
CMU 15-7/381
CSPs

Teachers:
Ariel Procaccia
Emma Brunskill (THIS TIME)

With thanks to Ariel
Procaccia and other prior
instructions for slides

Class Scheduling Woes
•  4 more required classes to graduate

o  A: Algorithms B: Bayesian Learning
o  C: Computer Programming D: Distributed Computing

•  A few restrictions
o  Algorithms must be taken same semester as distributed

computing
o  Computer programming is a prereq for distributed computing

and Bayesian learning, so it must be taken in an earlier
semester

o  Advanced algorithms and Bayesian Learning are always offered
at the same time, so they cannot be taken the same semester

•  3 semesters (semester 1,2,3) when can take classes

2

Constraint Satisfaction
Problems (CSPs)
•  Variables: V = {V1,..,VN}
•  Domain: Set of d possible values for each variable
•  Constraints: C = {C1,..,CK}
•  A constraint consists of

o  variable tuple
o  list of possible values for tuple (ex.[(V2,V3),{(R,B),(R,G)])
o  Or function that describes possible values (ex. V2 ≠ V3)

•  Allows useful general-purpose algorithms with more power
than standard search algorithms

3

Overview

•  Real world CSPs
•  Basic algorithms for solving CSPs
•  Pruning space through propagating

information

4

Overview

•  Real world CSPs
•  Basic algorithms for solving CSPs
•  Pruning space through propagating

information

5

Example: Map Coloring
Color a map so that adjacent areas are
different colors

6

Map Coloring
Variables

Domain

Constraints

Solutions

7

Example: Suduko

•  Variables:

•  Domain:

•  Constraints:

8

Example: Suduko

•  Variables:
o  Each open sqr

•  Domain:
o  {1:9}

•  Constraints:
o  9-way all diff col
o  9-way all diff row
o  9-way all diff box

9

Scheduling (Important Ex.)

•  Many industries. Many multi-million $ decisions. Used
extensively for space mission planning. Military uses.

•  People really care about improving scheduling
algorithms! Problems with phenomenally huge state
spaces. But for which solutions are needed very quickly

•  Many kinds of scheduling problems e.g.:
o  Job shop: Discrete time; weird ordering of operations

possible; set of separate jobs.
o  Batch shop: Discrete or continuous time; restricted

operation of ordering; grouping is important.

10

Job Scheduling

•  A set of N jobs, J1,…, Jn.
•  Each job j is a seq of operations Oj

1,..., Oj
Lj

•  Each operation may use resource R, and
has a specific duration in time.

•  A resource must be used by a single
operation at a time.

•  All jobs must be completed by a due time.
•  Problem: assign a start time to each job.

11

Exercise: Define CSP
•  4 more required classes to graduate: A, B, C, D
•  A must be taken same semester as D
•  C is a prereq for D and B so must take C earlier than D &

B
•  A & B are always offered at the same time, so they

cannot be taken the same semester
•  3 semesters (semester 1,2,3) when can take classes
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, A=D, C < B, C < D

12

Overview

•  Real world CSPs
•  Basic algorithms for solving CSPs
•  Pruning space through propagating

information

13

Why not just do basic
search algorithms from
last time?

14

Backtracking
•  Only consider a single variable at each point
•  Don’t care about path!

15

Backtracking
•  Only consider a single variable at each point
•  Don’t care about path!
•  Order of variable assignment doesn’t matter, so fix

ordering

16

Backtracking
•  Only consider a single variable at each point
•  Don’t care about path!
•  Order of variable assignment doesn’t matter, so fix

ordering
•  Only consider values which do not conflict with

assignment made so far

17

Backtracking
•  Only consider a single variable at each point
•  Don’t care about path!
•  Order of variable assignment doesn’t matter, so fix

ordering
•  Only consider values which do not conflict with

assignment made so far
•  Depth-first search for CSPs with these two

improvements is called backtracking search

18

Backtracking
•  Function Backtracking(csp) returns soln or fail

o  Return Backtrack({},csp)
•  Function Backtrack(assignment,csp) returns soln or fail

o  If assignment is complete, return assignment
o  Viß select_unassigned_var(csp)
o  For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o  Return fail

19

Backtracking Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints:

o  A ≠ B, A=D, C < B, C < D
•  Variable order: ?
•  Value order: ?

