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Class Scheduling Woes 
•  4 more required classes to graduate 

o  A: Algorithms    B: Bayesian Learning 
o  C: Computer Programming  D: Distributed Computing 

•  A few restrictions 
o  Algorithms must be taken same semester as distributed 

computing 
o  Computer programming is a prereq for distributed computing 

and Bayesian learning, so it must be taken in an earlier 
semester 

o  Advanced algorithms and Bayesian Learning are always offered 
at the same time, so they  cannot be taken the same semester 

•  3 semesters (semester 1,2,3) when can take classes 
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Constraint Satisfaction 
Problems (CSPs) 
•  Variables: V = {V1,..,VN} 
•  Domain: Set of d possible values for each variable 
•  Constraints: C = {C1,..,CK} 
•  A constraint consists of 

o  variable tuple 
o  list of possible values for tuple (ex.[(V2,V3),{(R,B),(R,G)]) 
o  Or function that describes possible values (ex. V2  ≠ V3) 

•  Allows useful general-purpose algorithms with more power 
than standard search algorithms 
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Overview 

•  Real world CSPs  
•  Basic algorithms for solving CSPs 
•  Pruning space through propagating 

information 
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Overview 

•  Real world CSPs  
•  Basic algorithms for solving CSPs 
•  Pruning space through propagating 

information 
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Example: Map Coloring 
Color a map so that adjacent areas are 
different colors 
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Map Coloring 
Variables  

Domain 

Constraints 

Solutions 
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Example: Suduko 

•  Variables: 

•  Domain: 

•  Constraints: 
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Example: Suduko 

•  Variables: 
o  Each open sqr 

•  Domain: 
o  {1:9} 

•  Constraints: 
o  9-way all diff col 
o  9-way all diff row 
o  9-way all diff box 
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Scheduling (Important Ex.) 

•  Many industries. Many multi-million $ decisions. Used 
extensively for space mission planning. Military uses. 

•  People really care about improving scheduling 
algorithms! Problems with phenomenally huge state 
spaces. But for which solutions are needed very quickly 

•  Many kinds of scheduling problems e.g.: 
o  Job shop: Discrete time; weird ordering of operations 

possible; set of separate jobs. 
o  Batch shop: Discrete or continuous time; restricted 

operation of ordering; grouping is important. 
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Job Scheduling 

•  A set of N jobs, J1,…, Jn. 
•  Each job j is a seq of operations Oj

1,..., Oj
Lj     

•  Each operation may use resource R, and 
has a specific duration in time. 

•  A resource must be used by a single 
operation at a time. 

•  All jobs must be completed by a due time. 
•  Problem: assign a start time to each job. 
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Exercise: Define CSP 
•  4 more required classes to graduate: A, B, C, D 
•  A must be taken same semester as D 
•  C is a prereq for D and B so must take C earlier than D & 

B 
•  A & B are always offered at the same time, so they 

cannot be taken the same semester 
•  3 semesters (semester 1,2,3) when can take classes 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, A=D, C < B, C < D  
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Overview 

•  Real world CSPs  
•  Basic algorithms for solving CSPs 
•  Pruning space through propagating 

information 
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Why not just do basic 
search algorithms from 
last time? 
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Backtracking 
•  Only consider a single variable at each point 
•  Don’t care about path!  
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Backtracking 
•  Only consider a single variable at each point 
•  Don’t care about path!  
•  Order of variable assignment doesn’t matter, so fix 

ordering 
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Backtracking 
•  Only consider a single variable at each point 
•  Don’t care about path!  
•  Order of variable assignment doesn’t matter, so fix 

ordering 
•  Only consider values which do not conflict with 

assignment made so far 
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Backtracking 
•  Only consider a single variable at each point 
•  Don’t care about path!  
•  Order of variable assignment doesn’t matter, so fix 

ordering 
•  Only consider values which do not conflict with 

assignment made so far 
•  Depth-first search for CSPs with these two 

improvements is called backtracking search 
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Backtracking 
•  Function Backtracking(csp) returns soln or fail 

o  Return Backtrack({},csp) 
•  Function Backtrack(assignment,csp) returns soln or fail 

o  If assignment is complete, return assignment 
o  Viß select_unassigned_var(csp) 
o  For each val in order-domain-values(var,csp,assign) 

