

CMU 15-7/381 CSPS

TEACHERS:
ARIEL PROCACCIA
EMMA BRUNSKILL (THIS TIME)

WITH THANKS TO ARIEL
PROCACCIA AND OTHER PRIOR
INSTRUCTIONS FOR SLIDES

CLASS SCHEDULING WOES

- 4 more required classes to graduate
 - A: Algorithms **B**: Bayesian Learning
 - C: Computer Programming D: Distributed Computing
- A few restrictions
 - Algorithms must be taken same semester as distributed computing
 - Computer programming is a prereq for distributed computing and Bayesian learning, so it must be taken in an earlier semester
 - Advanced algorithms and Bayesian Learning are always offered at the same time, so they cannot be taken the same semester
- 3 semesters (semester 1,2,3) when can take classes

CONSTRAINT SATISFACTION PROBLEMS (CSPs)

- Variables: $V = \{V_1, ..., V_N\}$
- Domain: Set of d possible values for each variable
- Constraints: $C = \{C_1,...,C_k\}$
- A constraint consists of
 - variable tuple
 - list of possible values for tuple (ex.[$(V_2, V_3), \{(R, B), (R, G)\}$)
 - Or function that describes possible values (ex. $V_2 \neq V_3$)
- Allows useful general-purpose algorithms with more power than standard search algorithms

OVERVIEW

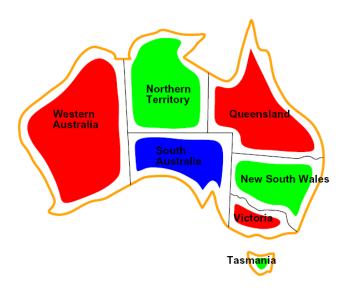
- Real world CSPs
- Basic algorithms for solving CSPs
- Pruning space through propagating information

OVERVIEW

- Real world CSPs
- Basic algorithms for solving CSPs
- Pruning space through propagating information

EXAMPLE: MAP COLORING

Color a map so that adjacent areas are different colors



MAP COLORING

Variables

WA, NT, Q, NSW

Domain

 $\{red, green, blue\}$

Constraints

 $(WA, NT) \in \{(red, green), (red, blue), (green, red), \ldots\}$

Solutions

 $\{WA = red, NT = green, Q = red,$ NSW = green, V = red, SA = blue,

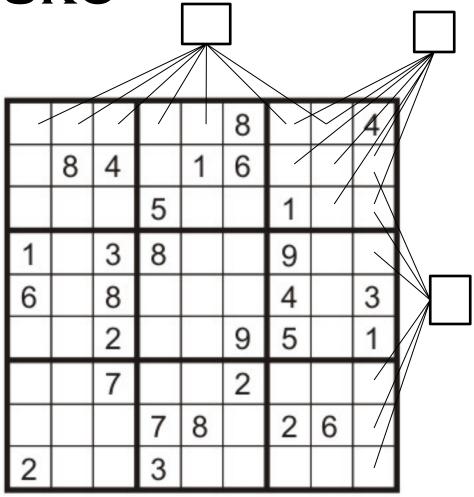
T = green

EXAMPLE: SUDUKO

Variables:

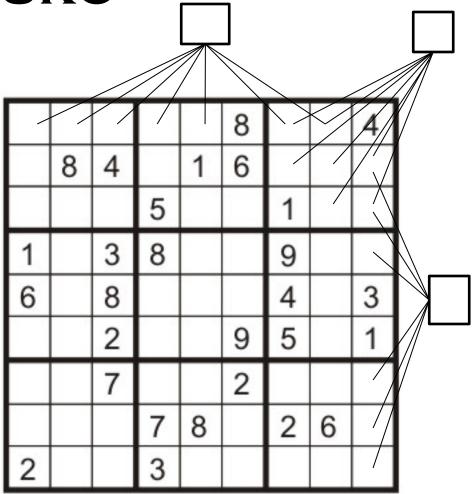
• Domain:

Constraints:



EXAMPLE: SUDUKO

- Variables:
 - Each open sqr
- Domain:
 - o {1:9}
- Constraints:
 - 9-way all diff col
 - 9-way all diff row
 - 9-way all diff box



SCHEDULING (IMPORTANT EX.)

