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ENCE TASKS

PROBABILISTIC INF:
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* Simple queries: P(X, | E = e)
 Conjunctive queries: P(X;, X, | E = e) =
P(X;| E =e) P(X; | X;, E = e

* Optimal decisions: decision networks include utility
information; probabilistic inference is required for
P(outcome | action, evidence)

 Value of information: which evidence to seek next?

* Sensitivity analysis: which variables are most critical?
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Let’s partition the set of random variables in the model in:

NERAL INFERENCE PROCEDURI

(-

&

&

* Evidence variables E, and be e the list of observed values
from them

* Remaining unobserved / hidden variables Y

* Query variables X (let’s consider single query for simplicity)

An inference query is P(X | €)? and can be evaluated as:

P(X |e)=P(X,e)/P(e)=aP(X,e)=a) P(X, ey)

Yy
(from prob recall: marginal of a subset of variables + normalization constants)

— Given the full joint distribution, any
probabilistic query can then be answered
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INFERENCE WITH BNS

An inference query P(X | e) can be evaluated as:
P(X | e) = P(X,e)/P(e) = aP(X,e) =a ) P(X,e,y)

/
— Given the full joint distribution, any
probabilistic query can then e answered

joint distribution,
lon are written as
from the network

A BN is a compact way to represent
where the terms in the joint distrib
products of conditional probabiliti

P(xi,...,x,) = H P(z; | parents(X;))
i=1
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Project: MVP model selection
Iven_name
Dataset: 30-vars-3.3K-

observatlons
Networks searched: 141340000
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EXACT INFERENCE BY ENUMERATION

P(X |e)=aP(X,e)=a) P(X,ey) .

y P(x1,...,2,) = HP(UC@ | parents(X;))
i=1

001 002 P(B) ‘ J:T) M:T)

P(AIB,E)

95
94
29

Evidence: J, M

mome | w
3 |

Hidden: E, A
D HE B Query: B
P(B | j,m)=aP(B,j,m —QZZPBea], m)

P(B | j,m —aZZP a!be) (7 | a)P(m | a)
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ERATION

]
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INF:

mme | =
T

A | PJIA) A |P(MIA)

F| 05 F| .01

P(B | j,m —O‘ZZP P(a | b,e)P(j | a)P(m | a)

What is the complexity of this calculation? O(n2")
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INFERENCE BY ENUMERATION

* P(B=0b) is a constant and can be moved outside the sums
* P(e) can be moved outside the summation over a

P(B|j,m)=aP(B ZP ZPCL\B@ (| a)P(m | a)

P(b|j,m) = aP(b) Y, P(e) Y, Pa | b,e)P(j | a)P(m | a)

= 0.001aS, Ple) [P(ﬂalb, e)P(j|~a)P(m|-a) + P(alb, e)P(j]a)P(m\a)]
= 0.001a S, P(e)[0.598525]

= 0.001(0.02 - 0.598525) 4 (0.998 - 0.598525) = 0.000602cx
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INFERENCE BY ENUMERATION

) = aP(B ZP

Top-down DF' evaluation:
X Values along each path
e + at the branching nodes

)

P(B | j,m )" P(a| B,e)P(j | a)P(m | a)

P(e)

P(alb,—e)
94

P(alb,e)
95

P(—alb,e)

P(—alb,—e)
05 .

P(jla) P( jl-a) P( jla) P(jl-a)
90 05 90 05
), O
P(mla) P(ml—a) P(mla) P(ml-a)
70 01 70 01
O O
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WORST CASE: NP-HARD

= Consider the 3-SAT clause:
(1VaaVz3)A(-z1VasV-zg )A(x2V-xoVE g )A(—z3V -z Vxs )A(ze Vs Ve ) A (x4 Vs Vag) A (x5 VeegV-xy ) A(~xsV-zeVar)

which can be encoded by the following Bayes’ net:

Yia=Y1AY
Yzs=Y7AY

Yi2s4=Y12A Y3,

Yoo78 =YssAYas

Z=Y1234A Y5675
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APPROXIMATE INFERENCE IN BN

* Given the general intractability of exact inference in large,
multiply connected networks, it is essential to consider
approximate inference methods

* Monte Carlo algorithms: randomized sampling methods ...
we have already seen one example of them!

