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SO LONG CERTAINTY...
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« Until now, result of taking an action in a
state was deterministic

Slide adapted from Klein and Abbeel
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REASONING UNDER

UNCERTAINTY
Learn model Multi-armed Reinforcement
of outcomes bandits Learning
Given model | Decision theory Markov Decision
of stochastic Processes
outcomes

Actions Don’t Actions Change
Change State of State of the
the World World
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EXPECTATION

* The expected value of a function of a random
variable is the average, weighted by the probability
distribution over outcomes

« Example: expected time if take the bus
* Time: Smin + 30 min

12.5 mi
. Probability: 0.7 + 0.3 m min
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WHERE DO PROBABILITIES
COME FROM?
 Models max

 Data /
chance

* For now assume we are
given the probabilities for /\

any chance node
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REASONING UNDER

UNCERTAINTY
Given model Markov
of stochastic | Decision theory Decision
outcomes Processes

Actions Don’t Actions Change
Change State of State of the
the World World
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(STOCHASTICALLY) CHANGE THE WORLD
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 Like planning/search, actions impact world

* But exact impact is stochastic: probabillity
distribution over next states

Slide adapted from Klein and Abbeel
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EXAMPLE: GRID WORLD

= A maze-like problem
= The agent lives in a grid
=  Walls block the agent’s path
= The agent receives rewards each time step

=  Small “living” reward each step (can be
negative)
= Big rewards come at the end (good or bad)
=  Goal: maximize sum of rewards

=  Noisy movement: actions do not always go as
planned

=  80% of the time, action North takes the agent
North (if there is no wall there)

= 10% of the time, North takes the agent West;
10% East

= Ifthereis a wall in the direction the agent
would have gone, agent stays put
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GRID WORLD ACTIONS

Deterministic Grid World Stochastic Grid World
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MARKOYV DECISION PROCESSES

e SetofstatessE S
e Setofactionsa& A

« Transition func. T(s, a, s')
Probability that a from s leads to s, i.e., P(s’| s, a)

« Reward func. R(s, a, s’) / R(s)/ R(s,a)
« Start state or states (could be all S)

« Maybe a terminal state

« Discount factor

« MDPs are non-deterministic
search problems

Slide adapted from Klein and Abbeel =~ Carnegie Mellon University




MARKOYV DECISION PROCESSES
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MARKOV PROPERTY

« Called Markov decision process because
the outcome of an action depends only on
the current state

* P(St+1]S1,21,82,85,...8,8,)=P(St+4[Spa)
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POLICIES

* In deterministic single-agent search problems, we wanted
an optimal plan, or sequence of actions, from start to a goal

* In MDPs instead of plans, we have a policies
 Apolicyn*:S — A

Specifies what action to take in each state

o

Carnegie Mellon University
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PoLL: How MANY POLICIES?

 How many non-terminal
states?

 How many actions?

 How many deterministic
policies over non-terminal
states?
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OPTIMAL POLICIES

* Optimal plan had minimal cost to reach goal

o Utility or value of a policy =« starting in state
s is the expected sum of future rewards will
receive by following m starting in state s

* Optimal policy has maximal expected sum
of rewards from following it
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OPTIMAL POLICIES
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* Arobot car wants to travel far, quickly Example RaC|ng

 Three states: Cool, Warm, Overheated
* Two actions: Slow, Fast
* Going faster gets double reward

Slow

Overheated

Slide adapted from Klein and Abbeel ~ Carnegie Mellon University



RACING SEARCH TREE
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UTILITIES OF SEQUENCES
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UTILITIES OF SEQUENCES

« What preferences should an agent have over
reward sequences?

* More or less?
[1, 2, 2] or (2,3, 4]
* Now or later?

