CMU 15-781

Lecture 6:
Planning 11

Teacher:
Gianni A. Di Caro

RECAP: CLASSICAL PLANNING

 Factored representation: A state of the world is

represented by a collection of variables — Exploit
structure, sub-goaling / divide-and-conquer, domain-
independent heuristics

« PDDL / STRIPS: Language expressive enough to

describe a wide variety of problems, but restrictive
enough to allow efficient algorithms to operate over it

« State: Conjunction of literals

U2 15781 Fall 2016: Lecture 6 Carnegie Mellon University 2

RECAP: CLASSICAL PLANNING

» State: Conjunction of literals
o Propositional literals: Poor /A Unknown
o Ground first order literals: At(Plane;, Rome) /\ At(Plane,, Tokyo)

A Rere At oleeod
o Function-free: A{Father{FomNYS a0y N\

— At(Alex, NY) A Father(Alex, Tom) Cona)

. o). . . —On(B,A)

o Closed-world assumption: Any condition which is not | —onsps)

mentioned in the state is assumed to be false o

. / \ —-On(C,B)

The world is represented On(A,Table) o

. / —On(AA

through a set of features/objects, On(B,Table) —On(A,B)
(e.g., planes, people, cities) and On(C,Table) o
each literal states a fact that g::::ﬁg; ﬂg"gt’::e'g))

attributes “values” to features unn Clear(C) —On(Table,Table)
| —)) \ ~Clear(Table))

15781 Fall 2016: Lecture 6 Carnegie Mellon University 3

RECAP: CLASSICAL PLANNING

* Goals: A conjunction of literals, At(P,, JFK) /A At(P,, SFO),
that may also contain variables, such as At(p, JFK) /\Plane(p),
meaning that the goal is to have any plane at JFK

* The aim is to reach a state that entails a goal: OnTable(A) A
OnTable(B) /A OnTable(D) /A On(C, D) A Clear(A) A
Clear(B) /\ Clear(C) satisfies the goal to stack C on D

« — A goal g is a conjunction of sub-goals!

g =g N g N.Ng,

* Goals are reached through sequence of actions (the plan)

15781 Fall 2016: Lecture 6 Carnegie Mellon University 4

RECAP: CLASSICAL PLANNING

Actions: Preconditions + Effects (Postconditions)

Action schema: a number of different actions that can be derived by
universal quantification of the variables, e.g., an action schema to fly a
plane from one location to another:

Action(Fly(p, from, to),
PRECOND: At(p, from) /\ Plane(p) /\ Airport(from) /\ Airport(to)
EFFECT: —At(p, from) /\ At(p, to))
An action is applicable in state s if s entails the preconditions

The literals negated by the effect of a are removed from s, while the
positive literals resulting from a are added to s

15781 Fall 2016: Lecture 6 Carnegie Mellon University 5

RECAP: CLASSICAL PLANNING

» RESULT(s,a) = (s - DELETE(a)) U ADD(a)

 Action schema:
Action(Name(p;, ps..... Py);
PRECONDITIONS: Ly(p) A Ly (p) A ... A Ly(p)
ADD-LIST: {A((p), Ax(p), -y Aq (D)}
DELETE-LIST: {L(p), L(p) A .. N\ L(p)}

4 15781 Fall 2016: Lecture 6 Carnegie Mellon University 6

RECAP: CLASSICAL PLANNING

* Planning domain: Set of Action schemas (+ Set of Predicates)

* Planning problem (instance): Planning domain + Initial state +
Goal + Set of Objects (world features)

* Solution of the planning problem: A sequence of actions that,
starting from the initial state, end in a state s that entails the goal

Init(At(C1, SFO) A At(Ca, JFK) A At(Py, SFO) A At(Ps, JFK)

Air cargo transportation
& p A Cargo(Cy) N Cargo(C3) A Plane(P;) A Plane(P,)

problem (from R&N) A Airport(JFK) A Airport(SFO))
Goal(At(Cy, JFK) N At(Cs, SFO))
Predicates: At, Cargo, Action(Load(e, p. a), 2
Plane, Alrport’ In ERECOND: ﬁ:((c, a)) A }4t((p, a))) A Cargo(c) A Plane(p) A Airport(a)
. FFECT: — c, a) N\ In(c,
* Obj€Ct8.’ C17 C27 P17 P27 Action(Unload(c, p, a), g
SFO. JFK ERECON]Z I(n(c,)p) A ?tép, a))) A Cargo(c) N Plane(p) A Airport(a)
! FFECT: At(c, a) N — In(c,
 Actions: Load, Unload, Action(Fly(p, from, to), g
Fl PRECOND: At(p, from) A Plane(p) A Airport(from) A Airport(to)
y EFFECT: - At(p, from) A At(p, to))