- Many industries. Many multi-million \$ decisions. Used extensively for space mission planning. Military uses.
- People really care about improving scheduling algorithms! Problems with phenomenally huge state spaces. But for which solutions are needed very quickly
- Many kinds of scheduling problems e.g.:
 - Job shop: Discrete time; weird ordering of operations possible; set of separate jobs.
 - Batch shop: Discrete or continuous time; restricted operation of ordering; grouping is important.

JOB SCHEDULING

- A set of N jobs, J₁,..., J_n
- Each job j is a seq of operations O^j₁,..., O^j_{Lj}
- Each operation may use resource R, and has a specific duration in time.
- A resource must be used by a single operation at a time.
- All jobs must be completed by a due time.
- Problem: assign a start time to each job.

EXERCISE: DEFINE CSP

- 4 more required classes to graduate: A, B, C, D
- A must be taken same semester as D
- C is a prereq for D and B so must take C earlier than D & B
- A & B are always offered at the same time, so they cannot be taken the same semester
- 3 semesters (semester 1,2,3) when can take classes
- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints: $A \neq B$, A=D, C < B, C < D

OVERVIEW

- Real world CSPs
- Basic algorithms for solving CSPs
- Pruning space through propagating information

WHY NOT JUST DO BASIC SEARCH ALGORITHMS FROM LAST TIME?

- Only consider a single variable at each point
- Don't care about path!

- Only consider a single variable at each point
- Don't care about path!
- Order of variable assignment doesn't matter, so fix ordering

- Only consider a single variable at each point
- Don't care about path!
- Order of variable assignment doesn't matter, so fix ordering
- Only consider values which do not conflict with assignment made so far

- Only consider a single variable at each point
- Don't care about path!
- Order of variable assignment doesn't matter, so fix ordering
- Only consider values which do not conflict with assignment made so far
- Depth-first search for CSPs with these two improvements is called backtracking search

- Function Backtracking(csp) returns soln or fail
 - Return Backtrack({},csp)
- Function Backtrack(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - V_i← select_unassigned_var(csp)
 - For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment

Add $[V_i = val]$ to assignment

Result ← Backtrack(assignment,csp)

If Result ≠ fail, return result

Remove $[V_i = val]$ from assignments

Return fail

BACKTRACKING EXAMPLE

- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints:
 - $_{\circ}$ A \neq B, A=D, C < B, C < D
- Variable order: ?
- Value order: ?

- Function Backtracking(csp) returns soln or fail
 - Return Backtrack({},csp)
- Function Backtrack(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - ∨_i← select_unassigned_var(csp)
 - For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment

Add $[V_i = val]$ to assignment

Result ← Backtrack(assignment,csp)

If Result ≠ fail, return result

Remove $[V_i = val]$ from assignments

。 Return fail

THINK AND DISCUSS

- Does the value order used affect how long backtracking takes to find a solution?
- Does the value order used affect the solution found by backtracking?

VARIABLES: A,B,C,D DOMAIN: {1,2,3}

CONSTRAINTS: A ≠ B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: DESCENDING

• (A=3)

Variables: A,B,C,D Domain: $\{1,2,3\}$ Constraints: A \neq B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: DESCENDING

- (A=3)
- (A=3, B=3) inconsistent with A ≠ B
- (A=3, B=2)
- (A=3, B=2, C=3) inconsistent with C < B
- (A=3, B=2, C=2) inconsistent with C < B
- (A=3, B=2, C=1)
- (A=3, B=2, C=1,D=3) VALID

VARIABLES: A,B,C,D DOMAIN: {1,2,3}

CONSTRAINTS: A ≠ B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

• (A=1)

Variables: A,B,C,D Domain: $\{1,2,3\}$ Constraints: A \neq B, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