[0,0,1] or [1,0,0]
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STATIONARY PREFERENCES

* Theorem: if we assume stationary :
preferences: =
[alaa%-“] - [bbb?v“']

§

[7"7@1,@2,...] - [r,bl,bg,..,]

Y

« Then: there are only two ways to define
utilities over sequences of rewards

- Additive utility: U([rg,r1,79,...]) =r9+r1+m+--
- Discounted utility: U([rg, 1,79, ...]) =19+ yr1 +7%rg -

Slide adapted from Klein and Abbeel ~ Carnegie Mellon University




WHAT ARE DISCOUNTS?

* |t's reasonable to prefer rewards now to rewards
later

 Decay re rds exponentlally

V v

2
Y B
Worth Worth Next Worth In Two
Now Step Steps
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DISCOUNTING U(lro.r1,72,- 1) = ro+yr1 +9°r2-

e Given: 10 1

a b ¢ d e
o Actions: East, West

o Terminal states: a and e (end when reach one or the other)
° Transitions: deterministic
o Reward for reaching a is 10 (regardless of initial state & action, e.g. r(s,action,a) = 10), reward

for reaching e is 1, and the reward for reaching all other states is 0
* Quiz 1: Fory =1, what is the optimal policy?

* Quiz 2: Fory = 0.1, what is the optimal policy for states b, c and d?

* Quiz 3: For which y are West and East equally good when in state d?
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INFINITE UTILITIES?!

= Problem: What if the game lasts forever? Do we get infinite
rewards?

= Solutions:
Finite horizon: (similar to depth-limited search)

» Terminate episodes after a fixed T steps (e.qg. Ii.-:
= Gives nonstationary policies (;t depends on time left)
Discounting: use 0 <y <1
0.9)
Ulrg,- . 7ool) = Y 4'r < Rmax/(1=7)

t=0
= Smaller y means smaller “horizon” — shorter term focus

Absorbing state: guarantee that for every policy, a terminal
state will eventually be reached (like “overheated” for racing)
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RECAP: DEFINING MDPs

« Markov decision processes:

- et of states S

- OStart state s,

- et of actions A

- Transitions P(s’[s,a) (or T(s,a,s’))

- Rewards R(s,a,s’) (and discount v)
« MDP quantities so far:

- Policy = Choice* of action for each state
- Utility/Value = sum of (discounted) rewards
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VALUE OF A POLICY IN EACH STATE

« Expected immediate reward for taking action
prescribed by policy n for that state

* And expected future reward get after taking
that action from that state and following

V7(s)= ESESp(S' | S,Jt(S))[R(S,Jt(s),S') +yV” (s')]

» Future reward depends on horizon (how

many more steps get to act). For now
asaelme infinite
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Q: STATE-ACTION VALUE

« Expected immediate reward for taking action

* And expected future reward get after taking
that action from that state and following

Q" (s,a)= ES'ESp(s' | s,a)[R(S,a,s') +yV” (S')]
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OPTIMAL VALUE V¥ AND t*

« Optimal value: Highest possible value for each s
« Satisfies the Bellman Equation

V*(Si)=max(2 ESp(sj s, ,a)[R(S,- ,a,s')+)/V*(Sj)])
« Optimal policy

7T *(s;) = argmax Q(s;,a)

a

= argmax(zsesp(sj |s.,a) :R(Si ,a,s')+yV* (Sj)])

« Want to find these optimal values!
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VALUE ITERATION

* Bellman equation inspires an update rule

V*(s,)= maX(ES.ESp(Sj s, ,a)[R(s,a,S')+yV*(Sj)])

$

V.(s,)= mfx(z p(s; s, @) R(s,a,s) + YV, (s ].)])

