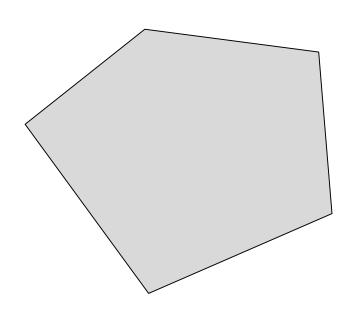
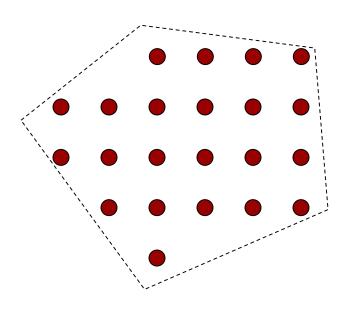


Integer Programming


- An integer programming (IP) problem:
 - $\circ \quad a_{ij} \in \mathbb{R} \text{ for } i \in [k] = \{1, \dots, k\}, j \in [\ell]$
 - $b_i \in \mathbb{R} \text{ for } i \in [k]$
 - \circ Variables x_j for $j \in [\ell]$
- The (feasibility) problem is:

find
$$x_1 \dots, x_{\ell}$$

s.t. $\forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i$
 $\forall j \in [\ell], x_j \in \mathbb{Z}$


How can we express ≥ constraints? Equality constraints? Restricted domains?

IP IS NOT CONVEX

Linear programming $\mathcal{F} = \left\{ \boldsymbol{x} \in \mathbb{R}^{\ell} : A\boldsymbol{x} \leq \boldsymbol{b} \right\}$ $A \in \mathbb{R}^{k \times \ell}, \boldsymbol{b} \in \mathbb{R}^{k}$

Integer programming $\mathcal{F} = \{ x \in \mathbb{Z}^{\ell} : Ax \leq b \}$

$$A \in \mathbb{R}^{k imes \ell}$$
 , $oldsymbol{b} \in \mathbb{R}^k$

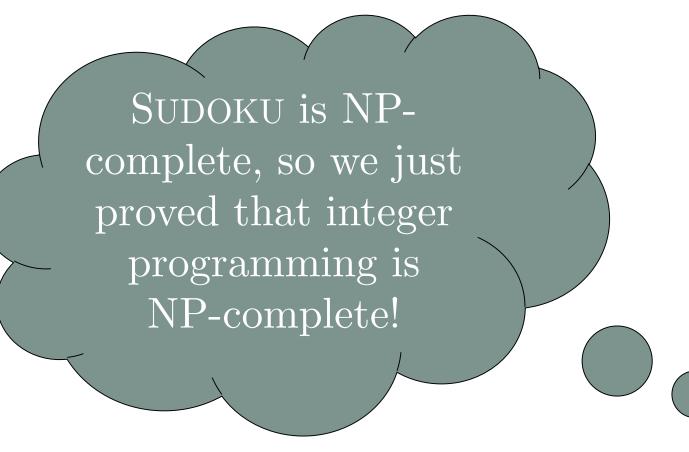
EXAMPLE: SUDOKU

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

EXAMPLE: SUDOKU

- For each $i, j, k \in [9]$, binary variable x_k^{ij} s.t. $x_k^{ij} = 1$ iff we put k in entry (i, j)
- For t = 1, ..., 27, S_t is a row, column, or 3×3 square

```
find x_1^{11}, ..., x_9^{99}


s.t. \forall t \in [27], \forall k \in [9], \sum_{(i,j) \in S_t} x_k^{ij} = 1

\forall i, j \in [9], \sum_{k \in [9]} x_k^{ij} = 1

\forall i, j, k \in [9], x_k^{ij} \in \{0,1\}
```

If you have a hard time expressing something as an IP, try using binary variables

EXAMPLE: FAIR DIVISION

- Players $N = \{1, \dots, n\}$ and items $M = \{1, \dots, m\}$
- Player i has value v_{ij} for item j
- Partition items to bundles $A_1, ..., A_n$
- A_1, \dots, A_n is envy-free iff $\forall i, i', \sum_{j \in A_i} v_{ij} \ge \sum_{j \in A_i'} v_{ij}$

EXAMPLE: FAIR DIVISION

- Variables: $x_{ij} \in \{0,1\}, x_{ij} = 1 \text{ iff } j \in A_i$
- ENVY-FREE as an IP:

```
find x_{11}, \dots, x_{nm}
s.t. \forall i \in N, \forall i' \in N, \sum_{j \in M} v_{ij} x_{ij} \ge \sum_{j \in M} v_{ij} x_{i'j}
         \forall j \in M, \ \sum_{i \in N} x_{ij} = 1
         \forall i \in N, j \in M, x_{ij} \in \{0,1\}
```

APPLICATION: SPLIDDIT

DIVIDE: RENT FARE CREDIT GOODS TASKS

ABOUT FEEDBACK

PROVABLY FAIR SOLUTIONS.

