

Probabilistic Inference Tasks

- Simple queries: $P(X_i \mid E = e)$
- Conjunctive queries: $m{P}(X_{
 m i},\,X_{
 m j}\mid {f E}={f e})=$ $m{P}(X_{
 m i}\mid {f E}={f e})\;m{P}(X_{
 m i}\mid X_{
 m i},\,{f E}={f e})$
- Optimal decisions: decision networks include utility information; probabilistic inference is required for P(outcome | action, evidence)
- Value of information: which evidence to seek next?
- Sensitivity analysis: which variables are most critical?

GENERAL INFERENCE PROCEDURE

Let's partition the set of random variables in the model in:

- Evidence variables **E**, and be **e** the list of observed values from them
- Remaining unobserved / hidden variables Y
- Query variables X (let's consider single query for simplicity)

An inference query is $P(X \mid e)$? and can be evaluated as:

$$P(X \mid e) = P(X, e)/P(e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

(from prob recall: marginal of a subset of variables + normalization constants)

→ Given the full joint distribution, any probabilistic query can then be answered

INFERENCE WITH BNS

An inference query $P(X \mid \mathbf{e})$ can be evaluated as:

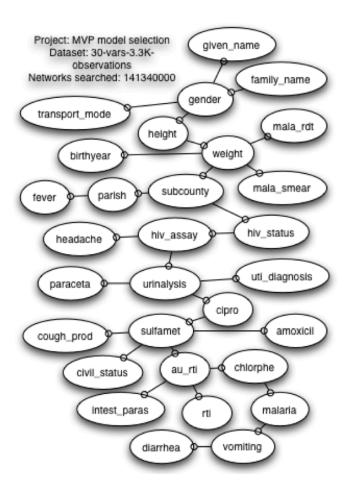
$$P(X \mid e) = P(X, e)/P(e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

→ Given the full joint distribution, any probabilistic query can then be answered

A BN is a compact way to represent a joint distribution, where the terms in the joint distribution are written as products of conditional probabilities from the network

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

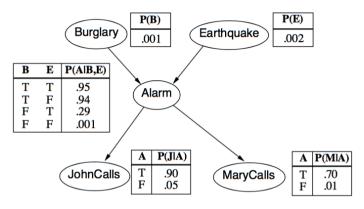
(Exact) Inference by enumeration?



EXACT INFERENCE BY ENUMERATION

$$P(X \mid e) = \alpha P(X, e) = \alpha \sum_{y} P(X, e, y)$$

$$P(x_1, \dots, x_n) = \prod_{i=1}^{n} P(x_i \mid parents(X_i))$$



$$P(B, | J=T, M=T)$$

Evidence: J, M

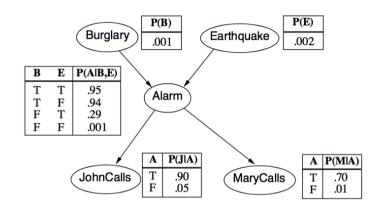
Hidden: E, A

Query: B

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B, j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B, e, a, j, m)$$

$$\mathbf{P}(B \mid j, m) = \alpha \sum_{e} \sum_{e} \mathbf{P}(B) P(e) \mathbf{P}(a \mid b, e) P(j \mid a) P(m \mid a)$$

INFERENCE BY ENUMERATION



$$\mathbf{P}(B \mid j, m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a \mid b, e) P(j \mid a) P(m \mid a)$$

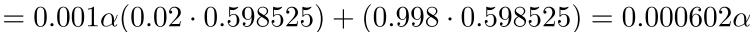
What is the complexity of this calculation? $O(n2^n)$

INFERENCE BY ENUMERATION

- P(B=b) is a constant and can be moved outside the sums
- P(e) can be moved outside the summation over a

