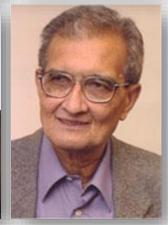


CMU 15-781

Lecture 20: Social Choice

Teachers:
Emma Brunskill
Ariel Procaccia (this time)


SOCIAL CHOICE THEORY

- A mathematical theory that deals with aggregation of individual preferences
- Origins in ancient Greece
- Formal foundations: 18th Century (Condorcet and Borda)
- 19th Century: Charles Dodgson
- 20th Century: Nobel prizes to Arrow and Sen

THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A; denote |A| = m
- Each voter has a ranking over the alternatives
- Preference profile =
 collection of all voters'
 rankings

1	2	3
а	С	b
b	а	С
С	b	а

VOTING RULES

• Voting rule = function from preference profiles to alternatives that specifies the winner of the election

Plurality

- Each voter awards one point to top alternative
- Alternative with most points wins
- Used in almost all political elections

More voting rules

• Borda count

- Each voter awards m kpoints to alternative ranked k'th
- Alternative with most points wins
- Proposed in the 18th Century by the chevalier de Borda
- Used for elections to the national assembly of Slovenia
- Similar to rule used in the Eurovision song contest

Lordi, Eurovision 2006 winners

More voting rules

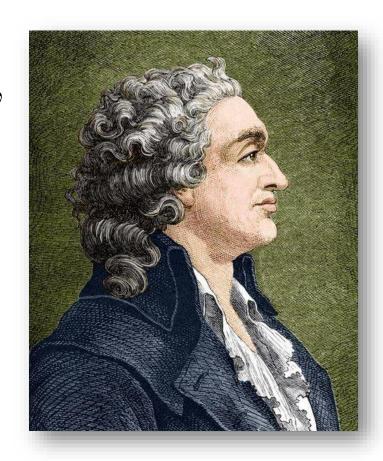
- x beats y in a pairwise election if the majority of voters prefer x to y
- Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 - Second round: pairwise election between these two alternatives

More voting rules

- Single Transferable vote (STV)
 - $_{\circ}$ m-1 rounds
 - In each round, alternative with least plurality votes is eliminated
 - Alternative left standing is the winner
 - Used in Ireland, Malta, Australia, and New Zealand (and Cambridge, MA)

STV: EXAMPLE

$rac{2}{ ext{voters}}$	$rac{2}{ ext{voters}}$	$1 \ m voter$
а	b	С
b	а	d
С	d	b
d	С	а


$rac{2}{ ext{voters}}$	$rac{2}{ ext{voters}}$	$1 \ m voter$
а	b	С
b	а	b
С	С	а

$rac{2}{ ext{voters}}$	$egin{array}{c} 2 \ \mathbf{voters} \end{array}$	$1 \ m voter$
а	b	b
b	а	а

$rac{2}{ ext{voters}}$	$rac{2}{ ext{voters}}$	$1 \ m voter$
b	b	b

Marquis de Condorcet

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison

CONDORCET WINNER

- Recall: x beats y in a pairwise election if a majority of voters rank x above y
- Condorcet winner beats every other alternative in pairwise election
- Condorcet paradox = cycle in majority preferences

1	2	3
а	С	b
b	а	С
С	b	а

CONDORCET CONSISTENCY

- Condorcet consistency = select a Condorcet winner if one exists
- Poll 1: Which rule is Condorcet consistent?
 - 1. Plurality
 - 2. Borda count
 - 3. Both
 - 4.) Neither

MORE VOTING RULES

- Copeland: Alternative's score is #alternatives it beats in pairwise elections
- Why does Copeland satisfy the Condorcet criterion?
 - If x is a Condorcet winner, score = m-1
 - Otherwise, score < m 1

DODGSON'S RULE

- Dodgson score of x =the number of swaps between adjacent alternatives needed to make x a Condorcet winner
- Dodgson's rule: select alternative that minimizes Dodgson score
- The problem of computing the Dodgson score is NP-complete!

AWESOME EXAMPLE

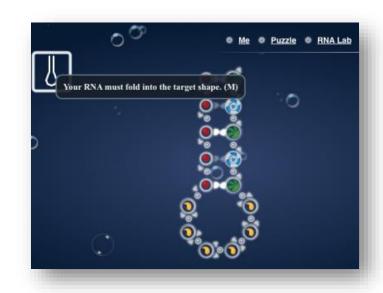
• Plurality: a

• Borda: b

• Condorcet winner: *c*

• STV: *d*

• Plurality with runoff:


33 voters	16 voters	$rac{3}{ ext{voters}}$	8 voters	18 voters	22 voters
a	b	c	\mathbf{c}	d	e
b	d	d	e	e	\mathbf{c}
c	c	b	b	\mathbf{c}	b
d	e	a	d	b	d
e	a	e	a	a	a

CONDORCET STRIKES AGAIN

- For Condorcet [1785], the purpose of voting is not merely to balance subjective opinions; it is a collective quest for the truth
- Enlightened voters try to judge which alternative best serves society
- For m=2 the majority opinion will very likely be correct
- Realistic in trials by jury or the pooling of expert opinions — or in human computation!

