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EXTENSIVE-FORM GAMES

Moves are done
sequentially, not
simultaneously

Game forms a tree

Nodes are labeled by
players

Leaves show payofits
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EXTENSIVE VS. NORMAL FORM
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Problem: Normal-form representation is exponential
in the size of the extensive-form representation
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EXTENSIVE VS. NORMAL FORM

Compromise Nuclear war

Compromise Nuclear war
2.1 -10°-10°

Problem: (ignore, nuclear war) is a Nash equilibrium,
but threat isn’t credible!
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SUBGAME-PERFECT EQUILIBRIUM

* Each subtree forms a subgame

* A set of strategies is a
subgame-perfect equilibrium if
it is a Nash equilibrium in
each subgame

* A player may be able to
improve his equilibrium payoff 2,1 -109,-10°
by eliminating strategies!
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DOOMSDAY MACHINE




BACKWARD INDUCTION

2.4

24 53 32 24 53 1,0 3,2 1,0 3,2

1,0 0,1
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BACKWARD INDUCTION

3.2
2.4 3,2
24 5 2
Subgame-perfect _/
equilibrium! 1,0 0,1
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EXAMPLE: CENTIP:

&3
-

E GAME

()

1,-1 0,2 3.1 2.4 5,3 4.6

Even subgame-perfect equilibrium can lead to strange outcomes!
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CHECKERS IS SOLVED

» Zermelo’s Theorem [1913|: Either
white can force a win, or black
can force a win, or both sides can
force a draw

 Proof: Backward induction =

* Schaetfer solved the game in 2007,
after 18 years of computation: It’s
a tie!

* Checkers game tree has 10?
nodes; chess has 10%°; go has 107
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AILPHAGO

* In 2016, AlphaGo beat Lee
Sedol, one of the strongest
players in the history of go,
in a d-game match

e A milestone that experts
thought was a decade away AN

* Combination of tree search ALL SYSTEMS /GO

techniques and deep
reinforcement learning
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IMPERFECT-INFORMATION GAMES

A chance node chooses
between several actions
according to a known
probability distribution

 An information set is a
set of nodes that a
player may be in, given
the available
information

« A strategy must be
identical for all nodes in
an information set



EXAMPLE: SPACESHIP GAME

* Poll 1: In Nash
equilibrium, what is
the expected payoff of
player 17
1. 0.5
2. 1
3. 1.5

(») 2

5. 2.5 11 1-1 1-1 -1,1
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EXAMPLE: SPACESHIP GAME
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EXAMPLE: SPACESHIP GAME
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Impossible to
compute the optimal
strategy of a subgame

in isolation, unlike
prefect info games!
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INTERLUDE: ZERO-SUM GAM:

-
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INTERLUDE: ZERO-SUM GAM:

* Maximin (randomized) strategy of player 1
maximizes the worst-case expected payoft

-
@ P,

* In the penalty shot game, optimal strategy for

both players is playing G,%)

* In the game below, if shooter uses (p,1 — p):

o Jump left: —§+1—p=1—%p

2

o Maximize min{1 — %p, 2p — 1} over p
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INTERLUDE: ZERO-SUM GAM:

-
@ P,

* Denote the reward of player 1 from
strategies (s1,S,) by R(sq,S3)
 Maximin strategy is computed via LP:

max w
st. Vs, €5, ZsleSp(Sl)R(Sl:SZ) =W
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INTERLUDE: THE MINIMAX THEOREM

* Theorem [von Neumann 1928|:
Every 2-player zero-sum game has
a unique value v such that:

o Player 1 can guarantee value at
least v

o Player 2 can guarantee loss at
most v

* Poll 2: How many Nash equilibrium
payoifs do zero-sum games have?

1. At most one

2. At least one

@ Exactly one
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SOLVING IMPERFECT INFO GAMES

* Focus on zero-sum games (such as poker)

* We just saw that linear programming
solves normal-form, zero-sum games in
polynomial time

* But size of the normal-form game is
exponential in the extensive-form
representation!

 Work directly on extensive-form game
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SOLVING IMPERFECT INFO GAMES

* Player 1 constraints are linear:
o Patpp=1
o Pctpa=1
o DPetpr=1
o Vx,p,=0
* Fix a strategy qq, qp for player 2,
then the best response of player 1

is:
max 2pypqaPs — 2PpqpPs ~ 2Peda + 6Pa
which leads to a nonconvex 0
problem!
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SEQUENCE FORM

* Insight: last action taken by a player is the same
for all nodes in an information set

o Perfect recall: A player never forgets something he
knew in the past

o This is a restriction on the structure of the game
* Introduce scaled probability variables p,

* Information set constraint: }.,c4, Px = Dy, Where

A; is the set of actions in information set I, and
y is the last action before reaching I

 To recover probabilities, set p, = px/py
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SEQUENCE FORM

Player 1 constraints are linear:

o Patpp=1

o Petpg=1

°©  PetDf=Dp

o Vx,py=0
Fix a strategy qq, qp for player 2,
then the best response of player 1

1S:
max 2qqPs — 24gPf ~ 2Pcda + 6Dg

which is linear! 0
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SEQUENCE FORM

* We showed how to compute a best response for
a fixed opponent strategy

* Fact: Using “LP duality”, we can compute best
responses for both players simultaneously

* Fact: This gives a method for computing optimal
strategies

* Used to compute optimal strategies for Rhode
Island Hold’em poker, which has roughly 10%
nodes |Gilpin and Sandholm 2007]

e But No Limit Texas Hold’em has 10197 nodes
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BRAINS VS.
ARTIFICIAL
INTELLIGENCE
30,000 HANDS NO-LIMIT HOLD ‘Em

April 24-May 8, 2015, at Rivers Casino, Pittsburgh
The first time a computer program has played human pros in a

heads-up, no-limit poker game
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SUMMARY

* Terminology:
o Extensive-form game
o Subgame perfect equilibrium

o Imperfect information, information set

o Pertect recall

* Algorithms:
o Solving zero-sum games via LP

o oequence form-based approach to solving
imperfect information games

15781 Fall 2016: Lecture 24 Carnegie Mellon University 28



