
CMU
MDPs
15-381/781

Emma Brunskill (THIS TIME)
Ariel Procaccia

•  DeepMind

2

So long certainty…

•  Until now, result of taking an action in a
state was deterministic

Agent

Sensors

Actuators

Environment	

Percepts

Actions

Slide adapted from Klein and Abbeel

Reasoning Under
Uncertainty

Multi-armed
bandits

Reinforcement
Learning

Decision theory Markov Decision
Processes

Ac#ons	
 Don’t	

Change	
 State	
 of	

the	
 World	

Learn	
 model	

of	
 outcomes	

	

	

Given	
 model	

of	
 stochas#c	

outcomes	

Ac#ons	
 Change	

State	
 of	
 the	

World	

Expectation

•  The expected value of a function of a random
variable is the average, weighted by the probability
distribution over outcomes

•  Example: expected time if take the bus
•  Time: 5 min + 30 min
•  Probability: 0.7 + 0.3

12.5	
 min	

Slide adapted from Klein and Abbeel

Where Do Probabilities
Come from?

•  Models
•  Data
•  For now assume we are

given the probabilities for
any chance node

max	

chance	

Reasoning Under
Uncertainty

Decision theory
Markov

Decision
Processes

Learn	
 model	

of	
 outcomes	

	

Given	
 model	

of	
 stochas#c	

outcomes	

Ac#ons	
 Don’t	

Change	
 State	
 of	

the	
 World	

Ac#ons	
 Change	

State	
 of	
 the	

World	

(Stochastically) Change the World

•  Like planning/search, actions impact world
•  But exact impact is stochastic: probability

distribution over next states

Agent

Sensors

Actuators

Environment	

Percepts

Actions

Slide adapted from Klein and Abbeel

Example: Grid World
§  A	
 maze-­‐like	
 problem	

§  The	
 agent	
 lives	
 in	
 a	
 grid	

§  Walls	
 block	
 the	
 agent’s	
 path	

§  The	
 agent	
 receives	
 rewards	
 each	
 #me	
 step	

§  Small	
 “living”	
 reward	
 each	
 step	
 (can	
 be	

nega#ve)	

§  Big	
 rewards	
 come	
 at	
 the	
 end	
 (good	
 or	
 bad)	

§  Goal:	
 maximize	
 sum	
 of	
 rewards	

§  Noisy	
 movement:	
 ac#ons	
 do	
 not	
 always	
 go	
 as	

planned	

§  80%	
 of	
 the	
 #me,	
 ac#on	
 North	
 takes	
 the	
 agent	

North	
 (if	
 there	
 is	
 no	
 wall	
 there)	

§  10%	
 of	
 the	
 #me,	
 North	
 takes	
 the	
 agent	
 West;	

10%	
 East	

§  If	
 there	
 is	
 a	
 wall	
 in	
 the	
 direc#on	
 the	
 agent	

would	
 have	
 gone,	
 agent	
 stays	
 put	

Slide adapted from Klein and Abbeel

Grid World Actions
Determinis#c	
 Grid	
 World	
 Stochas#c	
 Grid	
 World	

Slide adapted from Klein and Abbeel

Markov Decision Processes

•  Set of states s ∈ S
•  Set of actions a ∈ A
•  Transition func. T(s, a, s’)

•  Probability that a from s leads to s’, i.e., P(s’| s, a)
•  Reward func. R(s, a, s’) / R(s) / R(s,a)
•  Start state or states (could be all S)
•  Maybe a terminal state
•  Discount factor
•  MDPs are non-deterministic

search problems

Slide adapted from Klein and Abbeel

Markov Decision Processes

Markov Property

•  Called Markov decision process because
the outcome of an action depends only on
the current state

•  p(st+1|s1,a1,s2,a2,…st,at)=p(st+1|st,at)

Policies

•  In deterministic single-agent search problems, we wanted
an optimal plan, or sequence of actions, from start to a goal

•  In MDPs instead of plans, we have a policies
•  A policy π*: S → A

o  Specifies what action to take in each state

Slide adapted from Klein and Abbeel

Poll: How Many Policies?