If value is consistent with assignment 
Add [Vi = val] to assignment 
Result ß Backtrack(assignment,csp) 
If Result ≠ fail, return result 

Remove [Vi = val] from assignments 
o  Return fail 
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Backtracking Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: 

o  A ≠ B, A=D, C < B, C < D  
•  Variable order: ? 
•  Value order: ? 
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Backtracking 
•  Function Backtracking(csp) returns soln or fail 

o  Return Backtrack({},csp) 
•  Function Backtrack(assignment,csp) returns soln or fail 

o  If assignment is complete, return assignment 
o  Viß select_unassigned_var(csp) 
o  For each val in order-domain-values(var,csp,assign) 

If value is consistent with assignment 
Add [Vi = val] to assignment 
Result ß Backtrack(assignment,csp) 
If Result ≠ fail, return result 

Remove [Vi = val] from assignments 
o  Return fail 
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Think and discuss 

•  Does the value order used affect how long 
backtracking takes to find a solution? 

•  Does the value order used affect the 
solution found by backtracking? 
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Example 
Variables: A,B,C,D  Domain: {1,2,3} 
Constraints: A ≠ B, A=D, C < B, C < D  

Variable order: alphabetical       Value order: Descending   

•  (A=3) 
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Example 
Variables: A,B,C,D  Domain: {1,2,3} 
Constraints: A ≠ B, A=D, C < B, C < D  

Variable order: alphabetical       Value order: Descending   

•  (A=3) 
•  (A=3, B=3) inconsistent with A ≠ B 
•  (A=3, B=2) 
•  (A=3, B=2, C=3) inconsistent with C < B 
•  (A=3, B=2, C=2) inconsistent with C < B 
•  (A=3, B=2, C=1) 
•  (A=3, B=2, C=1,D=3) VALID 
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Example 
Variables: A,B,C,D  Domain: {1,2,3} 
Constraints: A ≠ B, A=D, C < B, C < D  

Variable order: alphabetical       Value order: Ascending 

•  (A=1) 
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Example 
Variables: A,B,C,D  Domain: {1,2,3} 
Constraints: A ≠ B, A=D, C < B, C < D  

Variable order: alphabetical       Value order: Ascending 

•  (A=1) 
•  (A=1,B=1) inconsistent with A ≠ B 
•  (A=1,B=2) 
•  (A=1,B=2,C=1) 
•  (A=1,B=2,C=1,D=1) inconsistent with C < D 
•  (A=1,B=2,C=1,D=2) inconsistent with A=D 
•  (A=1,B=2,C=1,D=3) inconsistent with A=D 
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Example 
Variables: A,B,C,D  Domain: {1,2,3} 
Constraints: A ≠ B, A=D, C < B, C < D  

Variable order: alphabetical       Value order: Ascending 
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§  (A=1) 
§  (A=1,B=1) inconsistent with A ≠ B 
§  (A=1,B=2) 
§  (A=1,B=2,C=1) 
§  (A=1,B=2,C=1,D=1) inconsistent with C < D 
§  (A=1,B=2,C=1,D=2) inconsistent with A=D 
§  (A=1,B=2,C=1,D=3) inconsistent with A=D 
§  No valid assignment for D, return result = fail 

§  Backtrack to (A=1,B=2,C=) 
§  Try (A=1,B=2,C=2) but inconsistent with C < B 
§  Try (A=1,B=2,C=3) but inconsistent with C < B 
§  No other assignments for C, return result= fail 

§  Backtrack to (A=1,B=) 
§  (A=1,B=3) 
§  (A=1,B=3,C=1) 
§  (A=1,B=3,C=1,D=1) inconsistent with C < D 
§  (A=1,B=3,C=1,D=2) inconsistent with A = D 
§  (A=1,B=3,C=1,D=3) inconsistent with A = D 
§  Return result = fail 

§  Backtrack to (A=1,B=3,C=) 

§  (A=1,B=3,C=2) inconsistent with C < B 
§  (A=1,B=3,C=3) inconsistent with C < B 
§  No remaining assignments for C, return fail 

