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SEARCH PROBLEMS

* A search problem has:
o States (configurations)
o otart state and goal states

o Successor function: maps states to
(action,state,cost) triples
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EXAMPLE: PANCAKES
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For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all & in (the symmetric group) S,. We show that f(n)=<(5n+5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3r'2-1<g(n)<2n+3.

15781 Fall 2016: Lecture 2 Carnegie Mellon University 3




EXAMPLE: PANCAKES

=

Carnegie Mellon University 4



EXAMPLE: 8-PUZZLE
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P ATHFINDING
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EXAMPLE: PROTEIN FOLDING
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TREE SEARCH

function TREE-SEARCH(problem, strategy)

set of frontier nodes contains the start state of problem
loop

e if there are no frontier nodes then return failure

* choose a frontier node for expansion using strategy

e if the node contains a goal then return the corresponding
solution

* clse expand the node and add the resulting nodes to the
set of frontier nodes
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TREE SEARCH

* Tree search can expand
the same nodes again and
again Algorithms

that forget

their history
o Search tree of depth d are doomed

has 4‘d leaves to repeat it!

* In a rectangular grid:

o There are only 4d states
within d steps of any
given state
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(GRAPH SEARCH

function GRAPH-SEARCH(problem, strategy)

set of frontier nodes contains the start state of problem
loop

e if there are no frontier nodes then return failure

* choose a frontier node for expansion using strategy, and
add it to the explored set

e if the node contains a goal then return the corresponding
solution

* else expand the node and add the resulting nodes to the
set of frontier nodes, only if not in the frontier or
explored set
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(GRAPH SEARCH ILLUSTRATED

SIEIRE s

Separation property: Every path from initial state to
an unexplored state has to pass through the frontier
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UNINFORM!

D VS. INFORM!

Uninformed

Can only generate

&9
-

Informed

Strategies that know whether

successors and distinguish one non-goal is more

goals from non-goals

promising than another
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MEASURING PERFORMANCE

Completeness Optimality Time Space
Guaranteed to Finds the How long does How much
find a solution cheapest it take to find memory is
when there is solution? a solution? needed to
one? perform the

search?
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BREADTH-FIRST SEARCH

* Strategy: Expand shallowest unexpanded node

 Can be implemented by using a FIFO queue for
the frontier

* (Goal test applied when node is generated
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BREADTH-FIRST SEARCH

Algorithm Complete? Optimal? Time Space
BF'S Yes Not really @(bd) G)(bd)

* Optimality: If the path cost is a nondecreasing function
of the depth (e.g., all actions have the same cost)

 Time complexity: Imagine each node has b successors,
and solution is at depth d, then generate Z,flzl bt = @(bd)
nodes

* Space complexity: Essentially the same as time
complexity
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BIDIRECTIONAL SEARCH

e Idea: Possibly improve the running time of
BFES by running two simultaneous
searches, forward from the initial state and
backward from the goal

 Poll 1: What is the worst-case running
time of BIDRECTIONAL SEARCH?
. 0 -d)
2 0((b/2)Y)

() e®¥?

4. @(bd)

f . 15781 Fall 2016: Lecture 2 Carnegie Mellon University 16




UNIFORM-COST SEARCH

e Strategy: Expand unexpanded node with lowest path
cost g(n)

e (Can be implemented by using a priority queue ordered
by g(n) for the frontier

 Other changes from BFS:

o Goal test applied when node is selected for expansion

o Need to update cost of nodes on frontier

80 ® 99 80 99 80 99 80 99 80 99
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UNIFORM-COST SEARCH

Algorithm Complete? Optimal? Time Space
UCS Sorta Yes e(pttlc’/el)  g(prrlc/el)

Optimality: Easy to see
Completeness: If the cost of every step exceeds € > 0

Time complexity: If C* is the cost of the optimal solution
and € is a lower bound on the step size, the depth of the
search tree is 1 4+ |C™ /€|

The complexity is ©(b%*1) when step costs are uniform
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DEPTH-FIRST SEARCH

« Strategy: Expand deepest unexpanded node

* Can be implemented by using a stack for the
frontier

* Recursive implementation is also common
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DEPTH-FIRST SEARCH
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DEPTH-FIRST S.