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$$

$$\begin{aligned} & \boldsymbol{P}(b \mid j, m) = \alpha \boldsymbol{P}(b) \sum_{e} P(e) \sum_{a} \boldsymbol{P}(a \mid b, e) P(j \mid a) P(m \mid a) \\ & = 0.001 \alpha \sum_{e} P(e) \Big[P(\neg a \mid b, e) P(j \mid \neg a) P(m \mid \neg a) + P(a \mid b, e) P(j \mid a) P(m \mid a) \Big] \\ & = 0.001 \alpha \sum_{e} P(e) [0.598525] \end{aligned}$$

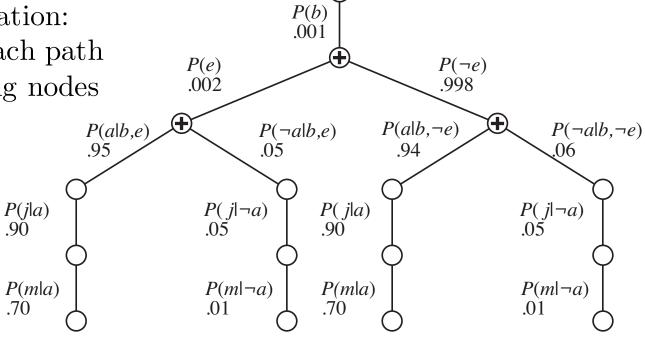


INFERENCE BY ENUMERATION

$$\mathbf{P}(B \mid j, m) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a \mid B, e) P(j \mid a) P(m \mid a)$$

Top-down DF evaluation:

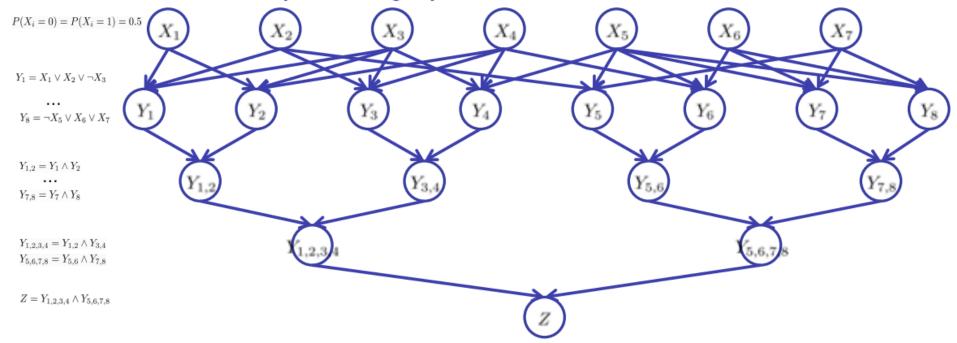
- × Values along each path
- + at the branching nodes



WORST CASE: NP-HARD

Consider the 3-SAT clause:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor x_6 \lor \neg x_7) \land (x_5 \lor x$ which can be encoded by the following Bayes' net:

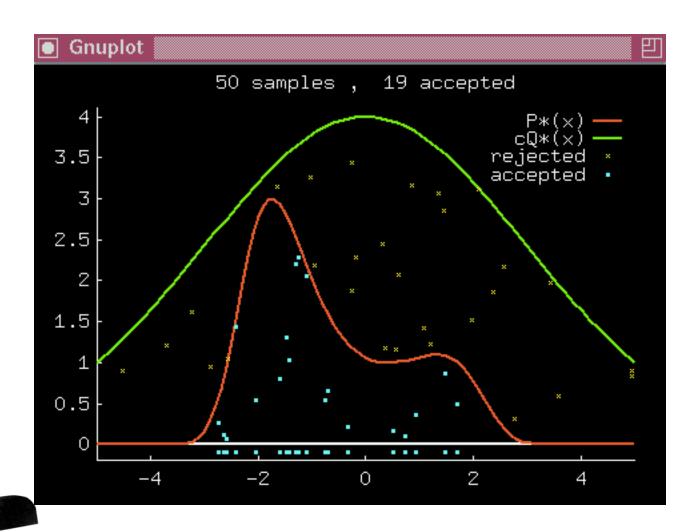


If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

APPROXIMATE INFERENCE IN BN

- Given the general intractability of exact inference in large, multiply connected networks, it is essential to consider approximate inference methods
- Monte Carlo algorithms: randomized sampling methods ... we have already seen one example of them!
- Basic idea: we express the quantity we want to know as the expected value of a random variable X, such as $\mu = E(X)$. Then we generate values X_1, \ldots, X_n independently and randomly from the distribution of X and take their sample average as the estimate of μ ($\rightarrow law \ of \ large \ numbers$)
- **Problems:** it might be difficult to sample from X's distribution; a large number of samples might be needed

