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1 Convex Optimization (17 points)

Consider a standard linear program of the form: minimize cTx such that Ax ≤ b. Here x ∈ Rn is the vector
of variables, and c ∈ Rn, A ∈ Rm×n, and b ∈ Rm are constants. Prove from the definitions that this is a
convex program.
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2 Extensive-Form Games (17 points)

Prove that in Chess, exactly one of the following statements is true:

1. White has a winning strategy, i.e., a strategy such that no matter what Black does, White wins.

2. Black has a winning strategy.

3. Both players can force a tie.

You may use the fact that in an extensive-form game of perfect information, bakward induction gives a
subgame perfect Nash equilibrium.
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3 Stackelberg Games (5 points)

Suppose two players are playing a Stackelberg game with the payoffs given below, with player 1 (the row
player) as the leader. What is the payoff of player 1 under the optimal mixed strategy to commit to?

L R
U (0, 1) (4, 0)
D (−1, 0) (2, 1)
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4 VC-Dimension (5 points)

Prove or disprove: If C and C′ are two concept classes, then VC-dim(C∪C′) = VC-dim(C)+VC-dim(C).
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5 Uninformed Search (5 points)

Consider the problem of uninformed search on a finite search space with a binary tree structure as shown in
the following figure (the actual space could be larger).

Figure 1: The structure of the search space

Suppose there are multiple goal states, we want the shortest path to the closest goal, and we want to minimize
time. We have unlimited memory. Discuss which of BFS, DFS, or IDS would be best suited and why. Briefly
explain why the other options are not as well suited as your choice.
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6 Informed Search (17 points)

The 8-Puzzle game is a single-player board game which consists of a 3×3 board with 8 tiles and 1 blank slot.
A tile can move horizontally or vertically to its adjacent blank slot (if it neighbors it). The objective of the
game is to start from a given arrangement of tiles and move tiles to achieve a given goal arrangement.

Here, we discuss some heuristics to be used with A* graph search. Recall, from slides 18 and 19 of Lecture
2, that heuristic h1(·) returns the number of tiles that are in the wrong position and h2(·) returns the sum
of Manhattan distances of tiles from their goal positions. We introduce a third heuristic, h3(·), that is the
minimum number of moves necessary to get to the goal state if each action could move any tile to the blank
slot. This is another relaxed problem heuristic.

1. (9 points) Prove that h3 is consistent.

2. (4 point) Prove or disprove: h3 dominates h1.

3. (4 point) Prove or disprove: h3 dominates h2.
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7 Deep Learning and Computer Vision (17 points)

1. (8 points) Consider a layer in a convolutional neural network that takes in one 100× 100 feature map
(e.g., a gray-scale image), and outputs 100 feature maps. In each of the following cases, give the
number of parameters that must be learned for this layer. Remember that we include a bias value for
each output map.

(a) The layer is a convolution layer where the filters are the same size as the input feature map.

(b) The layer is a convolution layer with 10× 10 filters and a stride of 5.

(c) The layer is a locally-connected layer with 10× 10 tiles and a stride of 5.

(d) The layer is a convolution layer with 1× 1 filters and a stride of 1.

2. (5 points) What is the trade-off with having more or fewer parameters?

3. (4 points) Explain an additional reason (besides the number of parameters) convolution layers with
filters that are smaller than the input map but larger than 1×1 are well-suited for image-related tasks.
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8 (From Homework) Choosing the Value of Rmax (17 points)

This question refers to the R-MAX algorithm (to be covered in lecture the week of 10/10).

The R-MAX algorithm makes the assumption that we know the maximum possible reward. In the real
world, this might not always be the case. In this problem we explore some possible modifications to the
algorithm when we don’t know the maximum reward.

8.1 Setting an upper bound [3 points]

Suppose we have a known upper bound for the reward and we set Rmax to be this upper bound. When this
bound is very loose, i.e., the bound is much greater than the true maximum possible reward, how will the
algorithm behave?

8.2 Working up to the true bound [8 points]

Instead, suppose we initialize Rmax = 0 (assume this is the minimum possible reward), and every time a
state-action pair becomes known with a reward ρ > Rmax, we set Rmax = ρ (and modify our unknown states
accordingly). While intuitively this may seem like it should work, in some cases it does not. Give a simple
MDP where this fails, i.e., where we will never find the optimal policy. Show that we never find the optimal
policy on your example under balanced wandering.

8.3 Optimistically increasing Rmax (6 points)

Now suppose we use the same algorithm as in (1.1.2), but instead we set Rmax = ρ + δ, for some δ, which
may depend on the discount factor, γ. Either give a brief description of why this won’t fail as it did in
(1.2.2), or show that for any value of δ, you can construct an MDP where this fails.
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