LARCH

Algorithm Complete? Optimal? Time Space

DF'S No No 0(b™) O(b - m)

* Completeness: Clearly not in general

 Poll 2: In a finite state space, which version of DF'S is

complete?
1. TREE SEARCH
@ GRAPH SEARCH
3. Both
4. Neither
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DEPTH-FIRST SEARCH

Algorithm Complete? Optimal? Time Space
DF'S No No (™) O(b - m)

e Time complexity: @(b™), where m is the maximum
depth of any solution

e Space complexity: DFS tree search needs to store only a
single path from the root to a leat, along with
unexpanded sibling nodes for each node on the path

* (Consequently, depth-first tree search is the workhorse ot
many areas of Al (including CSPs and SAT solving)
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ITERATIVE DEEPENING SEARCH

T
O

Algorithm Complete? Optimal? Time Space
IDS Yes No o(b?) o - d)

Run DFS with depth limit £ = 1,2, ...
Combines the best properties of BF'S and DFS
Completeness: Yes, for the same reason BF'S is complete

Time complexity: Seems wasteful but most of the nodes
are at the bottom level; total

d-b+(d—1b%+-+1-b%=0(b%)

& iy s 15781 Fall 2016: Lecture 2 Carnegie Mellon University 23




SUMMARY OF ALGORITHMS

Algorithm Complete? Optimal? Time Space
BFS Yes Not really  0(b%) o(b?)
UCS Sorta, Yes e(pr+ic/el)  g(pric/el
DF'S No No O(b™) O(b - m)
IDS Yes No o(b?) o - d)
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OPTIMIZATION AND LOCAL SEARCH

* The algorithms we discussed so far are designed
to find a path to the solution

e If the path doesn’t matter, can use local search
algorithms that consider a single current node,
and move to one of its neighbors in the next step

* Local search algorithms are usetul for
optimization problems, where the goal is to find
the best state according to an objective function
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STATE SPACE LANDSCAP!

-

Objective function global maximum
A

local maximum

“flat” local maximum

» state space

1
current state
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HILL-CLIMBING SEARCH

* Move in the direction of increasing value

(up the hill)

* Terminate when no neighbor has higher
value
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HILL-CLIMBING SEARCH
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State with 17 conflicts, showing the Local optimum: state that has only
#conflicts by moving a queen within one conflict, but every move leads to
its column, with best moves in red larger #conflicts
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HILL-CLIMBING SEARCH

* & queens statistics:
o  State space of size =17 million

o  Starting from random state, steepest-ascent hill climbing solves
14% of problem instances

o It takes 4 steps on average when it succeeds and 3 when it gets
stuck

o  When “sideways” moves are allowed, solves 94% of instances, but
with 21 steps for success and 64 for failure
 Variants:

o  Stochastic hill climbing: Chooses at random among uphill moves,
with the probability depending on the improvement

o  Random-restart hill climbing: Conducts a series of hill-climbing
searches from random states; obviously complete, and expected
number of iterations is roughly 7, with roughly 22 steps overall
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If at first you
don’t succeed,
try, try again!
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APPLICATION: KIDNEY EXCHANG:

-

* Kidney donations
from live donors
are common

 But some donors
are incompatible
with their patients

* Kidney exchange
enables swaps
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APPLICATION: KIDNEY EXCHANG:

-
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APPLICATION: KIDNEY EXCHANGE™

At each step find matching that maximizes
(matching size) — (potential lost)

00000000 0OOODIDOD
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SUMMARY

* Terminology:
o Search problems

o Local search

* Algorithms:

o Generic search algorithms:
tree search vs. graph search

o otrategies: BF'S, Bidirectional,
UCS, DF'S, Iterative Deepening

o Local search algorithms: Hill Climbing
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