20

Backtracking
•  Function Backtracking(csp) returns soln or fail

o  Return Backtrack({},csp)
•  Function Backtrack(assignment,csp) returns soln or fail

o  If assignment is complete, return assignment
o  Viß select_unassigned_var(csp)
o  For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o  Return fail

21

Think and discuss

•  Does the value order used affect how long
backtracking takes to find a solution?

•  Does the value order used affect the
solution found by backtracking?

22

Example
Variables: A,B,C,D Domain: {1,2,3}
Constraints: A ≠ B, A=D, C < B, C < D

Variable order: alphabetical Value order: Descending

•  (A=3)

23

Example
Variables: A,B,C,D Domain: {1,2,3}
Constraints: A ≠ B, A=D, C < B, C < D

Variable order: alphabetical Value order: Descending

•  (A=3)
•  (A=3, B=3) inconsistent with A ≠ B
•  (A=3, B=2)
•  (A=3, B=2, C=3) inconsistent with C < B
•  (A=3, B=2, C=2) inconsistent with C < B
•  (A=3, B=2, C=1)
•  (A=3, B=2, C=1,D=3) VALID

24

Example
Variables: A,B,C,D Domain: {1,2,3}
Constraints: A ≠ B, A=D, C < B, C < D

Variable order: alphabetical Value order: Ascending

•  (A=1)

25

Example
Variables: A,B,C,D Domain: {1,2,3}
Constraints: A ≠ B, A=D, C < B, C < D

Variable order: alphabetical Value order: Ascending

•  (A=1)
•  (A=1,B=1) inconsistent with A ≠ B
•  (A=1,B=2)
•  (A=1,B=2,C=1)
•  (A=1,B=2,C=1,D=1) inconsistent with C < D
•  (A=1,B=2,C=1,D=2) inconsistent with A=D
•  (A=1,B=2,C=1,D=3) inconsistent with A=D

26

Example
Variables: A,B,C,D Domain: {1,2,3}
Constraints: A ≠ B, A=D, C < B, C < D

Variable order: alphabetical Value order: Ascending

27

§  (A=1)
§  (A=1,B=1) inconsistent with A ≠ B
§  (A=1,B=2)
§  (A=1,B=2,C=1)
§  (A=1,B=2,C=1,D=1) inconsistent with C < D
§  (A=1,B=2,C=1,D=2) inconsistent with A=D
§  (A=1,B=2,C=1,D=3) inconsistent with A=D
§  No valid assignment for D, return result = fail

§  Backtrack to (A=1,B=2,C=)
§  Try (A=1,B=2,C=2) but inconsistent with C < B
§  Try (A=1,B=2,C=3) but inconsistent with C < B
§  No other assignments for C, return result= fail

§  Backtrack to (A=1,B=)
§  (A=1,B=3)
§  (A=1,B=3,C=1)
§  (A=1,B=3,C=1,D=1) inconsistent with C < D
§  (A=1,B=3,C=1,D=2) inconsistent with A = D
§  (A=1,B=3,C=1,D=3) inconsistent with A = D
§  Return result = fail

§  Backtrack to (A=1,B=3,C=)

§  (A=1,B=3,C=2) inconsistent with C < B
§  (A=1,B=3,C=3) inconsistent with C < B
§  No remaining assignments for C, return fail

§  Backtrack to (A=1,B=)
§  No remaining assignments for B, return fail

§  Backtrack to A
§  (A=2)
§  (A=2,B=1)
§  (A=2,B=1,C=1) inconsistent with C < B
§  (A=2,B=1,C=2) inconsistent with C < B
§  (A=2,B=1,C=3) inconsistent with C < B
§  No remaining assignments for C, return fail

§  Backtrack to (A=2,B=?)
§  (A=2,B=2) inconsistent with A ≠ B
§  (A=2,B=3)
§  (A=2,B=3,C=1)
§  (A=2,B=3,C=1,D=1) inconsistent with C < D
§  (A=2,B=3,C=1,D=2) ALL VALID

Ordering Matters!
•  Function Backtracking(csp) returns soln or fail

o  Return Backtrack({},csp)
•  Function Backtrack(assignment,csp) returns soln or fail

o  If assignment is complete, return assignment
o  Viß select_unassigned_var(csp)
o  For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o  Return fail

28

Min Remaining Values
(MRV)
•  Choose variable with minimum number of

remaining values in its domain
•  Why min rather than max?