15781 Fall 2016: Lecture 6 Carnegie Mellon University 7

PLANNING AS SEARCH

* (Forward) Search from initial state to goal

 Can use standard search techniques,
including heuristic search

Carnegie Mellon University 8

(FORWARD) STATE-SPACE SEARCH

« In absence of function symbols, the state space of a planning
problem is finite — Any graph search algorithm that is
complete will be a complete planning algorithm

o Irrelevant action problem: All applicable actions are considered
at each state!

 The resulting branching factor b is typically large and the state
space is exponential in b — Needs for good heuristics!

Talk to Parrot I:l
Go To Pet Store - Buy a Dog - :’
A h Go To School o Go To Class -
t home — g -
. . Go To Supermarket
get milk, bananas and a cordless drill == ———

Go To Slee
— return home S -

Read A Book

Sit in Chair |
|

Etc. Etc. ... N Read A Book I:l

15781 Fall 2016: Lecture 6 Carnegie Mellon University 9

(FORWARD) STATE-SPACE SEARCH

o Awr Cargo Example

e Initial state: 10 airports, each airport has 5 planes and 20
pieces of cargo

* Goal: transport all the cargos at airport A to airport B

e Solution: load the 20 pieces of cargo at A into one of the
planes at A and fly it to B

* Avg Branching factor b: each of the 50 planes can fly to 9
other airports, and each of the 200 packages can be either
unloaded (if it is loaded), or loaded into any plane at its
airport (if it is unloaded)

Number of states to explore: O(b?) ~ 20004

: bt 15781 Fall 2016: Lecture 6 Carnegie Mellon University 10

FIND A HEURISTIC:
RELAX THE PROBLEM

 Define a Relaxed problem:

o (Potentially) Easy to solve
o The solution gives admissible heuristics for A*

* Relaxation: Remove all preconditions from actions

« — Every action will always be applicable, and any literal
(sub-goal) can be achieved in one step

« — Adding edges to the graph: including forbidden actions

* — h(x) = The number of steps required to get to the goal
is the number of unsatisfied goals from current state x?

U2 15781 Fall 2016: Lecture 6 Carnegie Mellon University 1

DOMAIN-INDEPENDENT HEURISTIC

h(x) = The number of steps required to solve a conjunction of goals is
the number of unsatisfied goals from current state z¢

Impossible to derive such a heuristic with atomic states! The
successor function is a black box, here we exploit the structure

of the representation
The heuristic is domain-independent!

With atomic states, in general only domain-specific heuristics
are possible

15781 Fall 2016: Lecture 6 Carnegie Mellon University 12

HEURISTIC: IGNORE PRECONDITIONS

 Complications, that could made the heuristic
function h(z) not admissible:

. Some operations achieve multiple goals

b. Some operations undo the effects of others

 Poll 1: To get an admissible heuristic, ignore
preconditions and, in addition ignore:

1. Just a

@ Just b

3. Both aand b

U2 15781 Fall 2016: Lecture 6 Carnegie Mellon University 13

IGNORE PRECONDITIONS &

NON-GOAL EFFECTS

To avoid b. remove all the effects of
actions, except those that are literals @\
g; i=1,...,n, in the goal g (i.e., sub- p : /i
goals) — Exploit factored structure @ | S
h(x) = the min number of actions ’ N
such that the union of their effects

contains all n sub-goals g; —
Admissible

Computing h(z) = solving a SET
COVER problem: NP-hard!