 Basic idea: we express the quantity we want to know as the
expected value of a random variable X, such as pu=FE(X).
Then we generate values X, ... , X, independently and
randomly from the distribution of X and take their sample
average as the estimate of u (— law of large numbers)

* Problems: it might be difficult to sample from X’s
digfribution; a large number of samples might be needed
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MONTE CARLO SAMPLING
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=
=
=
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90 samples , 19 accepted

Pkix) ——
ck(x) ——
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SAMPLING FOR INFERENC!

Have some method for generating samples given a known
probability distribution (e.g., uniform in [0,1])

A sample is an assignment of values to each variable in the network
Use samples to approximately compute posterior probabilities

Queries can be issued after finish sampling
EIEEEES
T T F T T
Prob (T,T,F,F,T)?
#(T,T,F,F,T) / #Samples

=4 3 3 =
4 = 3 =
4 = 3 =
= = o
5 3 =
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DIRECT SAMPLING METHODS

 (Generate events from a network with no evidence
 Each variable is sampled in turn, in topological order

e The probability distribution from which the value of a
variable is sampled is conditioned on the values already
assigned to the variable’s parents

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution P(X,..., X,)

X «— an event with n elements
for: = 1tondo
z; «—a random sample from P(X; | parents(X;))
given the values of Parents(X;) in x
return x

Carnegie Mellon University 14




DIRECT SAMPLING

Order: C, S, R, W
« Sample Pr|C|=(.5,.5) +c [05

= true € |05

Cloudy

Sprinkler

o0 | [N |oo

o
-+
(%}
[ |o |-

+s|+r| +w .99
+S|+r| -w [.01
+S|- .90
.10
+r|+W|.90
+r|-w [.10

£ |2

+s|-

[ [ [ [
w1 umunln
| |

=

z

o
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DIRECT SAMPLING

« Sample Pr|C|=(.5,.5) +c 0.5

= true ¢ 10
¢ Sample PT[S’C:t]:(l,g) Cloudy
= false
+c| +s | .1 et .8
€ S|.9 Sprinkler tC| T .2
-C| +S 5 -C| +r 2
-C S 5 -C| -r 8
+s|+r| +w| 99
+s|+r| -w [.01
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DIRECT SAMPLING

« Sample Pr|C|=(.5,.5) Tos
= true < 105
¢ Sample PT[S’C:t]:(l,g) Cloudy

= false
+C[+S | .1 +c| +r | 8
* Sa’mple Pr[R"C:t]:(‘87'2) e ;SS 9 Sprinkler +((:3 -I‘-: ;
-C 5 - ,
— true =T A
+S[+r| +W|.99
+S[+r| -W |.01
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DIRECT SAMPLING

« Sample Pr|C|=(.5,.5) Tos
= true < 105
« Sample Pr[S|C=t|=(.1,.9) Cloudy
= false
+ Sample Pr[R|C=t|=(.8,.2) [d=ls| g RESP
= true T I
« Sample Pr|W|S=fR=t|=(.9,.1)
= true ETme
« Sampled |[t.f,t,t] o

Carnegie Mellon University 18




DIRECT SAMPLING

Probability that PRIORSAMPLE generates a particular event
Sps(x1...z,) = H,?ZlP(:zzi\parcnts(Xi)) = P(z1...2,)

i.e., the t ' babilit
\-€., the 1rue prior probability For large N, 32.4% of events (t,f,f,t) are expected

E.g.. Sps(t, f,t,t) =0.5x0.9x 0.8 x0.9=0.324 = P(t, f,t,t) «—"
Let Nps(x;...x,) be the number of samples generated for event x4, ..., z,

Then we have

lim P(z1,...,2,) = lim Nps(z1,...,2a)/N

N—o00 N
- SPS(:EIJ"'::Bn)
= P(z...xz,)

That is, estimates derived from PRIORSAMPLE are

Shorthand: P(z1,...,z,) ~ P(z1...z,)
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REJECTION SAMPLING

 What about P(X]e), i.e., when we have evidence?