•  How many non-terminal
states?

•  How many actions?
•  How many deterministic

policies over non-terminal
states?

Optimal Policies

•  Optimal plan had minimal cost to reach goal
•  Utility or value of a policy π starting in state

s is the expected sum of future rewards will
receive by following π starting in state s

•  Optimal policy has maximal expected sum
of rewards from following it

Optimal Policies

R(s)	
 =	
 -­‐2.0	
 R(s)	
 =	
 -­‐0.4	

R(s)	
 =	

-­‐0.03	

R(s)	
 =	

-­‐0.01	

Slide adapted from Klein and Abbeel

Example:	
 Racing	
 •  A	
 robot	
 car	
 wants	
 to	
 travel	
 far,	
 quickly	

•  Three	
 states:	
 Cool,	
 Warm,	
 Overheated	

•  Two	
 ac#ons:	
 Slow,	
 Fast	

•  Going	
 faster	
 gets	
 double	
 reward	

Cool	

Warm	

Overheated	

Fast	

Fast	

Slow	

Slow	

0.5	
 	

0.5	
 	

0.5	
 	

0.5	
 	

1.0	
 	

1.0	
 	

+1	
 	

+1	
 	

+1	
 	

+2	
 	

+2	
 	

-­‐10	

Slide adapted from Klein and Abbeel

Racing Search Tree

Slide adapted from Klein and Abbeel

Slide adapted from Klein and Abbeel

Utilities of Sequences

Utilities of Sequences

•  What preferences should an agent have over
reward sequences?

•  More or less?

•  Now or later?
[1,	
 2,	
 2]	
 [2,	
 3,	
 4]	
 	
 or	

[0,	
 0,	
 1]	
 [1,	
 0,	
 0]	
 	
 or	

Slide adapted from Klein and Abbeel

Stationary Preferences

•  Theorem: if we assume stationary
preferences:

•  Then: there are only two ways to define

utilities over sequences of rewards

o  Additive utility:

o  Discounted utility:

Slide adapted from Klein and Abbeel

What are Discounts?

•  It’s reasonable to prefer rewards now to rewards
later

•  Decay rewards exponentially

Worth	

Now	

Worth	
 Next	

Step	

Worth	
 In	
 Two	

Steps	

Slide adapted from Klein and Abbeel

Discounting

•  Given:

o  Actions: East, West
o  Terminal states: a and e (end when reach one or the other)
o  Transitions: deterministic
o  Reward for reaching a is 10 (regardless of initial state & action, e.g. r(s,action,a) = 10), reward

for reaching e is 1, and the reward for reaching all other states is 0
•  Quiz 1: For γ = 1, what is the optimal policy?

•  Quiz 2: For γ = 0.1, what is the optimal policy for states b, c and d?

•  Quiz 3: For which γ are West and East equally good when in state d?

Slide adapted from Klein and Abbeel

Infinite Utilities?!
§  Problem: What if the game lasts forever? Do we get infinite

rewards?
§  Solutions:

§  Finite horizon: (similar to depth-limited search)
§  Terminate episodes after a fixed T steps (e.g. life)
§  Gives nonstationary policies (π depends on time left)

§  Discounting: use 0 < γ < 1

§  Smaller γ means smaller “horizon” – shorter term focus
§  Absorbing state: guarantee that for every policy, a terminal

state will eventually be reached (like “overheated” for racing)

Slide adapted from Klein and Abbeel

Recap: Defining MDPs

•  Markov decision processes:
o  Set of states S
o  Start state s0
o  Set of actions A
o  Transitions P(s’|s,a) (or T(s,a,s’))
o  Rewards R(s,a,s’) (and discount γ)

•  MDP quantities so far:
o  Policy = Choice* of action for each state
o  Utility/Value = sum of (discounted) rewards

Slide adapted from Klein and Abbeel

Value of a Policy in Each State

•  Expected immediate reward for taking action
prescribed by policy π for that state

•  And expected future reward get after taking
that action from that state and following π

•  Future reward depends on horizon (how

many more steps get to act). For now
assume infinite

V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑

28

Q: State-Action Value

•  Expected immediate reward for taking action
•  And expected future reward get after taking

that action from that state and following π

 Q
π (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑

Optimal Value V* and π*

•  Optimal value: Highest possible value for each s
•  Satisfies the Bellman Equation

•  Optimal policy

•  Want to find these optimal values!