Greedy log n approximation:

0 Admissibility is lost!

15781 Fall 2016: Lecture 6 Carnegie Mellon University 14

IGNORE (SPECIFIC) PRECONDITIONS

e Ignore specific preconditions to derive domain-specific heuristics

 Sliding block puzzle, move(t,s,,s,) action:
* On(t, s;)ABlank(s,)AAdjacent(sy,s,) =

On(t, s,)ABlank(s;)A™On(t, s;)A"Blank(s,) B
* Consider two options for removing specific

preconditions from move() B

o. Removing Blank(s,)AAdjacent(sq,S3) Example state

b. Removing Blank(s;)

* Poll 2: Match option to heuristic:
1. ae YManhattan, be#misplaced tiles n
@ ae>#misplaced tiles, be> YManhattan
3. beFfmisplaced tiles, a is inadmissible n
Goal state

1. be> YManhattan, a is inadmissible

15781 Fall 2016: Lecture 6 Carnegie Mellon University 15

BACKWARD STATE-SPACE SEARCH

 Searching from a goal state to the initial state (regression)

* We only need to consider actions that are relevant to the goal (or
current state) — Relevant-state search

e This can makes a strong reduction in branching factor, such that it
could be more efficient than forward (progression) search

* “Imagine trying to figure out how to get to some small place with few
traffic connections from somewhere with a lot of traffic connections’

(At(P,B 7
FIy(Py, A, B) At(P,, A)
APy, A) T~
e Al(P,, A)
(=) EEaa (wea }
start , e At(P,, B) ~—
At(Py, A)
At(P», B) -Fly(PW, A B)
At(P1!B)
Al(P,, B)
Atl(P;, B) Fly(Pa, A, B)

At(P, A)

Carnegie Mellon University 16

BACKWARD STATE-SPACE SEARCH

* Regression from a (goal) state g over the action a gives state g’
o ¢ = (9—ADD(a)) U Preconditions(a)

* DEL(a) doesn’t appear: we don’t know whether the literals
negated by DEL(a) were true or not before a, therefore nothing
can be said about them

 Variables can be included, such that a set of states is defined:

o Goal At(C,, SFO) — Unload(C,, p, SFO) — g’ = In(C,,p) /\ At(p,
SFO) /\ Cargo(C,) /A Plane(p) /A Airport(SFO)

U2, 15781 Fall 2016: Lecture 6 Carnegie Mellon University 17

BACKWARD STATE-SPACE SEARCH

e How to select actions?

* Relevant actions only

o Have an effect which is in the set of (current) goal literals

Goal: At(C,, JFK) /A At(C,, SFO) — Unload(C,, p, SFO) is
relevant, Fly(p, JFK, SFO) is not relevant

* Consistent actions only
- Have no effect which negates an element of the goal

Goal: A A B A C, action a with effect A A B /A =C is not

relevant

U2 15781 Fall 2016: Lecture 6 Carnegie Mellon University 18

PLANNING GRAPHS

* Graph-based data structure representing a
polynomial-size/time approximation of the
exponential search tree

 Can be used to automatically produce good
heuristic estimates (e.g., for A™)

* Can be used to search for a solution using the
GRAPHPLAN algorithm

15781 Fall 2016: Lecture 6 Carnegie Mellon University 19

PLANNING GRAPHS

* Leveled graph: vertices organized into
levels/stages, with edges only between levels
* Two types of vertices on alternating levels:
o Conditions
o Operations
 Two types of edges:
o Precondition: from condition to operation

o Postcondition: from operation to condition

U2 15781 Fall 2016: Lecture 6 Carnegie Mellon University 20

(GENERIC PLANNING GRAPH™

No-Op

(Persistent action))

C Postcondition

Carnegie Mellon University 21

PLANNING GRAPH CONSTRUCTION

* S, contains all the conditions that hold in initial state
* Add operation to level O, if its preconditions appear in level S;

* Add condition to level S; if it is the effect of an operation in
level 0;_; (no-op action also possible)

* Idea: §; contains all conditions that could hold at stage i; O;

contains all operations that could have their preconditions
satistied at time i

* (Can optimistically estimate how many steps it takes to reach a
goal: it includes all possible operations and preconditions that
could hold, multiple actions could be executed (in parallel) at
each stage (time step)

: bt 15781 Fall 2016: Lecture 6 Carnegie Mellon University 22

MUTUAL EXCLUSION LINKS

 The graph also records conflicts between actions
or conditions: two operations or conditions are
mutually exclusive (mutex) if no valid plan can
contain both at the same time

* A bit more formally:

- Two operations are mutex if their preconditions or
postconditions are mutex

o Two conditions are mutex if one is the negation of
the other, or all actions that achieve them are mutex

* Even more formally...

