
CMU 15-781
Lecture 6:
Planning II

Teacher:
Gianni A. Di Caro

15781 Fall 2016: Lecture 6

RECAP: CLASSICAL PLANNING

• Factored representation: A state of the world is
represented by a collection of variables → Exploit
structure, sub-goaling / divide-and-conquer, domain-
independent heuristics

• PDDL / STRIPS: Language expressive enough to
describe a wide variety of problems, but restrictive
enough to allow efficient algorithms to operate over it

• State: Conjunction of literals

2

15781 Fall 2016: Lecture 6

RECAP: CLASSICAL PLANNING
• State: Conjunction of literals

o Propositional literals: Poor ∧ Unknown
o Ground first order literals: At(Plane1, Rome) ∧ At(Plane2, Tokyo)

At(x, Rome) ∧ At(y, Tokyo)
o Function-free: At(Father(Tom), NY)
→ At(Alex, NY) ∧ Father(Alex, Tom)

o Closed-world assumption: Any condition which is not
mentioned in the state is assumed to be false

3

The world is represented
through a set of features/objects
(e.g., planes, people, cities) and
each literal states a fact that
attributes “values” to features

15781 Fall 2016: Lecture 6

RECAP: CLASSICAL PLANNING

• Goals: A conjunction of literals, At(P1, JFK) ∧ At(P2, SFO),
that may also contain variables, such as At(p, JFK) ∧Plane(p),
meaning that the goal is to have any plane at JFK

• The aim is to reach a state that entails a goal: OnTable(A) ∧
OnTable(B) ∧ OnTable(D)∧ On(C, D) ∧ Clear(A) ∧
Clear(B) ∧ Clear(C) satisfies the goal to stack C on D

• → A goal g is a conjunction of sub-goals!
g = g1 ∧ g2∧… ∧ gn

• Goals are reached through sequence of actions (the plan)

4

15781 Fall 2016: Lecture 6

RECAP: CLASSICAL PLANNING
• Actions: Preconditions + Effects (Postconditions)
• Action schema: a number of different actions that can be derived by

universal quantification of the variables, e.g., an action schema to fly a
plane from one location to another:

Action(Fly(p, from, to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to))

• An action is applicable in state s if s entails the preconditions
• The literals negated by the effect of a are removed from s, while the

positive literals resulting from a are added to s

5

15781 Fall 2016: Lecture 6

RECAP: CLASSICAL PLANNING

• RESULT(s,a) = (s – DELETE(a)) ∪ ADD(a)

• Action schema:
Action(Name(p1, p2,…., pn),

PRECONDITIONS: L1(p) ∧ L2 (p) ∧ … ∧ Lm(p)
ADD-LIST: {A1(p), A2(p), …., Aq (p)}
DELETE-LIST: {Li(p), Lj(p) ∧ … ∧ Lk(p)}

6

15781 Fall 2016: Lecture 6

RECAP: CLASSICAL PLANNING

• Planning domain: Set of Action schemas (+ Set of Predicates)
• Planning problem (instance): Planning domain + Initial state +

Goal + Set of Objects (world features)
• Solution of the planning problem: A sequence of actions that,

starting from the initial state, end in a state s that entails the goal

7

Air cargo transportation
problem (from R&N)
• Predicates: At, Cargo,

Plane, Airport, In
• Objects: C1, C2, P1, P2,

SFO, JFK
• Actions: Load, Unload,

Fly

15781 Fall 2016: Lecture 6

PLANNING AS SEARCH

• (Forward) Search from initial state to goal
• Can use standard search techniques,

including heuristic search

8

At(P1,A)
At(P2,A)

At(P1,B)
At(P2,A)

At(P1,A)
At(P2,B)

Fly(P1,A,B)

Fly(P2,A,B)

15781 Fall 2016: Lecture 6

(FORWARD) STATE-SPACE SEARCH
• In absence of function symbols, the state space of a planning

problem is finite → Any graph search algorithm that is
complete will be a complete planning algorithm

• Irrelevant action problem: All applicable actions are considered
at each state!

• The resulting branching factor b is typically large and the state
space is exponential in b → Needs for good heuristics!