V *(si) =maxa p(sj | si ,a) R(si ,a, s ')+γV *(sj)!" #$sj∈S
∑()

π *(si) = argmax
a

Q(si,a)

= argmax
a

p(sj | si ,a) R(si ,a, s ')+γV *(sj)!" #$sj∈S
∑()

Value Iteration

•  Bellman equation inspires an update rule

•  Form of dynamic programming

V *(si) =maxa p(sj | si ,a) R(s,a, s ')+γV *(sj)!" #$sj∈S
∑()

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

31

Also Called a Bellman
Backup

•  In shorthand, for performing the above
computation for all states,

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

Vk = BVk−1

32

Value Iteration Algorithm

1.  Initialize V0(si)=0 for all states si, Set K=1
2.  While k < desired horizon or (if infinite

horizon) values have converged
o  For all s,

3.  Extract Policy

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

π k (si) = argmax
a

p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

Calculate	
 V2(warmCar)	

Slide adapted from Klein and Abbeel 34

Assume	
 ϒ=1	

For	
 General	
 Prac#ce,	
 check	
 can	
 calculate	

V2(warmCar)	

	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 0	

	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 0	

Slide adapted from Klein and Abbeel

Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S
∑()

35

Assume	
 ϒ=1	

Computational Cost for 1
Update of V(s) for all s in
Value Iteration?

o  For all s,
 Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S

∑()

37

Will Value Iteration Converge
for Infinite Horizon Problems?

39

Contraction Operator

•  Let O be an operator
•  If |OV – OV’| <= |V-V|’
•  Then O is a contraction operator

40

Will Value Iteration Converge?

•  Yes, if discount factor γ < 1 or end up in a
terminal state with probability 1

•  Bellman equation is a contraction if
discount factor, γ < 1

•  If apply it to two different value functions,
distance between value functions shrinks
after apply Bellman equation to each

41

Properties of Contraction

•  Only has 1 fixed point (the point reach if apply a
contraction operator many times)
o  If had two, then would not get closer when apply

contraction function, violating definition of
contraction

•  When apply contraction function to any argument,
value must get closer to fixed point
o  Fixed point doesn’t move
o  Repeated function applications yield fixed point

43

VI Converges

•  Value iteration converges to unique
solution which is optimal value function

•  Proof: limk→∞Vk =V *

Vk+1 −V * ∞
= BVk −V * ∞

≤ γ Vk −V * ∞
≤ ...

≤ γ k+1 V0 −V * ∞
→ 0

44

Discuss and Report Back: Does
Initialization Impact Final
Value? Value Iteration Algorithm

1.  Init V0(si) for all states si

2.  k=1
3.  While k < desired horizon

or (if infinite horizon)
values have converged

o  For all s,
 Vk (si) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj)"# $%sj∈S

∑()

45

Value Iteration in Infinite
Horizon

•  Always have optimal values as if
had only t more decisions to make

•  Extracting optimal policy for t-th step
yields optimal action should take, if
have t more steps to act
o  But not for (t-1), (t-2)… steps

•  Before convergence, these are
approximations (because actually
get to act forever!)
o  After convergence, value is always the