29

Min Remaining Values
(MRV)
•  Choose variable with minimum number of

remaining values in its domain
•  Most constrained variable
•  “Fail-fast” ordering

30

Least Constraining Value

•  Given choice of variable:
o  Choose least constraining value
o  Aka value that rules out the least values in

the remaining variables to be assigned
o  May take some computation to find this

•  Why least rather than most?

31

Click! Cost of Backtracking?

•  d values per variable
•  n variables
•  Possible number of CSP assignments?

•  A) O(dn)
•  B) O(nd)
•  C) O(nd)

32

Overview

•  Real world CSPs
•  Basic algorithms for solving CSPs
•  Pruning space through propagating

information

33

Limitations of Backtracking
•  Function Backtracking(csp) returns soln or fail

o  Return Backtrack({},csp)
•  Function Backtrack(assignment,csp) returns soln or fail

o  If assignment is complete, return assignment
o  Viß select_unassigned_var(csp)
o  For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o  Return fail

34

Constraint Graphs

•  Nodes are variables
•  Arcs show constraints

35

Propagate Information

•  If we choose a value for one variable, that
affects its neighbors

•  And then potentially those neighbors…

•  Prunes the space of
solutions

36

Arc Consistency

•  Definition:
o  An “arc” (connection between two variables

X à Y in constraint graph) is consistent if:
o  For every value could assign to X

 There exists some value of Y that could be
assigned without violating a constraint

37

AC-3 (Assume binary constraints)
•  Input: CSP
•  Output: CSP, possible with reduced domains for variables, or inconsistent
•  Local variables: stack, initially stack of all arcs (binary constraints in csp)
•  While stack is not empty
•  (Xi,Xj) = Remove-First(stack)
•  [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)
•  if anyChangeToDomainXi == true
•  if size(domainXi) = 0, return inconsistent
•  else
•  for each Xk in Neighbors(Xi) except Xj

•  add (Xk,Xi) to stack
•  Return csp
•  ---
•  Function Revise(csp,Xi,Xj) returns DomainXi and anyChangeToDomainXi

•  anyChangeToDomainXi = false
•  for each x in Domain(Xi)
•  if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj)
•  delete x from Domain(Xi)
•  anyChangeToDomainXi = true

38

Have to add in
arc for (Xi,Xj) and

(Xj,Xi)
for i,j constraint

AC-3 (Assume binary constraints)
•  Input: CSP
•  Output: CSP, possible with reduced domains for variables, or inconsistent
•  Local variables: stack, initially stack of all arcs (binary constraints in csp)
•  While stack is not empty
•  (Xi,Xj) = Remove-First(stack)
•  [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)
•  if anyChangeToDomainXi == true
•  if size(domainXi) = 0, return inconsistent
•  else
•  for each Xk in Neighbors(Xi) except Xj

•  add (Xk,Xi) to stack
•  Return csp
•  ---
•  Function Revise(csp,Xi,Xj) returns DomainXi and anyChangeToDomainXi

•  anyChangeToDomainXi = false
•  for each x in Domain(Xi)
•  if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj)
•  delete x from Domain(Xi)
•  anyChangeToDomainXi = true

39

Have to add in
arc for (Xi,Xj) and

(Xj,Xi)
for i,j constraint

AC-3 Computational Complexity?
•  Input: CSP
•  Output: CSP, possible with reduced domains for variables, or inconsistent
•  Local variables: stack, initially stack of all arcs (binary constraints in csp)
•  While stack is not empty
•  (Xi,Xj) = Remove-First(stack)
•  [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)
•  if anyChangeToDomainXi == true
•  if size(domainXi) = 0, return inconsistent
•  else
•  for each Xk in Neighbors(Xi) except Xj

•  add (Xk,Xi) to stack
•  Return csp
•  --
•  Function Revise(csp,Xi,Xj) returns DomainXi and anyChangeToDomainXi

•  anyChangeToDomainXi = false
•  for each x in Domain(Xi)
•  if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj)
•  delete x from Domain(Xi)
•  anyChangeToDomainXi = true