§  Backtrack to (A=1,B=) 
§  No remaining assignments for B, return fail 

§  Backtrack to A 
§  (A=2) 
§  (A=2,B=1) 
§  (A=2,B=1,C=1) inconsistent with C < B 
§  (A=2,B=1,C=2) inconsistent with C < B 
§  (A=2,B=1,C=3) inconsistent with C < B 
§  No remaining assignments for C, return fail 

§  Backtrack to (A=2,B=?) 
§  (A=2,B=2) inconsistent with A ≠ B 
§  (A=2,B=3)  
§  (A=2,B=3,C=1) 
§  (A=2,B=3,C=1,D=1) inconsistent with C < D 
§  (A=2,B=3,C=1,D=2)     ALL VALID 



Ordering Matters! 
•  Function Backtracking(csp) returns soln or fail 

o  Return Backtrack({},csp) 
•  Function Backtrack(assignment,csp) returns soln or fail 

o  If assignment is complete, return assignment 
o  Viß select_unassigned_var(csp) 
o  For each val in order-domain-values(var,csp,assign) 

If value is consistent with assignment 
Add [Vi = val] to assignment 
Result ß Backtrack(assignment,csp) 
If Result ≠ fail, return result 

Remove [Vi = val] from assignments 
o  Return fail 
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Min Remaining Values 
(MRV) 
•  Choose variable with minimum number of 

remaining values in its domain 
•  Why min rather than max? 
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Min Remaining Values 
(MRV) 
•  Choose variable with minimum number of 

remaining values in its domain 
•  Most constrained variable 
•  “Fail-fast” ordering 
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Least Constraining Value 

•  Given choice of variable: 
o  Choose least constraining value 
o  Aka value that rules out the least values in 

the remaining variables to be assigned 
o  May take some computation to find this 

•  Why least rather than most? 

31 



Click! Cost of Backtracking? 

•  d values per variable 
•  n variables 
•  Possible number of CSP assignments? 

•  A) O(dn) 
•  B) O(nd) 
•  C) O(nd) 
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Overview 

•  Real world CSPs  
•  Basic algorithms for solving CSPs 
•  Pruning space through propagating 

information 
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Limitations of Backtracking 
•  Function Backtracking(csp) returns soln or fail 

o  Return Backtrack({},csp) 
•  Function Backtrack(assignment,csp) returns soln or fail 

o  If assignment is complete, return assignment 
o  Viß select_unassigned_var(csp) 
o  For each val in order-domain-values(var,csp,assign) 

If value is consistent with assignment 
Add [Vi = val] to assignment 
Result ß Backtrack(assignment,csp) 
If Result ≠ fail, return result 

Remove [Vi = val] from assignments 
o  Return fail 
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Constraint Graphs 

•  Nodes are variables 
•  Arcs show constraints 

35 



Propagate Information 

•  If we choose a value for one variable, that 
affects its neighbors 

•  And then potentially those neighbors… 

•  Prunes the space of                          
solutions 
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Arc Consistency 

•  Definition: 
o  An “arc” (connection between two variables 

X à Y in constraint graph) is consistent if: 
o  For every value could assign to X 

 There exists some value of Y that could be 
assigned without violating a constraint 
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AC-3 (Assume binary constraints) 
•  Input: CSP 
•  Output: CSP, possible with reduced domains for variables, or inconsistent 
•  Local variables: stack, initially stack of all arcs (binary constraints in csp) 
•  While stack is not empty 
•   (Xi,Xj) = Remove-First(stack) 
•   [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)  
•   if anyChangeToDomainXi  == true 
•       if size(domainXi) = 0, return inconsistent 
•       else 
•    for each Xk in Neighbors(Xi) except Xj 

•       add (Xk,Xi) to stack  
•  Return csp   
•  ------------------------------------------------------------------------------------------------------------------- 
•  Function Revise(csp,Xi,Xj)  returns DomainXi and anyChangeToDomainXi 

•   anyChangeToDomainXi = false 
•   for each x in Domain(Xi) 
•       if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj) 
•                 delete x from Domain(Xi) 
•    anyChangeToDomainXi = true 
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Have to add in 
arc for (Xi,Xj) and 

(Xj,Xi) 
for i,j constraint 



AC-3 (Assume binary constraints) 
•  Input: CSP 
•  Output: CSP, possible with reduced domains for variables, or inconsistent 
•  Local variables: stack, initially stack of all arcs (binary constraints in csp) 
•  While stack is not empty 
•   (Xi,Xj) = Remove-First(stack) 
•   [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)  
•   if anyChangeToDomainXi  == true 
•       if size(domainXi) = 0, return inconsistent 
•       else 
•    for each Xk in Neighbors(Xi) except Xj 

