
of entry and exit
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PROOF OF THEORI
* Path is polygonal!

* Vertex cannot lie in interior
of free space, otherwise we
can do the same trick

e Vertex cannot lie on a the
interior of an edge, otherwise
we can do the same trick =
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How would we detine
a graph on which A*
would be optimal?
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PLANNING, MOR:
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CRALLY

ATl (also) studies rational action

Devising a plan of action to achieve one’s
goal is a critical part of Al

In fact, planning is glorified search

We will consider a structured
representation of states

&5, 15381 Fall 2016: Lecture 5
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PROPOSITIONAL STRIPS PLANNING

e STRIPS = Stanford Research Institute
Problem Solver (1971)

* State is a conjunction of conditions, e.g.,
at(Truck,,Shadyside)Aat(Truck,,Oakland)

* States are transformed via operators that
have the form
Preconditions = Postconditions
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PROPOSITIONAL STRIPS PLANNING

* Pre is a conjunction of positive and negative conditions
that must be satisfied to apply the operation

* Post is a conjunction of positive and negative conditions
that become true when the operation is applied

* We are given the initial state

* We are also given the goals, a conjunction of positive
and negative conditions

 We think of a state as a set of positive conditions, hence
an operation has an “add list” and a “delete list”
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BLOCKS WORLD

Goal
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BLOCKS WORLD

* Conditions: on(A,B), on(A,C), on(B,A),
on(B,C), on(C,A), on(C,B), clear(A), clear(B),
clear(C), on(A,Table), on(B,Table), on(C,Table)

* Operators for moving blocks

o Move C from A to the table:
clear(C) A on(C,A)
= on(C,Table) A clear(A) A ~on(C,A)
o Move A from the table to B
clear(A) A on(A,Table) A clear(B)
= on(A,B) A ~clear(B) and ~on(A,Table)
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THE PLAN

» State: on(C,A), on(A,Table), on(B,Table),
clear(B), clear(C)

* Action:
clear(C) A on(C,A)
= on(C,Table) A clear(A) A "on(C,A)
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THE PLAN

 State: on(A,Table), on(B,Table), clear(B),
clear(C), on(C,Table), clear(A)
* Action:

clear(C) A on(B,Table) A clear(B)
= on(B,C) A ~clear(C) and ~on(B,Table)
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THE PLAN

» State: on(A,Table), clear(B), on(C,Table),
clear(A), on(B,C)
* Action:

clear(B) A on(A,Table) A clear(A)
= on(A,B) A ~clear(B) and ~on(A,Table)
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THE PLAN

 State: on(C,Table), clear(A), on(B,C),
on(A,B)
* Goals: on(A,B), on(B,C)
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COMPLEXITY OF PLANNING

* PLANSAT is the problem of determining
whether a given planning problem is
satisfiable

* In general PLANSAT is PSP A CE-complete

* We will look at some special cases
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COMPLEXITY OF PLANNING

* Theorem 1: Assume that actions have only
positive preconditions and a single
postcondition. Then PLANSAT is in P

* Theorem 2: Blocks world problems can be
encoded as above

 Silly corollary: Blocks world problems can
be solved in polynomial time (Duh)
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PROOF OF THEOREM 2

« We will convert blocks world operators to operators that
have only positive preconditions and a single postcondition

* Let the blocks be B4, ..., B,

* Conditions: off(i, j) means B; is not on top of B;

/\ off(k, i) A A off(k,j) = off(i, ) A off(k, i) A /\ off(i, k) A /\ off(k,j) = —off(i,))

k k#i k k k

¥ Lo
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PROOF OF THEOREM 1%

 Lemma: It is sufficient to consider plans that
tirst make conditions true, then make conditions
talse

e Proof:

o ouppose that o; and 0;,1 are adjacent operators s.t.
the postcondition p of 0, is negative and the
postcondition g of 0;,1 is positive

o If p = q then we can delete 0, because its effect is
reversed

o Otherwise, we can switch o; and 0;,1 &
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PROOF OF THEOREM 1%

By the lemma, if there is a solution, there is
an intermediate state S such that

o S can be reached from the initial state using
operations with positive postconditions

o The positive goals are a subset of S
o Negative goals can be achieved via operations
with negative postconditions

e Search for an intermediate state S with these
properties
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P e

PROOF OF THEOREM 1%

 Implement procedure
TurnOn(X): given set of
conditions X, find maximal state _Ld 1L
S such that SN X = @ that can

X ey

be reached from initial state
] t 1th 111 y
using operators with positive SOLTTT

postconditions

o Preconditions are positive, so:

sIHONEEEN

o oimply apply all such operators
until it makes no difference
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PROOF OF THEOREM 1%

* Denote S” the state resulting from

removing negative goals from S Goal ([ IR 1R /B
 Implement procedure
TurnOff(S): find the maximal sIHEHNEENEN
S" such that S is reachable from
S’ using operators with negative T TILT T
postconditions in S
o Simply search backwards from ol T . BEEE

S'" and reverse operators with
(i) negative postconditions in S

(ii) preconditions satisfied s ENEEENE
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PROOF OF THEOREM 1%

e In the first iteration, if

positive goals are not X=0
satisfied by S, there is loop

no way to achieve § = TurnOn(X)
them if § does not contain positive

c TES\S 0, it is ’ goals then return reject
. : S" = TurnOff(S)
impossible to remove . ,
. if § =S then return accept
these conditions; must X=XU(S\S)
be added to X P e el
if X intersects with initial
* X grows monotonically

T state then return reject
= polynomial time &
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SUMMARY

* Terminology:
o Cell decomposition

o Resolution completeness
o Theta*

o OTRIPS
* Big ideas:

o A* can be modified to work well
In continuous spaces
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