* Form of dynamic programming

sjES
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ALSO CALLED A BELLMAN

BACKUP
V.(s,)= maX(Es.ESp(sj s, ,a)[R(S,a,s') + ka_l(sj)])

* In shorthand, for performing the above
computation for all states,

V.=BV, _,
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VALUE ITERATION ALGORITHM

1. Initialize V(s;)=0 for all states s; Set K=1

2. While k < desired horizon or (if infinite
horizon) values have converged

- Foralls,
V.(s,)= mfx(zsjesp(sj s, ,a)[R(s,a,s') + ka_l(sj)])
3. Extract Policy
7, (s;)= arginax(zsjes p(s;ls, ,a)[R(s,a,s') + ka_l(sj)])
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Calculate V,(warmCar) Assume =1

0.5

Fast

0o Overheated
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For General Practice, check can calculate
V,(warmCar)

Overheated

Assume V=1

Wl O O O ] Vk<sf>=m3"(EsESp<sj'si,a>[R<s,a,s'>+m-1<sj>])

Slide adapted from Klein and Abbee]l ~ Carnegie Mellon University




COMPUTATIONAL COSTFOR 1
UPDATE OF V(S) FOR ALL S IN
VALUE ITERATION?

- Forall s,

Vk<s,->=max(2sesp<sj s ,a>[R<s,a,s'>+m_l<sj>])
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WILL VALUE ITERATION CONVERGE
FOR INFINITE HORIZON PROBLEMS?
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CONTRACTION OPERATOR

* Let O be an operator
o If |OV - 0OV'| <= |V-V|
 Then O is a contraction operator

Carnegie Mellon University 40




WILL VALUE ITERATION CONVERGE?

* Yes, if discount factory <1 orend up in a
terminal state with probability 1

* Bellman equation is a contraction if
discount factor, y < 1

* If apply it to two different value functions,
distance between value functions shrinks
after apply Bellman equation to each
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PROPERTIES OF CONTRACTION

* Only has 1 fixed point (the point reach if apply a
contraction operator many times)

- If had two, then would not get closer when apply
contraction function, violating definition of
contraction

* When apply contraction function to any argument,
value must get closer to fixed point

- Fixed point doesn’t move
- Repeated function applications yield fixed point

Carnegie Mellon University




V1 CONVERGES

* Value iteration converges to unique
solution which is optimal value function

* Proof: lim _  V, =V*

Vi =VH =BV =V, sV -V, <

S)/k+1 ‘/()_V*Hoo %O
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Discuss AND REPORT BACK: DOES
INITIALIZATION IMPACT FINAL

VALUE?

Value lteration Algorithm

1. Init V(s;) for all states s,

2. k=1

3. While k < desired horizon
or (if infinite horizon)
values have converged

o Forall s,

V.(s,)= mfx(zsesp(sj |'s, ,a)[R(s,a,s') + )/Vk_l(s].)])
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VALUE ITERATION IN INFINITE
HORIZON

« Always have optimal values as if
had only t more decisions to make

« Extracting optimal policy for t-th step
yields optimal action should take, if
have t more steps to act

- But not for (t-1), (t-2)... steps

« Before convergence, these are
approximations (because actually
get to act forever!)

o After convergence, value is always the
same if do another update, and so is
the policy

Drawing by Ketrina Yim
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Policy Iteration Value lteration

Maintain value of Maintain optimal
following a particular values if have n more
policy forever actions

Drawings by Ketrina Yinr
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POLICY ITERATION FOR
INFINITE HORIZON

 |nstead of maintaining optimal
value if have t steps left...

1. Calculate exact value of
acting in infinite horizon for a
particular policy

2. Then try to improve the
policy

3. Repeat 1 & 2 until policy
doesn’t change

Drawing by Ketrina Yim
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POLICY ITERATION FOR
INFINITE HORIZON

 |nstead of maintaining optimal
value if have t steps left...