•       add (Xk,Xi) to stack  
•  Return csp   
•  ------------------------------------------------------------------------------------------------------------------- 
•  Function Revise(csp,Xi,Xj)  returns DomainXi and anyChangeToDomainXi 

•   anyChangeToDomainXi = false 
•   for each x in Domain(Xi) 
•       if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj) 
•                 delete x from Domain(Xi) 
•    anyChangeToDomainXi = true 
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AC-3 Computational Complexity? 
•  Input: CSP 
•  Output: CSP, possible with reduced domains for variables, or inconsistent 
•  Local variables: stack, initially stack of all arcs (binary constraints in csp) 
•  While stack is not empty 
•   (Xi,Xj) = Remove-First(stack) 
•   [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)  
•   if anyChangeToDomainXi  == true 
•       if size(domainXi) = 0, return inconsistent 
•       else 
•    for each Xk in Neighbors(Xi) except Xj 

•       add (Xk,Xi) to stack  
•  Return csp   
•  ------------------------------------------------------------------------------------------------------------ 
•  Function Revise(csp,Xi,Xj)  returns DomainXi and anyChangeToDomainXi 

•   anyChangeToDomainXi = false 
•   for each x in Domain(Xi) 
•       if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj) 
•                 delete x from Domain(Xi) 
•    anyChangeToDomainXi = true 
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(Xi,Xj) and (Xj,Xi) 
for i,j constraint 

D domain values 
C binary constraints 
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function?  D2 
 
 



AC-3 Computational Complexity? 
•  Input: CSP 
•  Output: CSP, possible with reduced domains for variables, or inconsistent 
•  Local variables: stack, initially stack of all arcs (binary constraints in csp) 
•  While stack is not empty 
•   (Xi,Xj) = Remove-First(stack) 
•   [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)  
•   if anyChangeToDomainXi  == true 
•       if size(domainXi) = 0, return inconsistent 
•       else 
•    for each Xk in Neighbors(Xi) except Xj 

•       add (Xk,Xi) to stack  
•  Return csp   
•  ------------------------------------------------------------------------------------------------------------ 
•  Function Revise(csp,Xi,Xj)  returns DomainXi and anyChangeToDomainXi 

•   anyChangeToDomainXi = false 
•   for each x in Domain(Xi) 
•       if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj) 
•                 delete x from Domain(Xi) 
•    anyChangeToDomainXi = true 
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AC-3 Computational Complexity? 
•  Input: CSP 
•  Output: CSP, possible with reduced domains for variables, or inconsistent 
•  Local variables: stack, initially stack of all arcs (binary constraints in csp) 
•  While stack is not empty 
•   (Xi,Xj) = Remove-First(stack) 
•   [domainXi, anyChangeToDomainXi] = Revise(csp,Xi,Xj)  
•   if anyChangeToDomainXi  == true 
•       if size(domainXi) = 0, return inconsistent 
•       else 
•    for each Xk in Neighbors(Xi) except Xj 

•       add (Xk,Xi) to stack  
•  Return csp   
•  ------------------------------------------------------------------------------------------------------------ 
•  Function Revise(csp,Xi,Xj)  returns DomainXi and anyChangeToDomainXi 

•   anyChangeToDomainXi = false 
•   for each x in Domain(Xi) 
•       if no value y in Domain(Xj) allows (x,y) to satisfy constraint between (Xi,Xj) 
•                 delete x from Domain(Xi) 
•    anyChangeToDomainXi = true 
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AC-3 Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before) 
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AC-3 Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before) 
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C 
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AC-3 Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before) 
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C 
•  stack: AB, BA, BC, CB, CD, DC 
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AC-3 Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before) 
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C 
•  stack: AB, BA, BC, CB, CD, DC 
•  Pop AB: 
•  for each x in Domain(A) 