- (A=1)
- (A=1,B=1) inconsistent with A ≠ B
- (A=1,B=2)
- (A=1,B=2,C=1)
- (A=1,B=2,C=1,D=1) inconsistent with C < D
- (A=1,B=2,C=1,D=2) inconsistent with A=D
- (A=1,B=2,C=1,D=3) inconsistent with A=D

VARIABLES: A,B,C,D DOMAIN: {1,2,3}

Constraints: $A \neq B$, A=D, C < B, C < D

VARIABLE ORDER: ALPHABETICAL VALUE ORDER: ASCENDING

- (A=1)
- (A=1,B=1) inconsistent with $A \neq B$
- (A=1,B=2)
- (A=1,B=2,C=1)
- (A=1,B=2,C=1,D=1) inconsistent with C < D
- (A=1,B=2,C=1,D=2) inconsistent with A=D
- (A=1,B=2,C=1,D=3) inconsistent with A=D
- No valid assignment for D, return result = fail
 - Backtrack to (A=1,B=2,C=)
- Try (A=1,B=2,C=2) but inconsistent with C < B
- Try (A=1,B=2,C=3) but inconsistent with C < B
- No other assignments for C, return result= fail
 - Backtrack to (A=1,B=)
- (A=1,B=3)
- (A=1,B=3,C=1)
- (A=1,B=3,C=1,D=1) inconsistent with C < D
- (A=1,B=3,C=1,D=2) inconsistent with A = D
- (A=1,B=3,C=1,D=3) inconsistent with A = D
- Return result = fail
 - Backtrack to (A=1,B=3,C=)

- (A=1,B=3,C=2) inconsistent with C < B
- (A=1,B=3,C=3) inconsistent with C < B
- No remaining assignments for C, return fail
 - Backtrack to (A=1,B=)
- No remaining assignments for B, return fail
 - Backtrack to A
- (A=2)
- (A=2,B=1)
- (A=2,B=1,C=1) inconsistent with C < B
- (A=2,B=1,C=2) inconsistent with C < B
- (A=2,B=1,C=3) inconsistent with C < B
- No remaining assignments for C, return fail
 - Backtrack to (A=2,B=?)
- (A=2,B=2) inconsistent with A ≠ B
- (A=2,B=3)
- (A=2,B=3,C=1)
- (A=2,B=3,C=1,D=1) inconsistent with C < D
- (A=2,B=3,C=1,D=2) **ALL VALID**

ORDERING MATTERS!

- Function Backtracking(csp) returns soln or fail
 - Return Backtrack({},csp)
- Function Backtrack(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - 。 V_i← select_unassigned_var(csp)
 - For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment

Add $[V_i = val]$ to assignment

Result ← Backtrack(assignment,csp)

If Result ≠ fail, return result

Remove $[V_i = val]$ from assignments

Return fail

MIN REMAINING VALUES (MRV)

- Choose variable with minimum number of remaining values in its domain
- Why min rather than max?

MIN REMAINING VALUES (MRV)

- Choose variable with minimum number of remaining values in its domain
- Most constrained variable
- "Fail-fast" ordering

LEAST CONSTRAINING VALUE

- Given choice of variable:
 - Choose least constraining value
 - Aka value that rules out the least values in the remaining variables to be assigned
 - May take some computation to find this

Why least rather than most?

CLICK! COST OF BACKTRACKING?

- d values per variable
- n variables
- Possible number of CSP assignments?
- A) O(dⁿ)
- B) O(n^d)
- C) O(nd)

OVERVIEW

- Real world CSPs
- Basic algorithms for solving CSPs
- Pruning space through propagating information

LIMITATIONS OF BACKTRACKING

- Function Backtracking(csp) returns soln or fail
 - Return Backtrack({},csp)
- Function Backtrack(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - V_i← select_unassigned_var(csp)
 - For each val in *order-domain-values(var,csp,assign)*

If value is consistent with assignment

Add $[V_i = val]$ to assignment

Result ← Backtrack(assignment,csp)