Spliddit offers quick, free solutions to everyday fair division problems, using methods that provide indisputable fairness guarantees and build on decades o research in economics, mathematics, and computer science

Share Rent

Split Fare

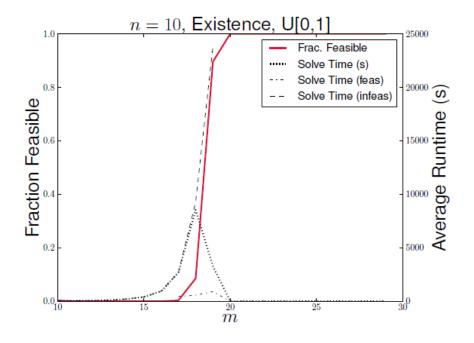
Assign Credit

Divide Goods

Distribute Tasks

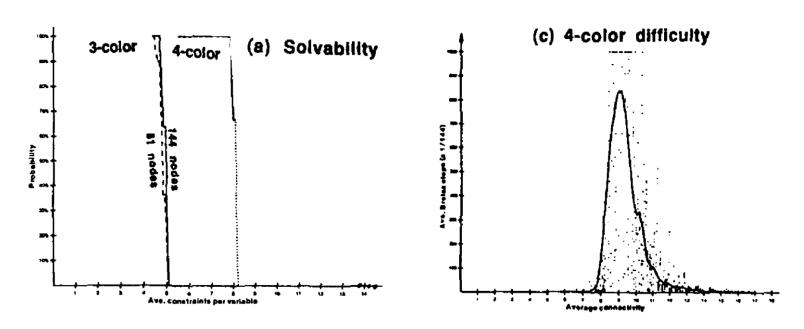
Suggest an App

PHASE TRANSITION


- Imagine the v_{ii} are drawn independently and uniformly at random from [0,1]
- Poll 1: If m = n/2, what is the probability that an envy-free allocation exists?

 - 2. 2/n
 - *3.* 1/2

PHASE TRANSITION

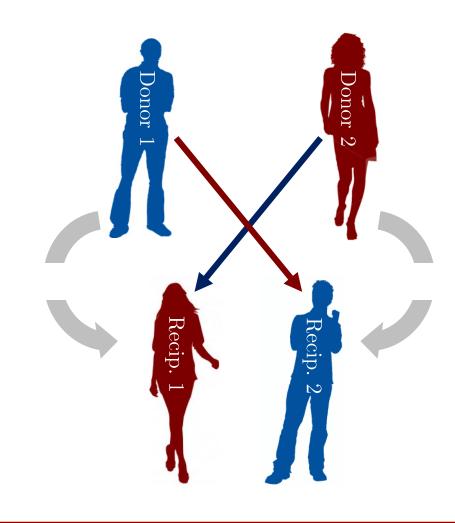

- Imagine the v_{ii} are drawn independently and uniformly at random from [0,1]
- Poll 2: If $m \gg n$, what is the probability that an envy-free allocation exists?
 - 1. Close to 0
 - $_{2.}$ Close to 1/3
 - 3. Close to 1/2
 - Close to 1

SHARP TRANSITION

[Dickerson et al., AAAI 2014]

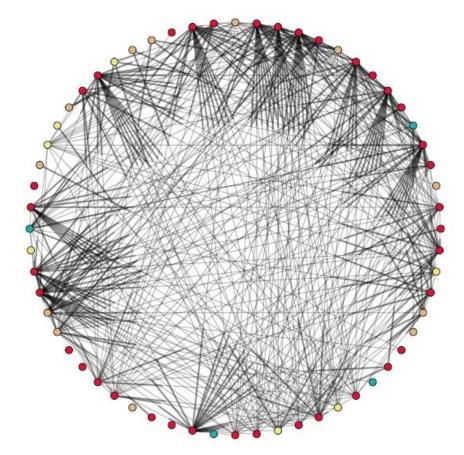
SHARP TRANSITION

[Cheeseman et al., IJCAI 1993]


Integer Programming, Revisited

- The standard formulation optimizes a linear objective function $\boldsymbol{c}^T\boldsymbol{x}$
- The problem is:

$$\max \sum_{j=1}^{\ell} c_j x_j$$
s.t. $\forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i$
 $\forall j \in [\ell], x_j \in \mathbb{N} \cup \{0\}$