Monte Carlo Sampling



SAMPLING FOR INFERENCE

- Have some method for generating samples given a known probability distribution (e.g., uniform in [0,1])
- A sample is an assignment of values to each variable in the network
- Use samples to approximately compute posterior probabilities
- Queries can be issued after finish sampling

	$\mathbf{X_1}$	$\mathbf{X_2}$	\mathbf{X}_3	$\mathbf{X_4}$	$\mathbf{X_5}$
	\mathbf{T}	T	F	T	${ m T}$
D =	F	F	F	F	${ m T}$
P	T	Τ	T	F	\mathbf{F}
	${f T}$	F	F	F	${ m T}$
	T	T	T	T	T

Prob (T,T,F,F,T)? #(T,T,F,F,T) / #Samples

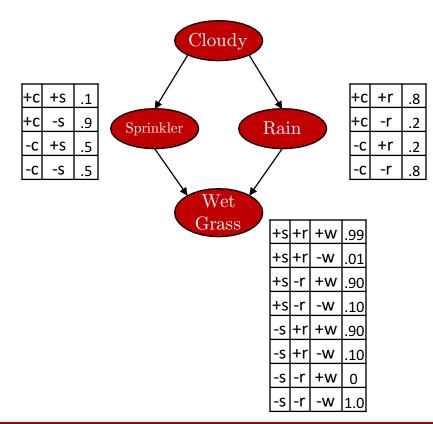
DIRECT SAMPLING METHODS

- Generate events from a network with no evidence
- Each variable is sampled in turn, in topological order
- The probability distribution from which the value of a variable is sampled is conditioned on the values already assigned to the variable's parents

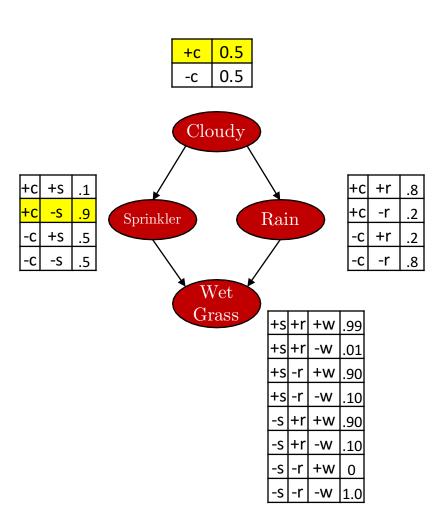
```
function PRIOR-SAMPLE(bn) returns an event sampled from bn
   inputs: bn, a belief network specifying joint distribution \mathbf{P}(X_1,\ldots,X_n)
   \mathbf{x} \leftarrow an event with n elements
   for i = 1 to n do
        x_i \leftarrow a random sample from P(X_i \mid parents(X_i))
             given the values of Parents(X_i) in \mathbf{x}
   return x
```

• Sample Pr[C]=(.5,.5) \Rightarrow true Order: C, S, R, W

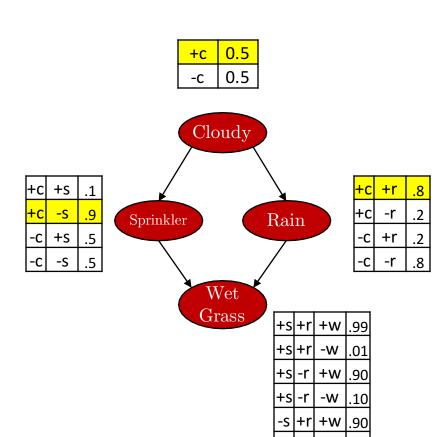
+c | 0.5 | | -c | 0.5 |



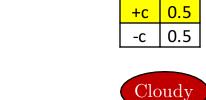
- Sample Pr[C] = (.5, .5) \Rightarrow true
- Sample Pr[S|C=t]=(.1,.9) \Rightarrow false