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to Ndo
X <— PRIOR-SAMPLE(bn)
if x is consistent with e then
N|z] « N[z]+1 where z is the value of X in x
return NORMALIZE(N[X])

Similar to estimation of conditional
Probabilities directly from the real world

Problem: try to estimate Pr[Rain |
RedSkyAtNight=t|!
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REJECTION SAMPLING

Want to estimate Pr|Rain=t | Sprinkler=t|

100 direct samples (no evidence included) are generated
73 have S=f1, of which 12 have R—=t

27 have S—=t, of which 8 have R=t

A

P(Rain|Sprinkler =true) = NORMALIZE((8, 19)) = (0.296, 0.704)

* Error goes as 1/y/n, n = useful samples

 The estimate is consistent

* Too many samples thrown away! (because they are
generated with direct sampling)
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SOLUTION: LIKELIHOOD WEIGHTING

* Generate only samples that agree with evidence
* Fix the evidence vars and sample the nonevidence only
« — Each generated event is consistent with evidence

* Weight each generated event according to likelihood
that the event accords to evidence

 The likelihood is measured as the product of the
conditional probabilities for each evidence variable
given its parents

* Event unlikely according to current evidence should weight less
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LIKELIHOOD WEIGHTING

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to Ndo

X, W+ WEIGHTED-SAMPLE(bn)

W(z| — W[z| + w where z is the value of X in x
return NORMALIZE(W|[X])

function WEIGHTED-SAMPLE(bn, ) returns an event and a weight

X <—an event with n elements: w1
for i=1tondo
if X; has a value z; in e
then w— w x P(X;= z; | parents(X;))
else z; < a random sample from P(X; | parents(X;))
return x, w
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LIKELTHOOD WEIGHTING

 Evidence: C=t,W=t
+c | 0.5

e (C is evidence var < |05
= w = 1-Pr|C=t] = 0.5

Cloudy

Sprinkler

o0 | [N |oo

o
-+
(%}
[ |o |-

+s|+r| +w .99
+S|+r| -W |.01
+s- .90
.10
+r|+W|.90
+r -w |.10

£ |2

+s|-

[ [ [ [
w1 umunln
| |

=

:

o
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LIKELTHOOD WEIGHTING

 Evidence: C=t,W=t
+c | 0.5

e (C is evidence var < |05
= w = 1-Pr|C=t] = 0.5

e Sample Pr[S|C=t]=(.1,.9)

Cloudy

= false to| +5 | 1 +c[ +1 [ 8
tCl S 1.9 Sprinkler tC rj.2
c|+s |5 -C|+r | .2
-C| -S|.5 -C| -r |.8
+S[+r| +W|.99
+S|+r| -W |.01
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LIKELTHOOD WEIGHTING

 Evidence: C=t,W=t
+c | 0.5

e (C is evidence var < |05
= w = 1-Pr|C=t] = 0.5

Sample Pr|S|C=t|=(.1,.9)

Cloudy

— false e e
e S 1.9 Sprinkler e T2
« Sample Pr|R|C=t|=(.8,.2) e PR
= true
+S[+r| +W|.99
+S[+r| -W |.01
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LIKELTHOOD WEIGHTING

Evidence: C=t,W=t
C is evidence var
= w = 1-Pr|C=t] = 0.5

Sample Pr|S|C=t|=(.1,.9)

= false : +§ ;
Sample Pr|R|C=t]=(.8,.2) <l s
= true 2

W is evidence var

= w = 0.5-Pr|[W=t | S=f,R=t| = .45
Sampled [t,f,t,t] with weight .45,
tallied under R=t

+c [ 0.5

Cloudy

Sprinkler

(@]
+
—
[ [T 3 o)

+s|+r[ +w | 99
+s[+r| -w [.01
+s|-r| +w|.90
+s|-r| -w [.10

1 1 1 1
n un | unw | un
1 1
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DISCUSSION

Sampling probability for WEIGHTEDSAMPLE is
Sws(z,e) = I, P(z|parents(Z;))
Note: pays attention to evidence in ancestors only
=> somewhere “in between" prior and
posterior distribution

////////
///////// 2

: : - ¢
Weight for a given sample z, e is (Gress)

w(z,e) = Hzn_lp(ez\parent,s(E ))

Weighted sampling probability is
Sws(z, e)w(z e)
= II._, P(z|parents(Z;)) III",P(e;|parents(E;))
= P(z, e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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DISCUSSION

