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So long certainty… 

•  Until now, result of taking an action in a 
state was deterministic 
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Expectation 

•  The expected value of a function of a random 
variable is the average, weighted by the probability 
distribution over outcomes 

•  Example: expected time if take the bus 
•  Time:                  5 min   +     30 min  
•  Probability:        0.7       +     0.3 

12.5	
  min	
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Where Do Probabilities 
Come from? 

•  Models 
•  Data 
•  For now assume we are 

given the probabilities for 
any chance node 

max	
  

chance	
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(Stochastically) Change the World 

•  Like planning/search, actions impact world 
•  But exact impact is stochastic: probability 

distribution over next states 

Agent 

Sensors 

Actuators 
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Example: Grid World 
§  A	
  maze-­‐like	
  problem	
  

§  The	
  agent	
  lives	
  in	
  a	
  grid	
  
§  Walls	
  block	
  the	
  agent’s	
  path	
  

§  The	
  agent	
  receives	
  rewards	
  each	
  #me	
  step	
  
§  Small	
  “living”	
  reward	
  each	
  step	
  (can	
  be	
  

nega#ve)	
  
§  Big	
  rewards	
  come	
  at	
  the	
  end	
  (good	
  or	
  bad)	
  

§  Goal:	
  maximize	
  sum	
  of	
  rewards	
  
§  Noisy	
  movement:	
  ac#ons	
  do	
  not	
  always	
  go	
  as	
  

planned	
  
§  80%	
  of	
  the	
  #me,	
  ac#on	
  North	
  takes	
  the	
  agent	
  

North	
  (if	
  there	
  is	
  no	
  wall	
  there)	
  
§  10%	
  of	
  the	
  #me,	
  North	
  takes	
  the	
  agent	
  West;	
  

10%	
  East	
  
§  If	
  there	
  is	
  a	
  wall	
  in	
  the	
  direc#on	
  the	
  agent	
  

would	
  have	
  gone,	
  agent	
  stays	
  put	
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Grid World Actions 
Determinis#c	
  Grid	
  World	
   Stochas#c	
  Grid	
  World	
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Markov Decision Processes 

•  Set of states s ∈ S 
•  Set of actions a ∈ A 
•  Transition func. T(s, a, s’) 

•  Probability that a from s leads to s’, i.e., P(s’| s, a) 
•  Reward func. R(s, a, s’) / R(s) /  R(s,a) 
•  Start state or states (could be all S) 
•  Maybe a terminal state 
•  Discount factor 
•  MDPs are non-deterministic 

search problems 
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Markov Decision Processes 



Markov Property 

•  Called Markov decision process because 
the outcome of an action depends only on 
the current state 

•  p(st+1|s1,a1,s2,a2,…st,at)=p(st+1|st,at) 



Policies 

•  In deterministic single-agent search problems, we wanted 
an optimal plan, or sequence of actions, from start to a goal 

•  In MDPs instead of plans, we have a policies  
•  A policy π*: S → A 

o  Specifies what action to take in each state 

Slide adapted from Klein and Abbeel 



Poll: How Many Policies? 

•  How many non-terminal 
states? 

•  How many actions? 
•  How many deterministic 

policies over non-terminal 
states? 



Optimal Policies 

•  Optimal plan had minimal cost to reach goal 
•  Utility or value of a policy π starting in state 

s is the expected sum of future rewards will 
receive by following π starting in state s  

•  Optimal policy has maximal expected sum 
of rewards from following it 



Optimal Policies 
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Example:	
  Racing	
  •  A	
  robot	
  car	
  wants	
  to	
  travel	
  far,	
  quickly	
  
•  Three	
  states:	
  Cool,	
  Warm,	
  Overheated	
  
•  Two	
  ac#ons:	
  Slow,	
  Fast	
  
•  Going	
  faster	
  gets	
  double	
  reward	
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Racing Search Tree 
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Utilities of Sequences 



Utilities of Sequences 

•  What preferences should an agent have over 
reward sequences? 

•  More or less? 

•  Now or later? 
[1,	
  2,	
  2]	
   [2,	
  3,	
  4]	
  	
  or	
  

[0,	
  0,	
  1]	
   [1,	
  0,	
  0]	
  	
  or	
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Stationary Preferences 

•  Theorem: if we assume stationary 
preferences: 

 
•  Then: there are only two ways to define 

utilities over sequences of rewards 

o  Additive utility: 

o  Discounted utility: 

Slide adapted from Klein and Abbeel 



What are Discounts? 

•  It’s reasonable to prefer rewards now to rewards 
later 

•  Decay rewards exponentially 

Worth	
  
Now	
  

Worth	
  Next	
  
Step	
  

Worth	
  In	
  Two	
  
Steps	
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Discounting 

•  Given: 

o  Actions: East, West 
o  Terminal states: a and e (end when reach one or the other) 
o  Transitions: deterministic 
o  Reward for reaching a is 10 (regardless of initial state & action, e.g. r(s,action,a) = 10), reward 

for reaching e is 1, and the reward for reaching all other states is 0 
•  Quiz 1: For γ = 1, what is the optimal policy? 