- Sample Pr[C] = (.5, .5) \Rightarrow true
- Sample Pr[S|C=t]=(.1,.9) \Rightarrow false
- Sample Pr[R|C=t]=(.8,.2) \Rightarrow true

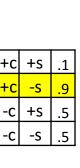


- Sample Pr[C] = (.5, .5)
 - \Rightarrow true
- Sample Pr[S|C=t]=(.1,.9) \Rightarrow false
- Sample Pr[R|C=t]=(.8,.2) \Rightarrow true
- Sample Pr[W|S=f,R=t]=(.9,.1) \Rightarrow true
- Sampled [t,f,t,t]



Sprinkler

Wet Grass



ı	+c	+r	.8
ain	+c	-r	.2
	-c	+r	.2
	-c	-r	.8

+s	+r	+w	.99	
+s	+r	-W	.01	
+s	-r	+w	.90	
+s	-r	-W	.10	
-S	+r	+W	.90	
-s	+r	-W	.10	
-s	-r	+w	0	
-s	-r	-W	1.0	

Probability that PRIORSAMPLE generates a particular event

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i|parents(X_i)) = P(x_1 \dots x_n)$$

i.e., the true prior probability

For large N, 32.4% of events (t,f,f,t) are expected

E.g.,
$$S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t)$$

Let $N_{PS}(x_1 \dots x_n)$ be the number of samples generated for event x_1, \dots, x_n

Then we have

$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n) / N$$

$$= S_{PS}(x_1, \dots, x_n)$$

$$= P(x_1 \dots x_n)$$

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand:
$$\hat{P}(x_1, \dots, x_n) \approx P(x_1 \dots x_n)$$

REJECTION SAMPLING

• What about P(X|e), i.e., when we have **evidence**?

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)**local variables**: N, a vector of counts over X, initially zero

```
for j = 1 to N do
     \mathbf{x} \leftarrow \text{PRIOR-SAMPLE}(bn)
     if x is consistent with e then
        N[x] \leftarrow N[x] + 1 where x is the value of X in x
return Normalize(N[X])
```

Similar to estimation of conditional Probabilities directly from the real world Problem: try to estimate Pr|Rain | RedSkyAtNight=t]!

REJECTION SAMPLING

- Want to estimate Pr[Rain=t | Sprinkler=t]
- 100 direct samples (no evidence included) are generated
- 73 have S=f, of which 12 have R=t
- 27 have S=t, of which 8 have R=t

```
\hat{\mathbf{P}}(Rain|Sprinkler = true) = \text{Normalize}(\langle 8, 19 \rangle) = \langle 0.296, 0.704 \rangle
```

- Error goes as $1/\sqrt{n}$, n = useful samples
- The estimate is consistent
- Too many samples thrown away! (because they are generated with direct sampling)

SOLUTION: LIKELIHOOD WEIGHTING

- Generate only samples that agree with evidence
- Fix the evidence vars and sample the nonevidence only
- \rightarrow Each generated event is consistent with evidence
- Weight each generated event according to likelihood that the event accords to evidence
- The likelihood is measured as the product of the conditional probabilities for each evidence variable given its parents
- Event unlikely according to current evidence should weight less