1. Calculate exact value of
acting in infinite horizon for a
particular policy (evaluation)

2. Then try to improve the
policy (improvement)

3. Repeat 1 & 2 until policy
doesn’t change

Drawing by Ketrina Yim
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REVIEW: VALUE OF A POLICY

« Expected immediate reward for taking action
prescribed by policy

* And expected future reward get after taking
policy from that state and following =

V7(s)= ESESp(S' | S,Jr(s))[R(s,Jr(s),s') + )/V”(s')]
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PoLICY EVALUATION

* Goal: compute V™(s) for all s
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IDEA 1: USE SMALL VARIANT OF
VALUE ITERATION

* Initialize V,4(s) to O for all s
* For k=1... convergence

Vis,)= ES.ESp(Sj K ,J'L’(Sl.))[R(S,ﬂI(S),S') + yVZ_l(sj)]
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IDEA 2: NO MAX IN EQN SO LINEAR SET OF
EQUATIONS... ANALYTIC SOLUTION!

Vi(s)= _ p(s' 15, 7)) R(s,

7(s),s)+ 7V (s")]

Let 77 be a S x S matrix where the (i,j) entry is:

T (s;,5,)=p(s; |s;,7(s,))

V=T"R+yT™V
V—yT™V=T"R
V=01-yT")'T"R

— Requires taking an
inverse of aSbyS
matrix

O(S3)

Carnegie Mellon University



POLICY IMPROVEMENT

 Have V™(s) for all s
« Want a better policy

e |dea:

- Find the state-action Q value of doing an action
followed by following 11 forever, for each state

- Then take argmax of Qs

Carnegie Mellon University




POLICY IMPROVEMENT

 Have V™(s) for all s
* First compute

Q" (s,a)= ES'ESp(S' | S,a)[R(S,a,s') + yV”(S')]

* Then extract new policy.
For each s,

7'(s)=argmax_ Q"(s,a)
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DELVING DEEPER INTO
IMPROVEMENT STEP

Q" (s,a)= ES'ESp(S' | S,a)[R(S,a,s') + )/V”(S')]
max_ Q" (s,a)=V"(s)

7'(s)=argmax_ Q"(s,a)

« So if, starting at any state, we followed 17°(s), transitioned to a new
state s’, and then followed 11 forever, our expected sum of rewards
would be at least as good as if we had always followed 1

« But we’re not doing that, we’re getting a new policy and proposing
always following that policy 11'...

Carnegie Mellon University




POLICY ITERATION FOR
INFINITE HORIZON

1. Policy Evaluation:
Calculate exact value of
acting in infinite horizon
for a particular policy

2. Policy Improvement

3. Repeat 1 & 2 until policy
doesn’t change

Drawing by Ketrina Yim
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Discuss AND REPORT BACK: IF PoLICY
DOESN’T CHANGE (r’(S) =m(S) FOR ALL S),
CAN IT EVER CHANGE AGAIN IN MORE
ITERATIONS?

* Given VT(s) for all s

Q" (s,a)= ES'ESp(S' | s,a)[R(S,a,s') + yV”(S')]

7'(s)=argmax_ Q"(s,a)
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POLICY ITERATION FOR
INFINITE HORIZON

1. Policy Evaluation:
Calculate exact value of
acting in infinite horizon
for a particular policy

2. Policy Improvement

3. Repeat 1 & 2 until policy
doesn’t change

Drawing by Ketrina Yim
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« DIsScuss AND REPORT BACK
POLICY ITERATION IS
GUARANTEED TO CONVERGE.
THINK ABOUT WHY, AND HOWwW
MANY ITERATIONS COULD IT
TAKE (HOW MANY POLICIES
COULD WE HAVE TO SORT
THROUGH)?
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Policy Iteration Value Iteration
Maintain value of policy Keep optimal value for
Improve policy finite steps, increase steps

Drawings by Ketrina Yinr
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Policy Iteration Value lteration
Fewer Iterations More iterations
More expensive per iteration Cheaper per iteration

Drawings by Ketrina Yinr
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MDPs: WHAT YOU SHOULD KNOW

* Definition

* How to define for a problem

* Value iteration and policy iteration
- How to implement

- Convergence guarantees
- Computational complexity
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