same if do another update, and so is
the policy

Drawing	
 by	
 Ketrina	
 Yim	

46

Drawings	
 by	
 Ketrina	
 Yim	

Value	
 Itera#on	

Maintain	
 op#mal	

values	
 if	
 have	
 n	
 more	

ac#ons	

Policy	
 Itera#on	

Maintain	
 value	
 of	

following	
 a	
 par#cular	

policy	
 forever	

47

Policy Iteration for
Infinite Horizon

Drawing	
 by	
 Ketrina	
 Yim	

•  Instead of maintaining optimal
value if have t steps left…

1.  Calculate exact value of
acting in infinite horizon for a
particular policy

2.  Then try to improve the
policy

3.  Repeat 1 & 2 until policy
doesn’t change

48

Drawing	
 by	
 Ketrina	
 Yim	

49

Policy Iteration for
Infinite Horizon

•  Instead of maintaining optimal
value if have t steps left…

1.  Calculate exact value of
acting in infinite horizon for a
particular policy (evaluation)

2.  Then try to improve the
policy (improvement)

3.  Repeat 1 & 2 until policy
doesn’t change

Review: Value of a Policy

•  Expected immediate reward for taking action
prescribed by policy

•  And expected future reward get after taking
policy from that state and following π

 V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑

50

Policy Evaluation

•  Goal: compute Vπ(s) for all s

51

Idea 1: Use Small Variant of
Value Iteration

•  Initialize V0(s) to 0 for all s
•  For k=1… convergence

V π
k (si) = p(sj | si ,π (si)) R(s,π (s), s ')+γV

π
k−1(sj)"# $%sj∈S

∑

52

Idea 2: No max in eqn so linear set of
equations… Analytic Solution!

V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑


V = T π


R+γT π


V

T π (si, sj) = p(sj | si,π (si))
Let be a S x S matrix where the (i,j) entry is:


V −γT π


V = T π


R


V = (1−γT π)−1T π


R

T π

53

Requires	
 taking	
 an	

inverse	
 of	
 a	
 S	
 by	
 S	

matrix	

O(S3)	

Policy Improvement

•  Have Vπ(s) for all s
•  Want a better policy
•  Idea:

o  Find the state-action Q value of doing an action
followed by following π forever, for each state

o  Then take argmax of Qs

54

Policy Improvement

•  Have Vπ(s) for all s
•  First compute

•  Then extract new policy.

For each s,

Qπ (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑

π '(s) = argmaxa Q
π (s,a)

55

Delving Deeper Into
Improvement Step

maxa Q
π (s,a) ≥V π (s)

Qπ (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑

π '(s) = argmaxa Q
π (s,a)

•  So if, starting at any state, we followed π’(s), transitioned to a new
state s’, and then followed π forever, our expected sum of rewards
would be at least as good as if we had always followed π

•  But we’re not doing that, we’re getting a new policy and proposing
always following that policy π’…

Policy Iteration for
Infinite Horizon

Drawing	
 by	
 Ketrina	
 Yim	

1.  Policy Evaluation:
Calculate exact value of
acting in infinite horizon
for a particular policy

2.  Policy Improvement
3.  Repeat 1 & 2 until policy

doesn’t change

Discuss and Report Back: If Policy
Doesn’t Change (π’(s) =π(s) for all s),
Can It Ever Change Again in More
Iterations?

•  Given Vπ(s) for all s

π '(s) = argmaxa Q
π (s,a)

Qπ (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑

Policy Iteration for
Infinite Horizon

Drawing	
 by	
 Ketrina	
 Yim	

1.  Policy Evaluation:
Calculate exact value of
acting in infinite horizon
for a particular policy

2.  Policy Improvement
3.  Repeat 1 & 2 until policy

doesn’t change

•  Discuss and Report Back
Policy Iteration is
Guaranteed to Converge.
Think About Why, and How
Many Iterations Could it
Take (How many policies
could we have to sort
through)?

Drawings	
 by	
 Ketrina	
 Yim	

Value	
 Itera#on	

Keep	
 op#mal	
 value	
 for	

finite	
 steps,	
 increase	
 steps	

Policy	
 Itera#on	

Maintain	
 value	
 of	
 policy	

Improve	
 policy	

Drawings	
 by	
 Ketrina	
 Yim	

Value	
 Itera#on	

More	
 itera#ons	

Cheaper	
 per	
 itera#on	

Policy	
 Itera#on	

Fewer	
 Itera#ons	

More	
 expensive	
 per	
 itera#on	

MDPs: What You Should Know

•  Definition
•  How to define for a problem
•  Value iteration and policy iteration

o  How to implement
o  Convergence guarantees
o  Computational complexity