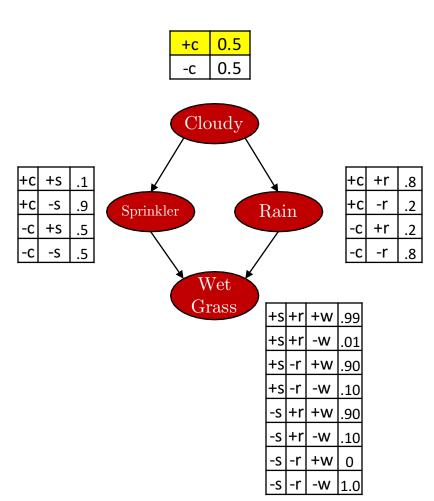
```
function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
   local variables: W, a vector of weighted counts over X, initially zero
   for j = 1 to N do
        \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn)
        \mathbf{W}[x] \leftarrow \mathbf{W}[x] + w where x is the value of X in \mathbf{x}
   return Normalize(\mathbf{W}[X])
```

```
function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
   \mathbf{x} \leftarrow an event with n elements; w \leftarrow 1
   for i = 1 to n do
         if X_i has a value x_i in e
              then w \leftarrow w \times P(X_i = x_i \mid parents(X_i))
              else x_i \leftarrow a random sample from P(X_i \mid parents(X_i))
```

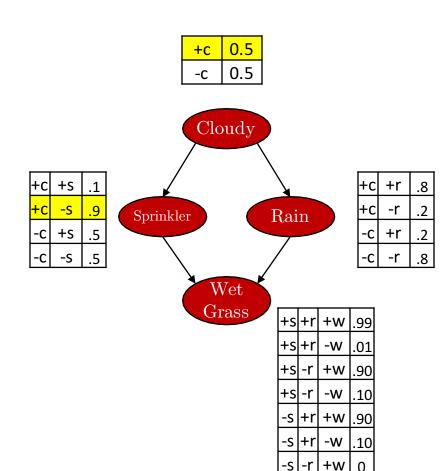
return \mathbf{x}, w

- Evidence: C=t,W=t
- C is evidence var

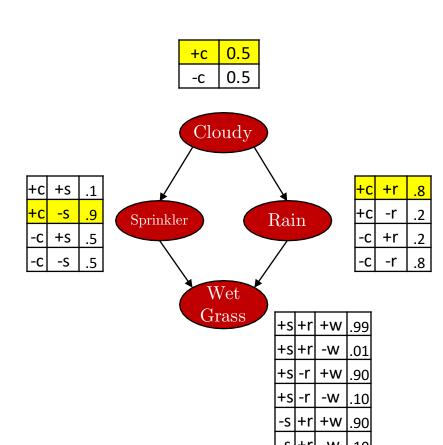
$$\Rightarrow$$
 w = 1·Pr[C=t] = 0.5



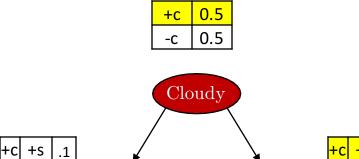
- Evidence: C=t,W=t
- C is evidence var \Rightarrow w = 1·Pr[C=t] = 0.5
- Sample Pr[S|C=t]=(.1,.9) \Rightarrow false



- Evidence: C=t,W=t
- C is evidence var \Rightarrow w = 1·Pr[C=t] = 0.5
- Sample Pr[S|C=t]=(.1,.9) \Rightarrow false
- Sample Pr[R|C=t]=(.8,.2) \Rightarrow true

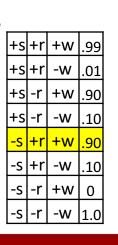


- Evidence: C=t,W=t
- C is evidence var \Rightarrow w = 1·Pr[C=t] = 0.5
- Sample Pr[S|C=t]=(.1,.9) \Rightarrow false
- Sample Pr[R|C=t]=(.8,.2) \Rightarrow true
- W is evidence var \Rightarrow w = 0.5·Pr[W=t | S=f,R=t] = .45
- Sampled [t,f,t,t] with weight .45, tallied under R=t