EXAMPLE: KIDNEY EXCHANGE

- Kidney donations from live donors are common
- But some donors are incompatible with their patients
- Kidney exchange enables swaps

EXAMPLE: KIDNEY EXCHANGE

- Cycle-Cover: Given a directed graph G and $L \in \mathbb{N}$, find a collection of cycles of length $\leq L$ in G that maximizes the number of covered vertices
- The problem is:
 - Easy for L = 2 (why?)
 - Easy for unbounded L
 - NP-hard for a constant $L \geq 3$

UNOS pool, Dec 2010 [Courtesy John Dickerson, CMU]

EXAMPLE: KIDNEY EXCHANGE

- Variables: For each cycle c of length $\ell_c \leq$ L, variable $x_c \in \{0,1\}, x_c = 1$ iff cycle c is included in the cover
- CYCLE-COVER as an IP:

```
max \sum_{c} x_{c} \ell_{c}
s.t. \forall v \in V, \sum_{c:v \in c} x_c \leq 1
          \forall c, x_c \in \{0,1\}
```

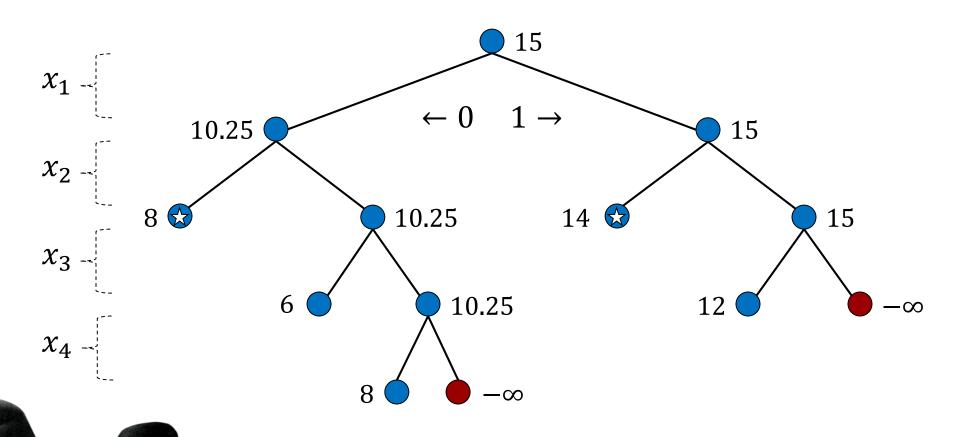

APPLICATION: UNOS

UNITED NETWORK FOR ORGAN SHARING

IP VS. LP, REVISITED

- Denote the optimal solutions of the two programs by OPT_{IP} and $OPT_{I,P}$
- Poll 3: Which statement is true?
 - $OPT_{IP} \leq OPT_{LP}$
 - 2. $OPT_{IP} \ge OPT_{IP}$
 - 3. $OPT_{IP} = OPT_{IP}$
 - $OPT_{IP} || OPT_{IP}$

$$\max \sum_{j=1}^{\ell} c_j x_j$$
s.t. $\forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i$
 $\forall j \in [\ell], x_j \in \{0,1\}$


$$\max \sum_{j=1}^{\ell} c_j x_j$$
s.t. $\forall i \in [k], \sum_{j=1}^{\ell} a_{ij} x_j \leq b_i$
 $\forall j \in [\ell], x_j \in [0,1]$

Branch and Bound

- The linear program (LP) relaxation gives an "admissible" heuristic!
- LPs can be solved in polynomial time!
- Branch and bound:
 - Use a search tree to assign the variables one by one
 - At each node, solve the LP relaxation
 - Prune the branch if there is no solution, or if the solution is worse than best known

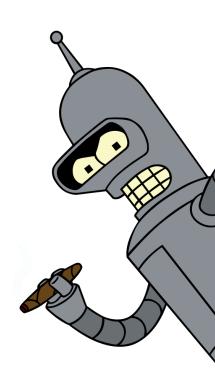
Branch and Bound

COMMERCIAL IP SOLVERS

IBM ILOG CPLEX

Gurobi

OTHER IPS: COMING SOON


Dodgson's voting rule

Stackelberg security games

SUMMARY

- Terminology:
 - Integer programs / linear programs
- Big ideas:
 - IP representation leads to "efficient" solutions
 - Phase transition \Leftrightarrow complexity
 - LP as an "admissible" heuristic