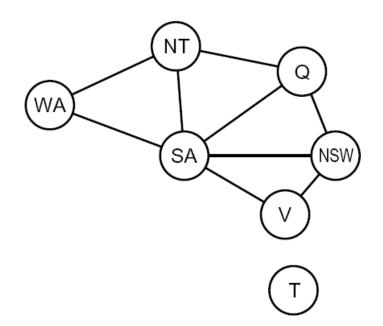
If Result ≠ fail, return result

Remove $[V_i = val]$ from assignments

Return fail

CONSTRAINT GRAPHS

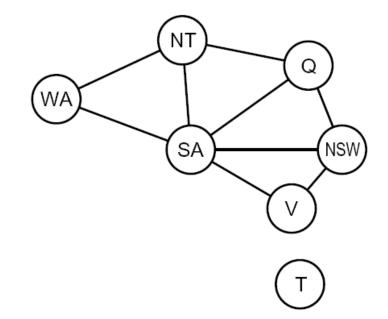
- Nodes are variables
- Arcs show constraints



PROPAGATE INFORMATION

- If we choose a value for one variable, that affects its neighbors
- And then potentially those neighbors...

Prunes the space of solutions



ARC CONSISTENCY

Definition:

- An "arc" (connection between two variables X → Y in constraint graph) is consistent if:
- For every value could assign to X
 There exists some value of Y that could be assigned without violating a constraint

AC-3 (ASSUME BINARY CONSTRAINTS)

- Input: CSP
- Output: CSP, possible with reduced domains for variables, or inconsistent
- Local variables: stack, initially stack of all arcs (binary constraints in csp)
- While stack is not empty
- (X_i, X_i) = Remove-First(stack)
- $[domainX_i, anyChangeToDomainX_i] = Revise(csp,X_i,X_i)$
- if anyChangeToDomainX_i == true
- if $size(domainX_i) = 0$, return inconsistent
- else
- for each X_k in Neighbors(X_i) except X_i
- add (X_k,X_i) to stack
- Return csp

Have to add in arc for (X_i,X_i) and for i,j constraint

AC-3 (ASSUME BINARY CONSTRAINTS)

```
Input: CSP
Output: CSP, possible with reduced domains for variables, or inconsistent
Local variables: stack, initially stack of all arcs (binary constraints in csp)
While stack is not empty
                                                                                         Have to add in
        (X_i, X_i) = Remove-First(stack)
                                                                                      arc for (X<sub>i</sub>,X<sub>i</sub>) and
        [domainX_i, anyChangeToDomainX_i] = Revise(csp, X_i, X_i)
        if anyChangeToDomainX<sub>i</sub> == true
                                                                                       for i,j constraint
           if size(domainX_i) = 0, return inconsistent
           else
                     for each X<sub>k</sub> in Neighbors(X<sub>i</sub>) except X<sub>i</sub>
                        add (X_k, X_i) to stack
Return csp
Function Revise(csp,X<sub>i</sub>,X<sub>i</sub>) returns DomainXi and anyChangeToDomainX<sub>i</sub>
        anyChangeToDomainX<sub>i</sub> = false
        for each x in Domain(X_i)
           if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (X_i,X_i)
                  delete x from Domain(X<sub>i</sub>)
                     anyChangeToDomainX<sub>i</sub> = true
```

AC-3 COMPUTATIONAL COMPLEXITY?

Input: CSP Output: CSP, possible with reduced domains for variables, or inconsistent Local variables: stack, initially stack of all arcs (binary constraints in csp) While stack is not empty Have to add in arc for (X_i, X_i) = Remove-First(stack) (X_i,X_i) and (X_i,X_i) for it constraint $[domainX_i, anyChangeToDomainX_i] = Revise(csp, X_i, X_i)$ if anyChangeToDomainX_i == true D domain values if $size(domainX_i) = 0$, return inconsistent C binary constraints else Complexity of revise function? D² for each X_k in Neighbors(X_i) except X_i add (X_k, X_i) to stack Return csp Function Revise(csp,X_i,X_i) returns DomainXi and anyChangeToDomainX_i anyChangeToDomainX_i = false for each x in Domain (X_i) if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (X_i,X_i) delete x from Domain(X_i)

anyChangeToDomainX_i = true

AC-3 COMPUTATIONAL COMPLEXITY?