 $\frac{\mathrm{Wet}}{\mathrm{Grass}}$

Sprinkler



Rain

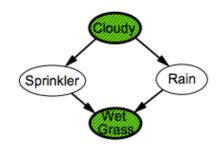
DISCUSSION

Sampling probability for WEIGHTEDSAMPLE is

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | parents(Z_i))$$

Note: pays attention to evidence in ancestors only

⇒ somewhere "in between" prior and posterior distribution



Weight for a given sample z, e is

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i|parents(E_i))$$

Weighted sampling probability is

$$\begin{split} S_{WS}(\mathbf{z}, \mathbf{e}) w(\mathbf{z}, \mathbf{e}) \\ &= \prod_{i=1}^{l} P(z_i | parents(Z_i)) \quad \prod_{i=1}^{m} P(e_i | parents(E_i)) \\ &= P(\mathbf{z}, \mathbf{e}) \text{ (by standard global semantics of network)} \end{split}$$

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight

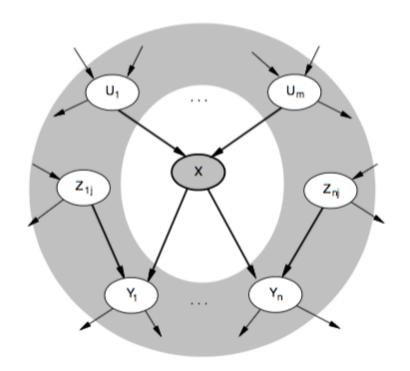
DISCUSSION

- Because of topological order, when sampling S and R the evidence W=t is ignored \Rightarrow samples with S=f and R=f although evidence rules this out
- Weight makes up for this difference: above weight would be 0
- If we have 100 samples with R=t and total weight 1, and 400 samples with R=f and total weight 2, what is estimate of R=t?
- Problem: bad if evidence variables occur later in ordering

- Markov Chain Monte Carlo (MCMC): each sample is generated by making a random change to the preceding sample
- MCMC are algorithms with a *state*, the next state is generated from the current one
- Specific MCMC: Gibbs sampling, the sampling process settles into a "dynamic equilibrium" in which the longrun fraction of time spent in each state is exactly proportional to its posterior probability
- The states are generated given the *Markov blanket*: state transitions are defined by the conditional distribution

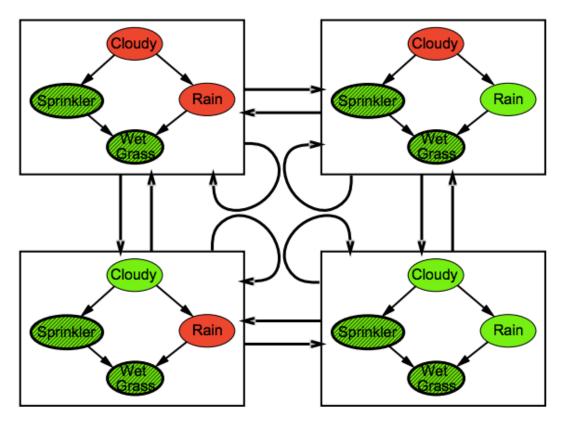
Markov Blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents



```
function GIBBS-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
   local variables: N[X], a vector of counts over X, initially zero
                       {\bf Z}, the nonevidence variables in bn
                       x, the current state of the network, initially copied from e
   initialize x with random values for the variables in Y
   for j = 1 to N do
        for each Z_i in Z do
             sample the value of Z_i in \mathbf{x} from \mathbf{P}(Z_i|mb(Z_i))
                  given the values of MB(Z_i) in \mathbf{x}
             N[x] \leftarrow N[x] + 1 where x is the value of X in x
   return Normalize (N[X])
```


With Sprinkler = true, WetGrass = true, there are four states:



Wander about for a while, average what you see

Estimate $\mathbf{P}(Rain|Sprinkler = true, WetGrass = true)$

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.

