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INTEGER PROGRAMMING
* An integer programming (IP) problem:
o a;; ERfori€lk] =1{1,..,k},j €[]
. b; ER for i € [k]
o Variables x; for j € [{]

* The (feasibility) problem is:

find xq ..., x,
s.t. Vi € [k], §=1 aijX; < b;
V_] (S [f], XjE Z.
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How can we express
> constraints?
Equality constraints?
Restricted domains?
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IP IS NOT CONVEX

_______
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Linear programming Integer programming

F = {x € RY: Ax < b} F ={x € Z%: Ax < b}
A € R p e R¥ A € R p e R¥
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EXAMPLE: SUDOKU

8 4 6 7
4
1 6
D 9 3 7
7
4 2 1 3
3 9
3 9 2 D
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EXAMPLE: SUDOKU

* For each i,j,k € [9], binary variable x,ij S.t.
x,l{] = 1 iff we put k in entry (i,j)

e Fort=1,..,27, 5; is a row, column, or 3 X 3
square

find xi%,...,x9° -
st. Yt €[27],Vk € [9], X jyes, X = 1

VL,_] = [9]’2166[9] Xllc] =1
Vi,j, k € [9], x/ € {0,1}
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If you have a hard
time expressing
something as an 1P,
try using binary
variables
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SUDOKU is NP-
complete, so we just
proved that integer

programming 1S

NP-complete!
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EXAMPLE: FAIR DIVISION

 Players N ={1,...,n} and items M = {1, ..., m}

Player i has value v;; for item j

* Partition items to bundles 44, ..., 4,

* Ay, ..., Ay is envy-free iff Vi, i, ¥ e, Vij = Xiea, Vij
l

$5 $20 $20 $3  $40
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EXAMPLE: FAIR DIVISION

* Variables: Xij € {0,1}, Xij = 1 lff] € Ai
« ENVY-FREE as an IP:

find x11, ..., Xm

s.t. Vi€eN,Vi' eEN, ZjeM ViiXij = ZjEM VijXxi’;
V] S M, ZiEinj =1
VieN,j € M,x;; € {0,1}
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APPLICATION: SPLIDDIT

g spl idd it DIVIDE RENT FARE CREDIT GOODS  TASKS ABOUT  FEEDBACK

PROVABLY FAIR SOLUTIONS.

Spliddit offers quick, free solutions to everyday fair division problems, using
methods that provide indisputable fairness guarantees and build on decades of
research in economics, mathematics, and computer science.

D

Share Rent Split Fare Assign Credit

.

Divide Goods Distribute Tasks Suggest an App




PHASE TRANSITION

* Imagine the v;; are drawn independently
and uniformly at random from [0,1]

* Poll 1: If m = n/2, what is the probability
that an envy-free allocation exists?

2 2/n
3 1/2
2 1
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PHASE TRANSITION

* Imagine the v;; are drawn independently
and uniformly at random from [0,1]

* Poll 2: If m >» n, what is the probability
that an envy-free allocation exists?
1. Close to 0

2. Close to 1/3

Close to 1/2

Cl]

ose to 1

3.
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SHARP TRANSITION

n = 10, Existence, U[0,1]
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|Dickerson et al., AAAT 2014]
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SHARP TRANSITION

- —_— c) 4-color difficult
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INTEGER PROGRAMMING, REVISITED
 The standard formulation optimizes a
linear objective function ¢’ x

* The problem is:

max Zle CjX;
s.t. Vie€ k], §=1 a;jxj < b;
Vj € [#], x;€ N U {0}
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EXAMPLE: KIDNEY EXCHANG!

-

* Kidney donations
from live donors
are common

 But some donors
are incompatible
with their patients

* Kidney exchange
enables swaps
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* CYCLE-COVER: Given a
directed graph G and
L € N, find a collection
of cycles of length < L in
G that maximizes the
number of covered
vertices

 The problem is:
o Easy for L = 2 (why?)
o  Easy for unbounded L

o NP-hard for a constant
L>3
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EXAMPLE: KIDNEY EXCHANGE

* Variables: For each cycle ¢ of length £, <
L, variable x. € {0,1}, x, = 1 itf cycle c is
included in the cover

e CYCLE-COVER as an IP:

max ), X.f,
st. YVEV, DevpecXe <1
Ve, x. € {0,1}
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APPLICATION: UNOS

LNOS i

UNITED NETWORK FOR ORGAN SHARING
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[P vs. LP, REVISITED

 Denote the optimal
solutions of the two max Z§=1 CjX; °
programs by OPT;p and .
OPT s.t. VIE [k], Z§=1 a;jXj < bi
LP vj € [€], x;€ {0,1}
 Poll 3: Which
statement is true?
(+) OPT;p < OPTp max Y‘_; ¢jx; @
2. OPTIP 2 OPTLP . y
3 OPTIP — OPTLP s.t. Vi€ [k], j=1 aijxj < bi
vj € [£], x;€ [0,1]
4, OPTIP || OPTLP
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BRANCH AND BOUND

* The linear program (LP) relaxation gives
an “admissible” heuristic!

* LPs can be solved in polynomial time!

e Branch and bound:

o Use a search tree to assign the variables one
by one

o At each node, solve the LP relaxation

o Prune the branch if there is no solution, or if
the solution is worse than best known
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BRANCH AND BOUND
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COMMERCIAL IP SOLVERS

| L ‘G urobi
Optimization
An IBM Company
IBM ILOG CPLEX Gurobi
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OTHER IPS: COMING SOON

Dodgson’s Stackelberg
voting rule security games

15781 Fall 2016: Lecture 14 Carnegie Mellon University 25




SUMMARY

* Terminology:

o Integer programs / linear programs

* Big ideas:

- IP representation leads to “efficient”
solutions

o Phase transition & complexity

o LP as an “admaissible” heuristic
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