     if no value y in Domain(B) that allows (x,y) to satisfy          
constraint between (A,B), delete x from Domain(A) 
•  No change to domain of A 
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AC-3 Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before) 
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C 
•  stack: AB, BA, BC, CB, CD, DC 
•  Pop AB 
•  stack: BA, BC, CB, CD, DC 
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AC-3 Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before) 
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C 
•  stack: AB, BA, BC, CB, CD, DC 
•  Pop AB 
•  stack: BA, BC, CB, CD, DC 
•  Pop BA 
•  for each x in Domain(B) 

     if no value y in Domain(A) that allows (x,y) to satisfy          
constraint between (B,A), delete x from Domain(B) 
•  No change to domain of B 
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AC-3 Example 
•  Variables: A,B,C,D 
•  Domain: {1,2,3} 
•  Constraints: A ≠ B, C < B, C < D (subset of constraints from before) 
•  Constraints both ways: A≠ B, B≠ A, C < B, B > C, C < D, D > C 
•  stack: AB, BA, BC, CB, CD,  DC 
•  stack: BA, BC, CB, CD, DC 
•  stack: BC, CB, CD, DC 
•  Pop BC 
•  for each x in Domain(B) 

     if no value y in Domain(C) that allows (x,y) to satisfy  constraint between 
(B,C), delete x from Domain(B) 
•  If B is 1, constraint B >C cannot be satisfied. So delete 1 from B’s domain, B={2,3} 

•  Also have to add neighbors of B (except C) back to stack: AB 
•  stack: AB, CB, CD, DC 
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AC-3 Example 
•  stack: AB, BA, BC, CB, CD, DC     A-D = {1,2,3} 
•  stack: BA, BC, CB, CD, DC       A-D = {1,2,3} 
•  stack: BC, CB, CD, DC          A-D = {1,2,3} 
•  stack: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3} 
•  Pop AB 

o  For every value of A is there a value of B such that A ≠ B? 
o  Yes, so no change 
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Variables: A,B,C,D 
Domain: {1,2,3} 
Constraints: A ≠ B, C < B, C < D 



AC-3 Example 
•  stack: AB, BA, BC, CB, CD, DC,     A-D = {1,2,3} 
•  stack: BA, BC, CB, CD, DC       A-D = {1,2,3} 
•  stack: BC, CB, CD, DC          A-D = {1,2,3} 
•  stack: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3} 
•  stack: CB, CD,  DC                 B={2,3}, A/C/D = {1,2,3} 
•  Pop CB 

o  For every value of C is there a value of B such that C < B 
o  If C = 3, no value of B that fits 
o  So delete 3 from C’s domain,  C = {1,2} 
o  Also have to add neighbors of C (except B) back to stack: no change 

because already in  
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Variables: A,B,C,D 
Domain: {1,2,3} 
Constraints: A ≠ B, C < B, C < D 



AC-3 Example 
•  stack: AB, BA, BC, CB, CD, DC,     A-D = {1,2,3} 
•  stack: BA, BC, CB, CD, DC       A-D = {1,2,3} 
•  stack: BC, CB, CD, DC          A-D = {1,2,3} 
•  stack: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3} 
•  stack: CB, CD, DC                 B={2,3}, A/C/D = {1,2,3} 
•  stack: CD, DC                 B={2,3}, C = {1,2} A,D = {1,2,3} 
•  Pop CD 

o  For every value of C, is there a value of D such that C < D? 
o  Yes, so no change 
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Variables: A,B,C,D 
Domain: {1,2,3} 
Constraints: A ≠ B, C < B, C < D 



AC-3 Example 
•  stack: AB, BA, BC, CB, CD, DC     A-D = {1,2,3} 
•  stack: BA, BC, CB, CD, DC       A-D = {1,2,3} 
•  stack: BC, CB, CD, DC          A-D = {1,2,3} 
•  stack: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3} 
•  stack: CB, CD, DC                 B={2,3}, A/C/D = {1,2,3} 
•  stack: CD, DC                 B={2,3}, C = {1,2} A,D = {1,2,3} 
•  stack: DC                 B={2,3}, C = {1,2} A,D = {1,2,3} 
•  For every value of D is there a value of C such that D > C? 

o  Not if D = 1 
o  So D = {2,3} 
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Variables: A,B,C,D 
Domain: {1,2,3} 
Constraints: A ≠ B, C < B, C < D 