•  Quiz 2: For γ = 0.1, what is the optimal policy for states b, c and d? 

•  Quiz 3: For which γ are West and East equally good when in state d?  
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Infinite Utilities?! 
§  Problem: What if the game lasts forever?  Do we get infinite 

rewards? 
§  Solutions: 

§  Finite horizon: (similar to depth-limited search) 
§  Terminate episodes after a fixed T steps (e.g. life) 
§  Gives nonstationary policies (π depends on time left) 

§  Discounting: use 0 < γ < 1 

§  Smaller γ means smaller “horizon” – shorter term focus 
§  Absorbing state: guarantee that for every policy, a terminal 

state will eventually be reached (like “overheated” for racing) 
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Recap: Defining MDPs 

•  Markov decision processes: 
o  Set of states S 
o  Start state s0 
o  Set of actions A 
o  Transitions P(s’|s,a) (or T(s,a,s’)) 
o  Rewards R(s,a,s’) (and discount γ) 

•  MDP quantities so far: 
o  Policy = Choice* of action for each state 
o  Utility/Value = sum of (discounted) rewards 

Slide adapted from Klein and Abbeel 



Value of a Policy in Each State 

•  Expected immediate reward for taking action 
prescribed by policy π for that state 

•  And expected future reward get after taking 
that action from that state and following π  

 
•  Future reward depends on horizon (how 

many more steps get to act). For now 
assume infinite 

V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑

28 



Q: State-Action Value 

•  Expected immediate reward for taking action 
•  And expected future reward get after taking 

that action from that state and following π  

 Q
π (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑



Optimal Value V* and π*   

•  Optimal value: Highest possible value for each s 
•  Satisfies the Bellman Equation 

•  Optimal policy 

•  Want to find these optimal values! 

V *(si ) =maxa p(sj | si ,a) R(si ,a, s ')+γV *(sj )!" #$sj∈S
∑( )

π *(si ) = argmax
a

Q(si,a)

= argmax
a

p(sj | si ,a) R(si ,a, s ')+γV *(sj )!" #$sj∈S
∑( )



Value Iteration 

•  Bellman equation inspires an update rule 

•  Form of dynamic programming 

V *(si ) =maxa p(sj | si ,a) R(s,a, s ')+γV *(sj )!" #$sj∈S
∑( )

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )

31 



Also Called a Bellman 
Backup 

•  In shorthand, for performing the above 
computation for all states,  

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )

Vk = BVk−1

32 



Value Iteration Algorithm 

1.  Initialize V0(si)=0 for all states si, Set K=1 
2.  While k < desired horizon or (if infinite 

horizon) values have converged 
o  For all s,  

 
3.  Extract Policy 

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )

π k (si ) = argmax
a

p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )



Calculate	
  V2(warmCar)	
  

Slide adapted from Klein and Abbeel 34 
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For	
  General	
  Prac#ce,	
  check	
  can	
  calculate	
  
V2(warmCar)	
  

	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  0	
  

	
  	
  2	
  	
  	
  	
  	
  	
  	
  	
  	
  1	
  	
  	
  	
  	
  	
  	
  	
  0	
  

Slide adapted from Klein and Abbeel 

Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S
∑( )
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Computational Cost for 1 
Update of V(s) for all s in 
Value Iteration? 

o  For all s,  
 Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S

∑( )

37 



Will Value Iteration Converge 
for Infinite Horizon Problems? 

39 



Contraction Operator 

•  Let O be an operator 
•  If |OV – OV’| <= |V-V|’ 
•  Then O is a contraction operator 

40 



Will Value Iteration Converge? 

•  Yes, if discount factor γ < 1 or end up in a 
terminal state with probability 1 

•  Bellman equation is a contraction if 
discount factor, γ < 1 

•  If apply it to two different value functions, 
distance between value functions shrinks 
after apply Bellman equation to each 

41 



Properties of Contraction 

•  Only has 1 fixed point (the point reach if apply a 
contraction operator many times) 
o  If had two, then would not get closer when apply 

contraction function, violating definition of 
contraction 

•  When apply contraction function to any argument, 
value must get closer to fixed point 
o  Fixed point doesn’t move 
o  Repeated function applications yield fixed point 

43 



VI Converges 

•  Value iteration converges to unique 
solution which is optimal value function 

•  Proof: limk→∞Vk =V *

Vk+1 −V * ∞
= BVk −V * ∞

≤ γ Vk −V * ∞
≤ ...