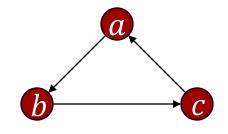
EXAMPLE: ETERNA

- Developed at CMU (Adrien Treuille) and Stanford
- Choose 8 RNA designs to synthesize
- Some designs are truly more stable than others
- The goal of voting is to compare the alternatives by true quality

CONDORCET'S NOISE MODEL

- True ranking of the alternatives
- Voting pairwise on alternatives, each comparison is correct with prob. p > 1/2
- Results are tallied in a voting matrix

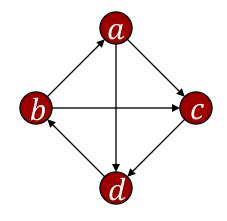
	а	b	С
а	ı	8	6
b	5	-	11
С	7	2	ı


- Poll 2: What is the Borda score of alternative b?
 - 5
 - 8
 - 10 3.
 - 16

CONDORCET'S 'SOLUTION'

- Condorcet's goal: find "the most probable" ranking
- Condorcet suggested: take the majority opinion for each comparison; if a cycle forms, "successively delete the comparisons that have the least plurality"
- In example, we delete c > a to get a > b > c

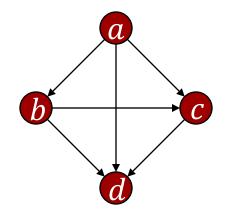
	а	b	С
а	-	8	6
b	5	-	11
С	7	2	-


CONDORCET'S 'SOLUTION'

- With four alternatives we get ambiguities
- In example, order of strength is c > d, a > d, b > c, a > c, d > b, b > a

•	Delete	<i>b</i> >	> a	\Rightarrow	still	cycle

• Delete $d > b \Rightarrow$ either a or b could be top-ranked


	а	b	С	d
а	ı	12	15	17
b	13	ı	16	11
С	10	9	-	18
d	8	14	7	-

CONDORCET'S 'SOLUTION'

- Did Condorcet mean we should reverse the weakest comparisons?
- Reverse b > a and $d > b \Rightarrow$ we get a > b > c > d, with 89 votes
- b > a > c > d has 90 votes (only reverse d > b)

	а	b	С	d
а	ı	12	15	17
b	13	ı	16	11
С	10	9	-	18
d	8	14	7	-

EXASPERATION?

- "The general rules for the case of any number of candidates as given by Condorcet are stated so briefly as to be hardly intelligible . . . and as no examples are given it is quite hopeless to find out what Condorcet meant" [Black 1958]
- "The obscurity and self-contradiction are without any parallel, so far as our experience of mathematical works extends ... no amount of examples can convey an adequate impression of the evils" [Todhunter 1949]

Young's solution

- M = matrix of votes
- Suppose true ranking is a > b > c; prob of observations $Pr[M \mid >]$: $\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{11} p^{11} (1-p)^2$
- For a > c > b, $Pr[M \mid >]$ is $\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{2} p^2 (1-p)^{11}$
- Coefficients are identical, so $\Pr[M \mid >] \propto p^{\#agree} (1-p)^{\#disagree}$

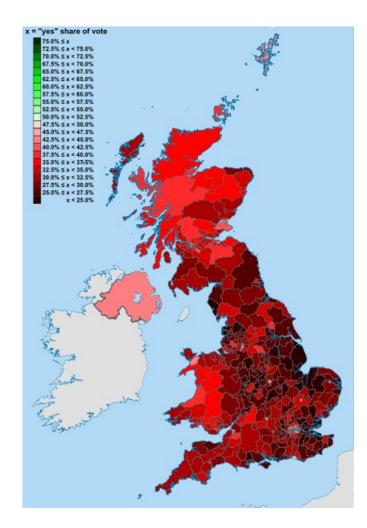
	а	b	С
а	1	8	6
b	5	-	11
С	7	2	-

Young's solution

- $\Pr[>|M] = \frac{\Pr[M|>] \cdot \Pr[>]}{\Pr[M]}$
- Assume uniform prior over >, $Pr[>] = \frac{1}{m!}$
- Must maximize Pr[M| >]
- The optimal rule maximizes #agreements with voters on pairs of candidates
- This rule is called the Kemeny rule

THE KEMENY RULE

- Theorem [Bartholdi, Tovey, Trick 1989]: Computing the Kemeny ranking is NPhard
- Typically formulated as an IP: for every $a,b\in A,\, x_{(a,b)}=1$ iff a is ranked above b, and


$$w_{(a,b)} = |\{i \in N \mid a >_i b\}|$$

THE KEMENY RULE

```
Maximize \sum_{(a,b)} x_{(a,b)} w_{(a,b)}
Subject to
For all distinct a,b \in A, x_{(a,b)} + x_{(b,a)} = 1
For all distinct a,b,c \in A, x_{(a,b)} + x_{(b,c)} + x_{(c,a)} \le 2
For all distinct a,b \in A, x_{(a,b)} \in \{0,1\}
```

IS SOCIAL CHOICE PRACTICAL?

- UK referendum: Choose between plurality and STV as a method for electing MPs
- Academics agreed STV is better...
- ... but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

COMPUTATIONAL SOCIAL CHOICE

• However:

in human computation systems...

in online voting systems... the designer is free to employ any voting rule!

 Computational social choice focuses on positive results through computational thinking

Al-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research. Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

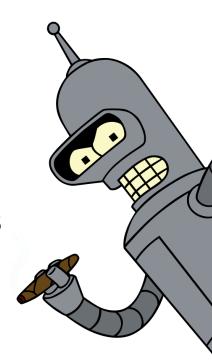
In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share. Try the demo.

Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group, which destination to choose for a family vacation, or whom to elect as class president. Try the demo.

Ready to get started?

CREATE A POLL


SUMMARY

• Terminology:

- Voting rules: plurality, Borda, plurality with runoff, STV, Copeland, Dodgson
- $_{\circ}$ The Condorcet noise model
- The Kemeny rule

• Big ideas:

- Voting rules as MLEs
- When we build voting systems, we are not constrained by politics and tradition!