- Input: CSP
- Output: CSP, possible with reduced domains for variables, or inconsistent
- Local variables: stack, initially stack of all arcs (binary constraints in csp)
- While stack is not empty
- $(X_i, X_i) = Remove-First(stack)$
- [domain X_i , anyChangeToDomain X_i] = Revise(csp, X_i , X_i)
- if anyChangeToDomainX_i == true
- if size(domainX_i) = 0, return inconsistent
- else
- for each X_k in Neighbors(X_i) except X_i
- add (X_k,X_i) to stack
- Return csp
- Function Revise(csp,X_i,X_i) returns DomainXi and anyChangeToDomainX_i
- anyChangeToDomainX_i = false
- for each x in Domain(X_i)
- if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (X_i,X_j)
- delete x from Domain(X_i)
 - anyChangeToDomainX_i = true

- Have to add in arc for (X_i, X_j) and (X_j, X_j) for i,i constraint
 - D domain values C binary constraints
 - Complexity of revise function?

 D²
 - Number of times can put a constraint in stack?

AC-3 COMPUTATIONAL COMPLEXITY?

```
Input: CSP
Output: CSP, possible with reduced domains for variables, or inconsistent
Local variables: stack, initially stack of all arcs (binary constraints in csp)
While stack is not empty
                                                                                   Have to add in arc for
        (X_i, X_i) = Remove-First(stack)
                                                                                      (X_i,X_i) and (X_i,X_i)
                                                                                       for it constraint
        [domainX_i, anyChangeToDomainX_i] = Revise(csp, X_i, X_i)
        if anyChangeToDomainX<sub>i</sub> == true
                                                                                          D domain values
          if size(domainX_i) = 0, return inconsistent
                                                                                                C binary
          else
                                                                                             constraints
                    for each X<sub>k</sub> in Neighbors(X<sub>i</sub>) except X<sub>i</sub>
                                                                                            Complexity of
                       add (X_k, X_i) to stack
                                                                                          revise function?
Return csp
                                                                                                   D^2
                                                                                          Number of times
Function Revise(csp,X<sub>i</sub>,X<sub>i</sub>) returns DomainXi and anyChangeToDomainX<sub>i</sub>
                                                                                               can put a
        anyChangeToDomainX<sub>i</sub> = false
                                                                                             constraint in
        for each x in Domain(X_i)
                                                                                                 stack?
          if no value y in Domain(Xi) allows (x,y) to satisfy constraint between (X_i,X_i)
                 delete x from Domain(X<sub>i</sub>)
                                                                                                  Total:
                    anyChangeToDomainX<sub>i</sub> = true
                                                                                                   CD^3
```

Variables: A,B,C,D

• Domain: {1,2,3}

• Constraints: A ≠ B, C < B, C < D (subset of constraints from before)

- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C

- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
- stack: AB, BA, BC, CB, CD, DC

- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
- stack: AB, BA, BC, CB, CD, DC
- Pop AB:
- for each x in Domain(A)

if no value y in Domain(B) that allows (x,y) to satisfy constraint between (A,B), delete x from Domain(A)

No change to domain of A

- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
- stack: AB, BA, BC, CB, CD, DC
- Pop AB
- stack: BA, BC, CB, CD, DC

- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
- stack: AB, BA, BC, CB, CD, DC
- Pop AB
- stack: BA, BC, CB, CD, DC
- Pop BA
- for each x in Domain(B)

if no value y in Domain(A) that allows (x,y) to satisfy constraint between (B,A), delete x from Domain(B)

No change to domain of B

- Variables: A,B,C,D
- Domain: {1,2,3}
- Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
- Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
- stack: AB, BA, BC, CB, CD, DC
- stack: BA, BC, CB, CD, DC
- stack: BC, CB, CD, DC
- Pop BC
- for each x in Domain(B)

if no value y in Domain(C) that allows (x,y) to satisfy constraint between (B,C), delete x from Domain(B)