≤ γ k+1 V0 −V * ∞
→ 0

44 



Discuss and Report Back: Does 
Initialization Impact Final 
Value? Value Iteration Algorithm 

1.  Init V0(si) for all states si 

2.  k=1 
3.  While k < desired horizon 

or (if infinite horizon) 
values have converged 

o  For all s,  
 Vk (si ) =maxa p(sj | si ,a) R(s,a, s ')+γVk−1(sj )"# $%sj∈S

∑( )

45 



Value Iteration in Infinite 
Horizon 

•  Always have optimal values as if 
had only t more decisions to make 

•  Extracting optimal policy for t-th step 
yields optimal action should take, if 
have t more steps to act  
o  But not for (t-1), (t-2)… steps 

•  Before convergence, these are 
approximations (because actually 
get to act forever!) 
o  After convergence, value is always the 

same if do another update, and so is 
the policy 

Drawing	
  by	
  Ketrina	
  Yim	
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Drawings	
  by	
  Ketrina	
  Yim	
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  if	
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  n	
  more	
  
ac#ons	
  

Policy	
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Maintain	
  value	
  of	
  

following	
  a	
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policy	
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Policy Iteration for 
Infinite Horizon 

Drawing	
  by	
  Ketrina	
  Yim	
  

•  Instead of maintaining optimal 
value if have t steps left… 

1.  Calculate exact value of 
acting in infinite horizon for a 
particular policy 

2.  Then try to improve the 
policy 

3.  Repeat 1 & 2 until policy 
doesn’t change 
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Drawing	
  by	
  Ketrina	
  Yim	
  

49 

Policy Iteration for 
Infinite Horizon 

•  Instead of maintaining optimal 
value if have t steps left… 

1.  Calculate exact value of 
acting in infinite horizon for a 
particular policy (evaluation) 

2.  Then try to improve the 
policy (improvement) 

3.  Repeat 1 & 2 until policy 
doesn’t change 



Review: Value of a Policy 

•  Expected immediate reward for taking action 
prescribed by policy 

•  And expected future reward get after taking 
policy from that state and following π  

 V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑

50 



Policy Evaluation 

•  Goal: compute Vπ(s) for all s 

51 



Idea 1: Use Small Variant of 
Value Iteration 

•  Initialize V0(s) to 0 for all s 
•  For k=1… convergence 

V π
k (si ) = p(sj | si ,π (si )) R(s,π (s), s ')+γV

π
k−1(sj )"# $%sj∈S

∑

52 



Idea 2: No max in eqn so linear set of 
equations… Analytic Solution! 

V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑


V = T π


R+γT π


V

T π (si, sj ) = p(sj | si,π (si ))
Let         be a S x S matrix where the (i,j) entry is:  


V −γT π


V = T π


R


V = (1−γT π )−1T π


R

T π

53 

Requires	
  taking	
  an	
  
inverse	
  of	
  a	
  S	
  by	
  S	
  

matrix	
  
O(S3)	
  



Policy Improvement 

•  Have Vπ(s) for all s 
•  Want a better policy 
•  Idea:  

o  Find the state-action Q value of doing an action 
followed by following π forever, for each state 

o  Then take argmax of Qs 

54 



Policy Improvement 

•  Have Vπ(s) for all s 
•  First compute 

 
•  Then extract new policy. 

For each s,  

Qπ (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑

π '(s) = argmaxa Q
π (s,a)
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Delving Deeper Into 
Improvement Step 

maxa Q
π (s,a) ≥V π (s)

Qπ (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑

π '(s) = argmaxa Q
π (s,a)

•  So if, starting at any state, we followed π’(s), transitioned to a new 
state s’, and then followed π forever, our expected sum of rewards 
would be at least as good as if we had always followed π 

•  But we’re not doing that, we’re getting a new policy and proposing 
always following that policy π’…    



Policy Iteration for 
Infinite Horizon 

Drawing	
  by	
  Ketrina	
  Yim	
  

1.  Policy Evaluation: 
Calculate exact value of 
acting in infinite horizon 
for a particular policy 

2.  Policy Improvement 
3.  Repeat 1 & 2 until policy 

doesn’t change 



Discuss and Report Back: If Policy 
Doesn’t Change (π’(s) =π(s) for all s), 
Can It Ever Change Again in More 
Iterations?  

•  Given Vπ(s) for all s 

π '(s) = argmaxa Q
π (s,a)

Qπ (s,a) = p(s ' | s,a) R(s,a, s ')+γV π (s ')!" #$s '∈S∑



Policy Iteration for 
Infinite Horizon 

Drawing	
  by	
  Ketrina	
  Yim	
  

1.  Policy Evaluation: 
Calculate exact value of 
acting in infinite horizon 
for a particular policy 

2.  Policy Improvement 
3.  Repeat 1 & 2 until policy 

doesn’t change 



•  Discuss and Report Back 
Policy Iteration is 
Guaranteed to Converge. 
Think About Why, and How 
Many Iterations Could it 
Take (How many policies 
could we have to sort 
through)? 



Drawings	
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  Ketrina	
  Yim	
  

Value	
  Itera#on	
  
Keep	
  op#mal	
  value	
  for	
  

finite	
  steps,	
  increase	
  steps	
  

Policy	
  Itera#on	
  
Maintain	
  value	
  of	
  policy	
  

Improve	
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Drawings	
  by	
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MDPs: What You Should Know 

•  Definition 
•  How to define for a problem 
•  Value iteration and policy iteration 

o  How to implement 
o  Convergence guarantees 
o  Computational complexity 