: bt 15781 Fall 2016: Lecture 6 Carnegie Mellon University 23

A RUNNING EXAMPLE

e “Have cake and eat cake too’ problem

Initial state: Have(Cake)

Goal: Have(Cake) A Eaten(Cake)

Eat(Cake):

PRECOND: Have(Cake)

EFFECT: —Have(Cake) A\ Eaten(Cake)
Bake(Cake):

PRECOND: - Have(Cake)

EFFECT: Have(Cake)

di 15781 Fall 2016: Lecture 6 Carnegie Mellon University 24

A RUNNING EXAMPLE

Initial state: Have(Cake) S A
Goal: Have(Cake) A\ Eaten(Cake) 0 0
Eat(Cake):
PRECOND: Have(Cake)
EFFECT: —Have(Cake) A\ Eaten(Cake)
Bake(Cake):
PRECOND: —Have(Cake)
EFFECT: Have(Cake) Have(Cake)

\ —Have(Cake)
Eat(Cake) '<

Eaten(Cake)

—Eaten(Cake)

15781 Fall 2016: Lecture 6 Carnegie Mellon University 25

A RUNNING EXAMPLE

Initial state: Have(Cake)
Goal: Have(Cake) A Eaten(Cake) S

0 0 1
Eat(Cake):
PRECOND: Have(Cake)
EFFECT: ~Have(Cake) A\ Eaten(Cake)
Bake(Cake):
PRECOND: —Have(Cake)
EFFECT: Have(Cake)
Have(Cake) no-op Have(Cake)
—Have(Cake)
Eat(Cake)
Eaten(Cake
-Eaten(Cake) no-op -Eaten(Cake)

15781 Fall 2016: Lecture 6

Carnegie Mellon University 26

MUTEX CASES™

 Inconsistent postconditions (two o o B
ops): one operation negates the \.
effect of the other, Fat(Cake) 0 O
and no-op Have(Cake) ® —0“—- B

— 0

* Interference (two ops): a
postcondition of one operation
negates a precondition of other,
Fat(Cake) and no-op
Have(Cake) (issue in parallel
execution, the order should not
matter but here it would)

Interference

* Slide based on Brafman Carnegie Mellon University 27

MUTEX CASES™

« Competing needs (two ops): a
precondition of one operation is
mutex with a precondition of the

other, Bake(Cake) and Fat(Cake)

ﬂB’/ O

 Inconsistent support (two Competing Needs
conditions): each possible pair of O
operations that achieve the two
conditions is mutex, Have(Cake) and
Faten(Cake), are mutex in S; but not

in S, because they can be achieved by
Bakef(Cake) and Faten(Cake)

Inconsistent Support

* Slide based on Brafman Carnegie Mellon University 28

A RUNNING EXAMPLE

Initial state: Have(Cake)

Goal: Have(Cake) A Eaten(Cake) SO AO 81
e aeconD: Have(Cake) Inconsistent Negation of
EFFECT: ~Have(Cake) A\ Eaten(Cake) pOStCOIlditionS each othe
Bake(Cake): Interference
PRECOND: —Have(Cake)
EFFECT: Have(Cake) /
Have(Cake) no-op / Have(Cake)
—Have(Cake)
Eat(Cake)
Eaten(Cake
-Eaten(Cake) no-op -Eaten(Cake)

15781 Fall 2016: Lecture 6

Carnegie Mellon University 29

A RUNNING EXAMPLE

Initial state: Have(Cake)

Goal: Have(Cake) A Eaten(Cake)

Eat(Cake):
PRECOND: Have(Cake) . .
EFFECT: ~Have(Cake) A Eaten(Cake) Inconsistent Support Competlng
Bake(Cake): needs
PRECOND: —Have(Cake)
EFFECT: Have(Cake)
-0 A, S, S,
Have(Cake) no-op Have(Cak Have(Cake)
\) —Have(Cake) -Have(Cake)
Eat(Cake) |< Eat(Cake)
) Eaten(Cake no-op! Eaten(Cake
-Eaten(Cake) no-op —Eaten(Cake ——{no-op —Eaten(Cake

15781 Fall 2016: Lecture 6

Carnegie Mellon University 30

PLANNING GRAPHS

To be continued ...

15781 Fall 2016: Lecture 6 Carnegie Mellon University 31