9

At home →
get milk, bananas and a cordless drill
→ return home

15781 Fall 2016: Lecture 6

(FORWARD) STATE-SPACE SEARCH
• Air Cargo Example
• Initial state: 10 airports, each airport has 5 planes and 20

pieces of cargo
• Goal: transport all the cargos at airport A to airport B
• Solution: load the 20 pieces of cargo at A into one of the

planes at A and fly it to B
• Avg Branching factor b: each of the 50 planes can fly to 9

other airports, and each of the 200 packages can be either
unloaded (if it is loaded), or loaded into any plane at its
airport (if it is unloaded)

• Number of states to explore: O(bd) ∼ 200041

10

15781 Fall 2016: Lecture 6

FIND A HEURISTIC:
RELAX THE PROBLEM

• Define a Relaxed problem:
o (Potentially) Easy to solve
o The solution gives admissible heuristics for A*

• Relaxation: Remove all preconditions from actions
• → Every action will always be applicable, and any literal

(sub-goal) can be achieved in one step
• → Adding edges to the graph: including forbidden actions

• → h(x) = The number of steps required to get to the goal
is the number of unsatisfied goals from current state x?

11

15781 Fall 2016: Lecture 6

DOMAIN-INDEPENDENT HEURISTIC

• h(x) = The number of steps required to solve a conjunction of goals is
the number of unsatisfied goals from current state x?

• Impossible to derive such a heuristic with atomic states! The
successor function is a black box, here we exploit the structure
of the representation

• The heuristic is domain-independent!

• With atomic states, in general only domain-specific heuristics
are possible

12

15781 Fall 2016: Lecture 6

HEURISTIC: IGNORE PRECONDITIONS
• Complications, that could made the heuristic

function h(x) not admissible:
a. Some operations achieve multiple goals
b. Some operations undo the effects of others

• Poll 1: To get an admissible heuristic, ignore
preconditions and, in addition ignore:
1. Just a
2. Just b
3. Both a and b

13

15781 Fall 2016: Lecture 6

IGNORE PRECONDITIONS &
NON-GOAL EFFECTS

• To avoid b. remove all the effects of
actions, except those that are literals
gi, i=1,…,n, in the goal g (i.e., sub-
goals) → Exploit factored structure

• h(x) = the min number of actions
such that the union of their effects
contains all n sub-goals gi →
Admissible

• Computing h(x) = solving a SET
COVER problem: NP-hard!

• Greedy log n approximation:
o Admissibility is lost!

14

𝑔4

𝑔6
𝑔5

𝑔3

𝑔1

𝑔2

15781 Fall 2016: Lecture 6

IGNORE (SPECIFIC) PRECONDITIONS
• Ignore specific preconditions to derive domain-specific heuristics
• Sliding block puzzle, move(t,s1,s2) action:
• On(𝑡, 𝑠1)∧Blank(𝑠2)∧Adjacent(𝑠1, 𝑠2) ⇒

On(𝑡, 𝑠2)∧Blank(𝑠1)∧¬On(𝑡, 𝑠1)∧¬Blank(𝑠2)
• Consider two options for removing specific

preconditions from move()
a. Removing Blank(𝑠+)∧Adjacent(𝑠,, 𝑠+)
b. Removing Blank(𝑠+)

• Poll 2: Match option to heuristic:
1. a↔ ∑Manhattan, b↔#misplaced tiles
2. a↔#misplaced tiles, b↔ ∑Manhattan
3. b↔#misplaced tiles, a is inadmissible
4. b↔ ∑Manhattan, a is inadmissible

15

5

4

6 1

87

3

2

54 6

1

87

32

Example state

Goal state

15781 Fall 2016: Lecture 6

BACKWARD STATE-SPACE SEARCH
• Searching from a goal state to the initial state (regression)
• We only need to consider actions that are relevant to the goal (or

current state) → Relevant-state search
• This can makes a strong reduction in branching factor, such that it

could be more efficient than forward (progression) search
• “Imagine trying to figure out how to get to some small place with few

traffic connections from somewhere with a lot of traffic connections”

16

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

At(P1, B)
At(P2, B)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

15781 Fall 2016: Lecture 6

BACKWARD STATE-SPACE SEARCH

• Regression from a (goal) state g over the action a gives state g’
o g’ = (g – ADD(a)) ∪ Preconditions(a)

• DEL(a) doesn’t appear: we don’t know whether the literals
negated by DEL(a) were true or not before a, therefore nothing
can be said about them

• Variables can be included, such that a set of states is defined:
o Goal At(C2, SFO) → Unload(C2, p, SFO) → g’ = In(C2,p) ∧ At(p,