- If B is 1, constraint B >C cannot be satisfied. So delete 1 from B's domain, B={2,3}
- Also have to add neighbors of B (except C) back to stack: AB
- stack: AB, CB, CD, DC

Variables: A,B,C,D

Domain: {1,2,3}

Constraints: $A \neq B$, C < B, C < D

stack: AB, BA, BC, CB, CD, DC A-D = {1,2,3}

stack: BA, BC, CB, CD, DC A-D = {1,2,3}

stack: BC, CB, CD, DC A-D = {1,2,3}

stack: AB, CB, CD, DC
 B={2,3}, A/C/D = {1,2,3}

Pop AB

o For every value of A is there a value of B such that A ≠ B?

Yes, so no change

Variables: A,B,C,D Domain: {1,2,3}

Constraints: $A \neq B$, C < B, C < D

stack: AB, BA, BC, CB, CD, DC, A-D = {1,2,3}

stack: BA, BC, CB, CD, DC A-D = {1,2,3}

• stack: BC, CB, CD, DC A-D = {1,2,3}

• stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}

• stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}

Pop CB

- For every value of C is there a value of B such that C < B
- o If C = 3, no value of B that fits
- So delete 3 from C's domain, C = {1,2}
- Also have to add neighbors of C (except B) back to stack: no change because already in

Variables: A,B,C,D

Domain: {1,2,3}

Constraints: $A \neq B$, C < B, C < D

stack: AB, BA, BC, CB, CD, DC, A-D = {1,2,3}

• stack: BA, BC, CB, CD, DC A-D = {1,2,3}

• stack: BC, CB, CD, DC A-D = {1,2,3}

• stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}

• stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}

• stack: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}

Pop CD

For every value of C, is there a value of D such that C < D?</p>

Yes, so no change

Variables: A,B,C,D

Domain: {1,2,3}

Constraints: $A \neq B$, C < B, C < D

stack: AB, BA, BC, CB, CD, DC A-D = {1,2,3}

• stack: BA, BC, CB, CD, DC A-D = {1,2,3}

• stack: BC, CB, CD, DC A-D = {1,2,3}

• stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}

• stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}

• stack: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}

• stack: DC $B=\{2,3\}, C=\{1,2\} A,D=\{1,2,3\}$

• For every value of D is there a value of C such that D > C?

 $_{\circ}$ Not if D = 1

 $_{\circ}$ So D = {2,3}

Variables: A,B,C,D

Domain: {1,2,3}

Constraints: $A \neq B$, C < B, C < D

- stack: AB, BA, BC, CB, CD, DC A-D = {1,2,3}
- stack: BA, BC, CB, CD, DC A-D = {1,2,3}
- stack: BC, CB, CD, DC A-D = {1,2,3}
- stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
- stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
- stack: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}
- stack: DC $B=\{2,3\}, C=\{1,2\} A,D=\{1,2,3\}$
- A = $\{1,2,3\}$ B= $\{2,3\}$, C = $\{1,2\}$ D = $\{2,3\}$

FORWARD CHECKING

 When assign a variable, make all of its neighbors arc-consistent

BACKTRACKING + FORWARD CHECKING

- Function Backtrack(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - 。 V_i← select_unassigned_var(csp)
 - For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment

Add $[V_i = val]$ to assignment

Make domains of all neighbors of V_i arc-consistent with $[V_i = val]$

Result ← *Backtrack(assignment,csp)*

If Result ≠ fail, return result

Remove $[V_i = val]$ from assignments

Return fail

MAINTAINING ARC CONSISTENCY

- Forward checking doesn't ensure all arcs are consistent
- AC-3 detects failure faster than forward checking
- What's the downside? Computation

MAINTAINING ARC CONSISTENCY (MAC)

- Function Backtrack(assignment,csp) returns soln or fail
 - If assignment is complete, return assignment
 - 。 V_i← select_unassigned_var(csp)
 - For each val in order-domain-values(var,csp,assign)
 If value is consistent with assignment

Add $[V_i = val]$ to assignment

Run AC-3 to make all variables arc-consistent with $[V_i = val]$. Initial stack is arcs (X_j, V_i) of neighbors of V_i that are unassigned, but add other arcs if these vars change domains.