40

Have to add in arc for
(Xi,Xj) and (Xj,Xi)
for i,j constraint

D domain values
C binary constraints

Complexity of revise

function? D2

AC-3 Computational Complexity?
•  Input: CSP
•  Output: CSP, possible with reduced domains for variables, or inconsistent
•  Local variables: stack, initially stack of all arcs (binary constraints in csp)
•  While stack is not empty
•  (Xi,Xj) = Remove-First(stack)
•  [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)
•  if anyChangeToDomainXi == true
•  if size(domainXi) = 0, return inconsistent
•  else
•  for each Xk in Neighbors(Xi) except Xj

•  add (Xk,Xi) to stack
•  Return csp
•  --
•  Function Revise(csp,Xi,Xj) returns DomainXi and anyChangeToDomainXi

•  anyChangeToDomainXi = false
•  for each x in Domain(Xi)
•  if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj)
•  delete x from Domain(Xi)
•  anyChangeToDomainXi = true

41

Have to add in arc for
(Xi,Xj) and (Xj,Xi)
for i,j constraint

D domain values
C binary

constraints

Complexity of
revise function?

D2

Number of times

can put a
constraint in

stack?

AC-3 Computational Complexity?
•  Input: CSP
•  Output: CSP, possible with reduced domains for variables, or inconsistent
•  Local variables: stack, initially stack of all arcs (binary constraints in csp)
•  While stack is not empty
•  (Xi,Xj) = Remove-First(stack)
•  [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)
•  if anyChangeToDomainXi == true
•  if size(domainXi) = 0, return inconsistent
•  else
•  for each Xk in Neighbors(Xi) except Xj

•  add (Xk,Xi) to stack
•  Return csp
•  --
•  Function Revise(csp,Xi,Xj) returns DomainXi and anyChangeToDomainXi

•  anyChangeToDomainXi = false
•  for each x in Domain(Xi)
•  if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj)
•  delete x from Domain(Xi)
•  anyChangeToDomainXi = true

42

Have to add in arc for
(Xi,Xj) and (Xj,Xi)
for i,j constraint

D domain values
C binary

constraints

Complexity of
revise function?

D2

Number of times

can put a
constraint in

stack?
D

Total:
CD3

AC-3 Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before)

44

AC-3 Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C

45

AC-3 Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
•  stack: AB, BA, BC, CB, CD, DC

46

AC-3 Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
•  stack: AB, BA, BC, CB, CD, DC
•  Pop AB:
•  for each x in Domain(A)

 if no value y in Domain(B) that allows (x,y) to satisfy
constraint between (A,B), delete x from Domain(A)
•  No change to domain of A

47

AC-3 Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
•  stack: AB, BA, BC, CB, CD, DC
•  Pop AB
•  stack: BA, BC, CB, CD, DC

48

AC-3 Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
•  stack: AB, BA, BC, CB, CD, DC
•  Pop AB
•  stack: BA, BC, CB, CD, DC
•  Pop BA
•  for each x in Domain(B)

 if no value y in Domain(A) that allows (x,y) to satisfy
constraint between (B,A), delete x from Domain(B)
•  No change to domain of B

49

AC-3 Example
•  Variables: A,B,C,D
•  Domain: {1,2,3}
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before)
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C
•  stack: AB, BA, BC, CB, CD, DC
•  stack: BA, BC, CB, CD, DC
•  stack: BC, CB, CD, DC
•  Pop BC
•  for each x in Domain(B)

 if no value y in Domain(C) that allows (x,y) to satisfy constraint between
(B,C), delete x from Domain(B)
•  If B is 1, constraint B >C cannot be satisfied. So delete 1 from B’s domain, B={2,3}

•  Also have to add neighbors of B (except C) back to stack: AB
•  stack: AB, CB, CD, DC

50

AC-3 Example
•  stack: AB, BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BC, CB, CD, DC A-D = {1,2,3}
•  stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  Pop AB

o  For every value of A is there a value of B such that A ≠ B?
o  Yes, so no change

51

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

AC-3 Example
•  stack: AB, BA, BC, CB, CD, DC, A-D = {1,2,3}
•  stack: BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BC, CB, CD, DC A-D = {1,2,3}
•  stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  Pop CB

o  For every value of C is there a value of B such that C < B
o  If C = 3, no value of B that fits
o  So delete 3 from C’s domain, C = {1,2}
o  Also have to add neighbors of C (except B) back to stack: no change

because already in

52

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

AC-3 Example
•  stack: AB, BA, BC, CB, CD, DC, A-D = {1,2,3}
•  stack: BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BC, CB, CD, DC A-D = {1,2,3}
•  stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  stack: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}
•  Pop CD

o  For every value of C, is there a value of D such that C < D?
o  Yes, so no change