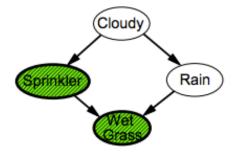
E.g., visit 100 states 31 have Rain = true, 69 have Rain = false

 $\hat{\mathbf{P}}(Rain|Sprinkler = true, WetGrass = true)$ = NORMALIZE($\langle 31, 69 \rangle$) = $\langle 0.31, 0.69 \rangle$

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

MB SAMPLING

Markov blanket of Cloudy is Sprinkler and Rain Markov blanket of Rain is Cloudy, Sprinkler, and WetGrass



Probability given the Markov blanket is calculated as follows:

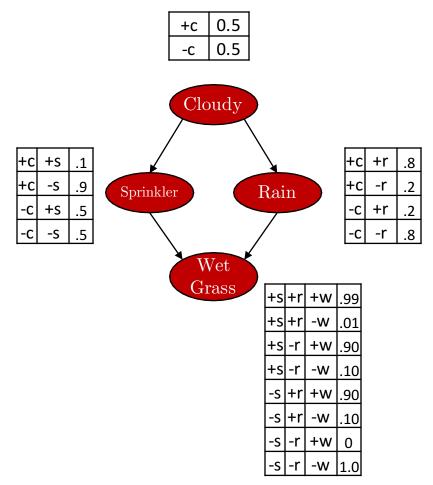
$$P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$$

Easily implemented in message-passing parallel systems, brains

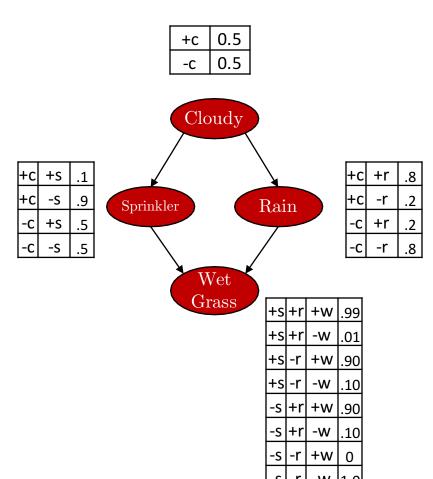
Main computational problems:

- 1) Difficult to tell if convergence has been achieved
- 2) Can be wasteful if Markov blanket is large: $P(X_i|mb(X_i))$ won't change much (law of large numbers)

- Want Pr(R|S=t,W=t)
- Non-evidence variables are C & R
- Initialize randomly: C= t and R=f
- Initial state (C,S,R,W) = [t,t,f,t]
- Sample C given current values of its Markov Blanket



- Want Pr(R|S=t,W=t)
- Non-evidence variables are C & R
- Initialize randomly: C= t and R=f
- Initial state (C,S,R,W) = [t,t,f,t]
- Sample C given current values of its Markov Blanket
- Markov blanket is parents, children and children's parents: for C=S & R
- Sample C given P(C|S=t,R=f)
- First have to compute P(C|S=t,R=f)
- Use exact inference to do this



HOW DO WE COMPUTE $P(C \mid S=T, R=F)$? (RECALL OF EXACT INFERENCE)

- P(C|S=t,R=f)
- What is the probability $P(C=t \mid S=t, R=f)$?

$$= P(C=t, S=t, R=f) / (P(S=t,R=f))$$

Proportional to P(C=t, S=t, R=f)