* Because of topological order, when sampling S and R the
evidence W=t is ignored = samples with S=f and R={
although evidence rules this out

 Weight makes up for this difference: above weight would
be 0

e If we have 100 samples with R=t and total weight 1, and
400 samples with R=f and total weight 2, what is
estimate of R=t"

 Problem: bad if evidence variables occur later in ordering
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(GIBBS SAMPLING

 Markov Chain Monte Carlo (MCMC): each sample

is generated by making a random change to the
preceding sample

« MCMC are algorithms with a state, the next state is
generated from the current one

e Specific MCMC: Gibbs sampling, the sampling process
settles into a “dynamic equilibrium” in which the long-
run fraction of time spent in each state is exactly
proportional to its posterior probability

* The states are generated given the Markov blanket: state
tragsitions are defined by the conditional distribution
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MARKOV BLANKET

Each node is conditionally independent of all others given
its Markov blanket: parents + children + children’s parents
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(GIBBS SAMPLING

function GIBBS-SAMPLING(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[X|, a vector of counts over X, initially zero
Z., the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j=1to Ndo
for each Z; in Z do
sample the value of Z; in x from P(Z;/mb(Z;))
given the values of M B(Z;) in x
N|[z| « N[z] + 1 where z is the value of X in x
return NORMALIZE(N|[X])
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(GIBBS SAMPLING

With Sprinkler =true, WetGrass =true, there are four states:

e,
&P

1<
<

e,

////// W,
I//////// / —— 7

5

,,,,,,,
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(GIBBS SAMPLING

Estimate P(Rain|Sprinkler =true, WetGrass =true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Fain is true and false in the samples.

E.g., visit 100 states
31 have Rain =true, 69 have Rain = false

A

P(Rain|Sprinkler =true, WetGrass =true)
= NORMALIZE((31,69)) = (0.31, 0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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MB SAMPLING

Markov blanket of Cloudy is
Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

P(z;|mb(X;)) = P(il?;’par@ntS(XQ)szech;ztzdmn(x)P(Zj’pamnté’(zj))

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(X;|mb(X;)) won't change much (law of large numbers)
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(GIBBS SAMPLING EXAMPL)

 Want Pr(R|S=t,W=t) +c |05

* Non-evidence variables are C & R < |os

e Initialize randomly: C= t and R=f

 Initial state (C,S,R,W)= [t,t.f 1]

 Sample C given current values of its *c| +s
Markov Blanket

Cloudy

Sprinkler

+
o
(%]
[ |o |-

+

(@)

=
oo [V [ oo

+S|+r| +W |.99
+S|+r| -W |.01
+S([- .90
.10
+r{+w|.90
+r -w |.10

£ |2

+s|-

=

+
<
o

1 1 1 1
n umnliun|uv
1 1
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(GIBBS SAMPLING EXAMPL)

 Want Pr(R|S=t,W=t) +c |05

* Non-evidence variables are C & R < |os

e Initialize randomly: C= t and R=f
 Initial state (C,S,R,W)= [t,t.f 1]

Cloudy

 Sample C given current values of its el +s |1 e[ +r | 8
Markov Blanket [ SVrinkler a2
Cl+s].5 -C|l +r | .2
 Markov blanket is parents, children <| s |5 <|rl|s
and children’s parents: for C=S & R
« Sample C given P(C|S=t,R=f) FSRTAW 99
+S|+r| -W |.01
» First have to compute P(C|S=t,R=f) +s|-r[+w .90
. . +S|-r| -w |.10
* Use exact inference to do this s|+r] +w .90
=S|+r| -wW [.10
s|-r|+w| o
-s|-r{-w|1.0
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How DO WE COMPUTE P(C | S=T, R=F)?
(RECALL OF EXACT INFERENCE)

+ P(C|S=t,R=f)
 What is the probability P(C=t | S=t, R= f)? +€ 10.5
— P(C=t, S—t, R—f) / (P(S—t,R—1)) < 10
Proportional to P(C=t, S=t, R=f)

Use normalization trick, & compute the above for C=t and C=f
P(C=t, S=t, R=f) = P(C=t) P(S=t|C=t) P (R=f | C=t, S=t)