53

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

AC-3 Example
•  stack: AB, BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BC, CB, CD, DC A-D = {1,2,3}
•  stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  stack: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}
•  stack: DC B={2,3}, C = {1,2} A,D = {1,2,3}
•  For every value of D is there a value of C such that D > C?

o  Not if D = 1
o  So D = {2,3}

54

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

AC-3 Example
•  stack: AB, BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BA, BC, CB, CD, DC A-D = {1,2,3}
•  stack: BC, CB, CD, DC A-D = {1,2,3}
•  stack: AB, CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  stack: CB, CD, DC B={2,3}, A/C/D = {1,2,3}
•  stack: CD, DC B={2,3}, C = {1,2} A,D = {1,2,3}
•  stack: DC B={2,3}, C = {1,2} A,D = {1,2,3}
•  A = {1,2,3} B={2,3}, C = {1,2} D = {2,3}

55

Variables: A,B,C,D
Domain: {1,2,3}
Constraints: A ≠ B, C < B, C < D

Forward Checking

•  When assign a variable, make all of its
neighbors arc-consistent

56

Backtracking + Forward
Checking
•  Function Backtrack(assignment,csp) returns soln or fail

o  If assignment is complete, return assignment
o  Viß select_unassigned_var(csp)
o  For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Make domains of all neighbors of Vi arc-consistent with [Vi = val]
Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o  Return fail

57

Maintaining Arc
Consistency
•  Forward checking doesn’t ensure all arcs

are consistent
•  AC-3 detects failure faster than forward

checking
•  What’s the downside? Computation

58

Maintaining Arc Consistency
(MAC)
•  Function Backtrack(assignment,csp) returns soln or fail

o  If assignment is complete, return assignment
o  Viß select_unassigned_var(csp)
o  For each val in order-domain-values(var,csp,assign)

If value is consistent with assignment
Add [Vi = val] to assignment
Run AC-3 to make all variables arc-consistent with [Vi = val].

Initial stack is arcs (Xj,Vi) of neighbors of Vi that are
unassigned, but add other arcs if these vars change domains.

Result ß Backtrack(assignment,csp)
If Result ≠ fail, return result

Remove [Vi = val] from assignments
o  Return fail

59

Sufficient to Avoid
backtracking?
•  If we maintain arc consistency, we will

never have to backtrack while solving a
CSP

•  A) True
•  B) False

60

AC-3 Limitations

•  After running AC-3
o  Can have one solution left
o  Can have multiple solutions left
o  Can have no solutions left (and not know it)

61

AC-3 Limitations

•  After running AC-3
o  Can have one solution left
o  Can have multiple solutions left
o  Can have no solutions left (and not know it)

62

What went
wrong here?

Complexity

•  CSP in general are NP-hard
•  Some structured domains are easier

63

Constraint Trees

64

•  Constraint tree
o  Any 2 variables in constraint graph connected by <= 1 path

•  Can be solved in time linear in # of variables

Figure from Russell & Norvig

1)  Choose any var as root and order vars such that every
var’s parents in constraint graph precede it in ordering

2)  Let Xi be the parent of Xj in the new ordering
3)  For j=n:2, run arc consistency to arc (Xi,Xj)
4)  For j=1:n, assign val for Xj consistent w/val assigned for Xi

Algorthm for CSP Trees

65 Figure from Russell & Norvig

1)  Choose any var as root and order vars such that every
var’s parents in constraint graph precede it in ordering

2)  Let Xi be the parent of Xj in the new ordering
3)  For j=n:2, run arc consistency to arc (Xi,Xj)
4)  For j=1:n, assign val for Xj consistent w/val assigned for Xi

Computational Complexity?

66 Figure from Russell & Norvig

Summary
•  Be able to define real world CSPs
•  Understand basic algorithm (backtracking)

o  Complexity relative to basic search algorithms
o  Doesn’t require problem specific heuristics
o  Ideas shaping search (LCV, etc)

•  Pruning space through propagating information
o  Arc consistency
o  Tradeoffs: + reduces search space, - costs computation

•  Computational complexity and special cases (tree)
•  Relevant reading: R&N Chapter 6

67