AC-3 Example 
•  stack: AB, BA, BC, CB, CD, DC     A-D = {1,2,3} 
•  stack: BA, BC, CB, CD, DC       A-D = {1,2,3} 
•  stack: BC, CB, CD, DC          A-D = {1,2,3} 
•  stack: AB, CB, CD, DC          B={2,3}, A/C/D = {1,2,3} 
•  stack: CB, CD, DC                 B={2,3}, A/C/D = {1,2,3} 
•  stack: CD, DC                 B={2,3}, C = {1,2} A,D = {1,2,3} 
•  stack: DC                 B={2,3}, C = {1,2} A,D = {1,2,3} 
•  A = {1,2,3}  B={2,3}, C = {1,2} D = {2,3} 
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Variables: A,B,C,D 
Domain: {1,2,3} 
Constraints: A ≠ B, C < B, C < D 



Forward Checking 

•  When assign a variable, make all of its 
neighbors arc-consistent 
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Backtracking + Forward 
Checking 
•  Function Backtrack(assignment,csp) returns soln or fail 

o  If assignment is complete, return assignment 
o  Viß select_unassigned_var(csp) 
o  For each val in order-domain-values(var,csp,assign) 

If value is consistent with assignment 
Add [Vi = val] to assignment 
Make domains of all neighbors of Vi arc-consistent with [Vi = val] 
Result ß Backtrack(assignment,csp) 
If Result ≠ fail, return result 

Remove [Vi = val] from assignments 
o  Return fail 
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Maintaining Arc 
Consistency 
•  Forward checking doesn’t ensure all arcs 

are consistent 
•  AC-3 detects failure faster than forward 

checking 
•  What’s the downside? Computation 
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Maintaining Arc Consistency 
(MAC) 
•  Function Backtrack(assignment,csp) returns soln or fail 

o  If assignment is complete, return assignment 
o  Viß select_unassigned_var(csp) 
o  For each val in order-domain-values(var,csp,assign) 

If value is consistent with assignment 
Add [Vi = val] to assignment 
Run AC-3 to make all variables arc-consistent with [Vi = val]. 

Initial stack is arcs (Xj,Vi) of neighbors of Vi that are 
unassigned, but add other arcs if these vars change domains. 

Result ß Backtrack(assignment,csp) 
If Result ≠ fail, return result 

Remove [Vi = val] from assignments 
o  Return fail 
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Sufficient to Avoid 
backtracking? 
•  If we maintain arc consistency, we will 

never have to backtrack while solving a 
CSP 

•  A) True 
•  B) False 
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AC-3 Limitations 

•  After running AC-3  
o  Can have one solution left 
o  Can have multiple solutions left 
o  Can have no solutions left (and not know it) 
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AC-3 Limitations 

•  After running AC-3  
o  Can have one solution left 
o  Can have multiple solutions left 
o  Can have no solutions left (and not know it) 
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What went 
wrong here? 



Complexity 

•  CSP in general are NP-hard 
•  Some structured domains are easier 
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Constraint Trees 
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•  Constraint tree 
o  Any 2 variables in constraint graph connected by <= 1 path  

•  Can be solved in time linear in # of variables 

Figure from Russell & Norvig 



1)  Choose any var as root and order vars such that every 
var’s parents in constraint graph precede it in ordering 

2)  Let Xi be the parent of Xj in the new ordering 
3)  For j=n:2, run arc consistency to arc (Xi,Xj) 
4)  For j=1:n, assign val for Xj consistent w/val assigned for Xi 

Algorthm for CSP Trees   
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1)  Choose any var as root and order vars such that every 
var’s parents in constraint graph precede it in ordering 

2)  Let Xi be the parent of Xj in the new ordering 
3)  For j=n:2, run arc consistency to arc (Xi,Xj) 
4)  For j=1:n, assign val for Xj consistent w/val assigned for Xi 

Computational Complexity? 

66 Figure from Russell & Norvig 



Summary  
•  Be able to define real world CSPs 
•  Understand basic algorithm (backtracking) 

o  Complexity relative to basic search algorithms 
o  Doesn’t require problem specific heuristics  
o  Ideas shaping search (LCV, etc) 

•  Pruning space through propagating information 
o  Arc consistency 
o  Tradeoffs: + reduces search space, - costs computation 

•  Computational complexity and special cases (tree) 
•  Relevant reading: R&N Chapter 6 
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