Cloudy

product rule +C[+s [ .1 +C[ +r [ .8
= P(C=t) P(S=t|C=t) P (R=f | C=t) (BN independencies) [*C| =S |.9| @RJEaE" +c| -r | .2
=0.5*%0.1*0.2=0.01 C|+S|.5 Cl+r|.2
P(C=f, S=t, R—f) = P(C=f) P (S=t|C=f) P(R=f|C=f) | -s |5 | 1|8
=05*0.5%0.8=0.2
+Ww |99
(P(S=t,R=f)) use sum rule = P(C=f, S=t, R=f) + P(C=t, S=t, +s|+r| -w |.01
R=f) +s|-r|+w|.90
P (C=t]|S=t, R=1) =0.21 +s|-r| -w |.10
-s[+r[+w].90
P (C=t | S=t, R = f) = 0.01 / 0.21 ~ 0.0476 “SpH W 110
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(GIBBS SAMPLING EXAMPL)

Want Pr(R|S=t,W=t)
Non-evidence variables are C & R
Initialize randomly: C= t and R={
Initial state (C,S,R,W)= [t,t,{,t]
Sample C given current values of its
Markov Blanket

Markov blanket is parents, children
and children’s parents: for C=S & R

Exactly compute P(C|S=t,R=f)
Sample C given P(C|S=t,R=f)
Get C =1

New state (f,t,f,t)

[ |o |-

&

+c | 0.5

Cloudy

Sprinkler

o0 | [N |oo

+s|+r| +w | 99
+s|+r| -w [.01
+s|-

=

+
<
Vo]
o

+s|-r| -
+r{+w .90
+r{-w |.10

=
3
=
o

[ [ [ [
w1 umunln
| |

=

:

o
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(GIBBS SAMPLING EXAMPL)

 Want Pr(R|S=t,W=t) —Tos
* Initialize non-evidence variables < |05
(C and R) randomly to t and f

 Initial state (C,S,R,W)= [t,t,f,t]

Cloudy

* Sample C given current values of rc+s [ 1 v +r ] 8
its Markov Blanket, p(C|S=t,R=f) +c| s |.o| NN REE
. Cl+S|.5 -Cl+r | .2
* Suppose result is C=f s = Ts
* New state (f,t,f,t)
 Sample Rain given its MB ¥S[Hr W99
+S[+r] -wW |.01
 What is its Markov blanket? +s|-r[+w].90
+S[-r| -w |.10
=S [+r+W .90
=S|+r] -wW |.10
s|-r|+w| o
-s|-r{-w|1.0
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(GIBBS SAMPLING EXAMPL)

 Want Pr(R|S=t,W=t) —Tos
* Initialize non-evidence variables < |05
(C and R) randomly to t and f

 Initial state (C,S,R,W)= [t,t,f,t]

Cloudy

* Sample C given current values of rc+s [ 1 v +r ] 8
its Markov Blanket, p(C|S=t,R=f) +c| s | o| (SN v r |2
: C|+S|.5 c|l+r |2
* Suppose result is C=f s = Ts
* New state (f,t,f,t)
« Sample Rain given its MB, +sHr+w.99
+S[+r] -wW |.01
p(R‘C:f,S:t,W:t) +s|-r|+w|.90
* Suppose result is R=t +s ;r ;W 10
=S|+ +W (.90
* New state (f,t,t,t) s[4+ -w |10
s|-r|+w| o
=S|-r|-W (1.0
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POLL: GIBBS SAMPLING EX.

 Want Pr(R|S=t,W=t) —Tos
* Initialize non-evidence variables < |05
(C and R) randomly to t and f

 Initial state (C,S,R,W)= [t,t,f,t]

Cloudy

* Current state (ft,t,t) v +s | 1 v +r ] s
tCl S |.9 Sprinkler tC| T .2
-C|+S | .5 -C|+r | .2
« What is not a possible next state | -s |5 | r |8
o 1. (f;t,t,t)
+S[+r| +W|.99
e 2. (t,t,t,t) +s|+r| -w |.01
o 3. (f,t,f,t) +s|-r[+w|.90
+S|-r| -w |.10
o 4. (fft,1) s|+r| +w |.90
« 5. Not sure SPT W 10
s|-r|+w| o
sS|-r{-w 1.0

Carnegie Mellon University 42