Result ← Backtrack(assignment,csp)

If Result ≠ fail, return result

Remove $[V_i = val]$ from assignments

Return fail

SUFFICIENT TO AVOID BACKTRACKING?

 If we maintain arc consistency, we will never have to backtrack while solving a CSP

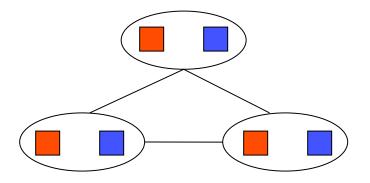
- A) True
- B) False

AC-3 LIMITATIONS

- After running AC-3
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

AC-3 LIMITATIONS

- After running AC-3
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)



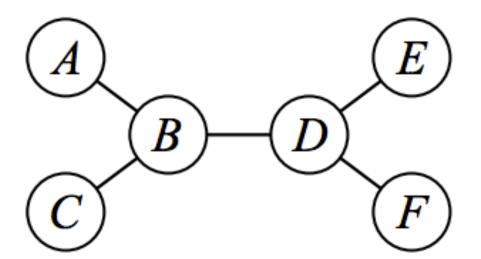
What went wrong here?

COMPLEXITY

- CSP in general are NP-hard
- Some structured domains are easier

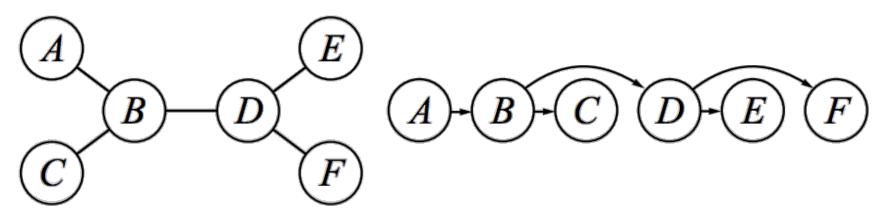
CONSTRAINT TREES

- Constraint tree
 - Any 2 variables in constraint graph connected by <= 1 path
- Can be solved in time linear in # of variables



ALGORTHM FOR CSP TREES

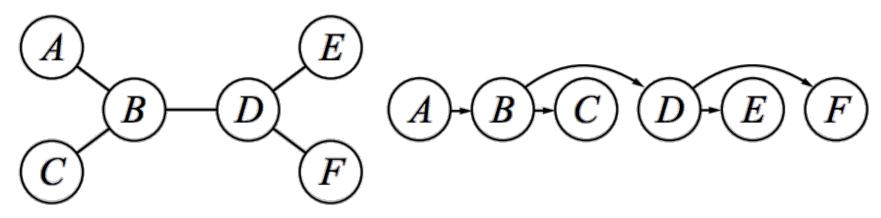
 Choose any var as root and order vars such that every var's parents in constraint graph precede it in ordering



- 2) Let Xi be the parent of Xj in the new ordering
- 3) For j=n:2, run arc consistency to arc (Xi,Xj)
- 4) For j=1:n, assign val for Xj consistent w/val assigned for Xi

COMPUTATIONAL COMPLEXITY?

 Choose any var as root and order vars such that every var's parents in constraint graph precede it in ordering



- 2) Let Xi be the parent of Xj in the new ordering
- 3) For j=n:2, run arc consistency to arc (Xi,Xj)
- 4) For j=1:n, assign val for Xj consistent w/val assigned for Xi

SUMMARY

- Be able to define real world CSPs
- Understand basic algorithm (backtracking)
 - Complexity relative to basic search algorithms
 - Doesn't require problem specific heuristics
 - Ideas shaping search (LCV, etc)
- Pruning space through propagating information
 - Arc consistency
 - Tradeoffs: + reduces search space, costs computation
- Computational complexity and special cases (tree)
- Relevant reading: R&N Chapter 6