Use normalization trick, & compute the above for C=t and C=f

$$P(C=t,\ S=t,\ R=f)=P(C=t)\ P(S=t|C=t)\ P\ (R=f|\ C=t,\ S=t)$$
 product rule

$$= P(C=t) P(S=t|C=t) P (R=f|C=t) (BN independencies)$$

$$= 0.5 * 0.1 * 0.2 = 0.01$$

$$P(C=f, S=t, R=f) = P(C=f) P(S=t|C=f) P(R=f|C=f)$$

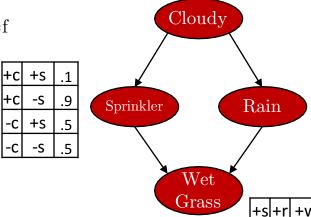
$$= 0.5 * 0.5 * 0.8 = 0.2$$

(P(S=t,R=f)) use sum rule = P(C=f, S=t, R=f) + P(C=t, S=t, R=f)R=f

$$P(C = t | S=t, R=f) = 0.21$$

$$_{1}P\ (C=t\mid S=t,\ R=f)=0.01\ /\ 0.21\ ^{\sim}0.0476$$

+c	0.5
-C	0.5



<u>-</u>S 1

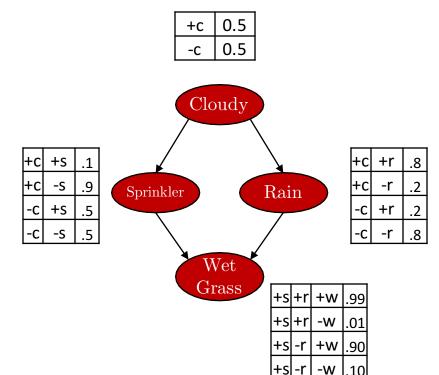
+S

|+c|

+c	+r	.8
+c	-r	.2
-c	+r	.2
-c	-r	.8

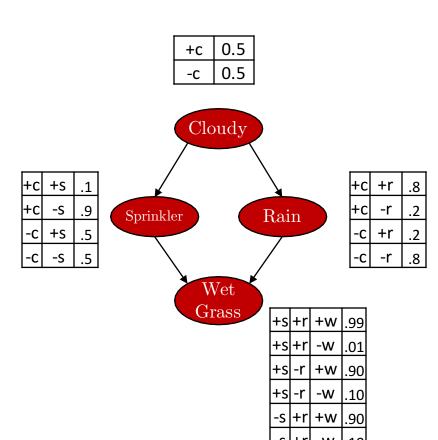
+r	+w	.99
+r	-W	.01
-r	+w	.90
-r	-W	.10
+r	+w	.90
+r	-W	.10
-r	+w	0
-r	-W	1.0
	+r -r -r +r	+r -w -r +w -r -w +r +w +r -w -r +w

- Want Pr(R|S=t,W=t)
- Non-evidence variables are C & R
- Initialize randomly: C= t and R=f
- Initial state (C,S,R,W) = [t,t,f,t]
- Sample C given current values of its Markov Blanket
- Markov blanket is parents, children and children's parents: for C=S & R
- Exactly compute P(C|S=t,R=f)
- Sample C given P(C|S=t,R=f)
- Get C = f
- New state (f,t,f,t)

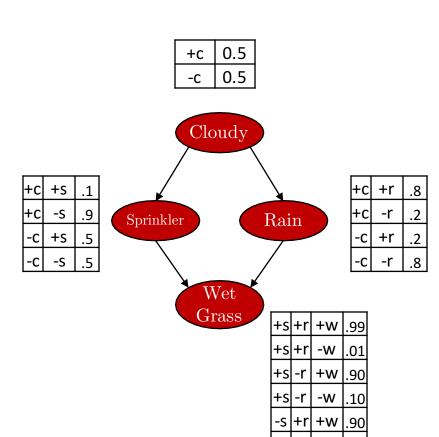


-s|+r|+w|.90

- Want Pr(R|S=t,W=t)
- Initialize non-evidence variables (C and R) randomly to t and f
- Initial state (C,S,R,W) = [t,t,f,t]
- Sample C given current values of its Markov Blanket, p(C|S=t,R=f)
- Suppose result is C=f
- New state (f,t,f,t)
- Sample Rain given its MB
- What is its Markov blanket?



- Want Pr(R|S=t,W=t)
- Initialize non-evidence variables (C and R) randomly to t and f
- Initial state (C,S,R,W) = [t,t,f,t]
- Sample C given current values of its Markov Blanket, p(C|S=t,R=f)
- Suppose result is C=f
- New state (f,t,f,t)
- Sample Rain given its MB, p(R|C=f,S=t,W=t)
- Suppose result is R=t
- New state (f,t,t,t)



Poll: Gibbs Sampling Ex.

- Want Pr(R|S=t,W=t)
- Initialize non-evidence variables (C and R) randomly to t and f
- Initial state (C,S,R,W) = [t,t,f,t]
- Current state (f,t,t,t)
- What is **not** a possible next state
- 1. (f,t,t,t)
- 2. (t,t,t,t)
- 3. (f,t,f,t)
- 4. (f,f,t,t)
- 5. Not sure