SFO) ∧ Cargo(C2) ∧ Plane(p) ∧ Airport(SFO)

17

15781 Fall 2016: Lecture 6

BACKWARD STATE-SPACE SEARCH
• How to select actions?
• Relevant actions only

o Have an effect which is in the set of (current) goal literals

Goal: At(C1, JFK) ∧ At(C2, SFO) → Unload(C2, p, SFO) is
relevant, Fly(p, JFK, SFO) is not relevant

• Consistent actions only
o Have no effect which negates an element of the goal

Goal: A ∧ B ∧ C, action a with effect A ∧ B ∧ ¬C is not
relevant

18

15781 Fall 2016: Lecture 6

PLANNING GRAPHS

• Graph-based data structure representing a
polynomial-size/time approximation of the
exponential search tree

• Can be used to automatically produce good
heuristic estimates (e.g., for A*)

• Can be used to search for a solution using the
GRAPHPLAN algorithm

19

15781 Fall 2016: Lecture 6

PLANNING GRAPHS

• Leveled graph: vertices organized into
levels/stages, with edges only between levels

• Two types of vertices on alternating levels:
o Conditions
o Operations

• Two types of edges:
o Precondition: from condition to operation
o Postcondition: from operation to condition

20

15781 Fall 2016: Lecture 6

GENERIC PLANNING GRAPH*

21

…
…

…

Condition

Operation

No-Op
(Persistent action)

Precondition
Postcondition

* Slide based on Brafman

Level O2Level S2

15781 Fall 2016: Lecture 6

PLANNING GRAPH CONSTRUCTION
• 𝑆0 contains all the conditions that hold in initial state
• Add operation to level 𝑂𝑖 if its preconditions appear in level 𝑆𝑖
• Add condition to level 𝑆𝑖 if it is the effect of an operation in

level 𝑂34, (no-op action also possible)
• Idea: 𝑆𝑖 contains all conditions that could hold at stage 𝑖; 𝑂𝑖

contains all operations that could have their preconditions
satisfied at time 𝑖

• Can optimistically estimate how many steps it takes to reach a
goal: it includes all possible operations and preconditions that
could hold, multiple actions could be executed (in parallel) at
each stage (time step)

22

15781 Fall 2016: Lecture 6

MUTUAL EXCLUSION LINKS

• The graph also records conflicts between actions
or conditions: two operations or conditions are
mutually exclusive (mutex) if no valid plan can
contain both at the same time

• A bit more formally:
o Two operations are mutex if their preconditions or

postconditions are mutex
o Two conditions are mutex if one is the negation of

the other, or all actions that achieve them are mutex
• Even more formally...

23

15781 Fall 2016: Lecture 6

A RUNNING EXAMPLE

• “Have cake and eat cake too” problem

24

15781 Fall 2016: Lecture 6

A RUNNING EXAMPLE

25

15781 Fall 2016: Lecture 6

A RUNNING EXAMPLE

26

15781 Fall 2016: Lecture 6

MUTEX CASES*
• Inconsistent postconditions (two

ops): one operation negates the
effect of the other, Eat(Cake)
and no-op Have(Cake)

• Interference (two ops): a
postcondition of one operation
negates a precondition of other,
Eat(Cake) and no-op
Have(Cake) (issue in parallel
execution, the order should not
matter but here it would)

27* Slide based on Brafman

Inconsistent Postconditions

B

¬ B

Interference

B

¬ B

15781 Fall 2016: Lecture 6

MUTEX CASES*
• Competing needs (two ops): a

precondition of one operation is
mutex with a precondition of the
other, Bake(Cake) and Eat(Cake)

• Inconsistent support (two
conditions): each possible pair of
operations that achieve the two
conditions is mutex, Have(Cake) and
Eaten(Cake), are mutex in S1 but not
in S2 because they can be achieved by
Bake(Cake) and Eaten(Cake)

28

Inconsistent Support

Competing Needs

* Slide based on Brafman

B

¬ B

B

C

15781 Fall 2016: Lecture 6

A RUNNING EXAMPLE

29

Inconsistent
postconditions

Negation of
each other

Interference

15781 Fall 2016: Lecture 6

A RUNNING EXAMPLE

30

Inconsistent support Competing
needs

15781 Fall 2016: Lecture 6

PLANNING GRAPHS

31

To be continued …

