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PATH SEARCH VS. LOCAL SEARCH

 The algorithms discussed so far are designed to find a goal
state from a start state: the path to the goal constitutes a
solution to the search problem

 In many problems the path doesn’t matter:
the goal state itself is the solution

» State space = set of “complete” configurations

o Optimization problems: Find optimal configuration
(objective or cost function)

- Constraint Satisfaction Problems: Find configurations
satisfying (all or the highest number of) constraints
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PATH SEARCH VS. LOCAL SEARCH

* Local search algorithms at each step consider a single
“current” state, and try to improve it by moving to one of its
neighbors => Iterative improvement algorithms

* Pros and cons

- No complete (no optimal), except with random restarts

> Space complexity O(b)

o Time complexity O(d), d can be ool

> Can perform well also in large (infinite, continuous) spaces

- Relatively easy to implement

15781 Fall 2016: Lecture 2a Carnegie Mellon University 3




STATE-SPACE LANDSCAPE

Objective function global maximum

local maximum

“flat” local maximum

1
i neighborhood
— » state space

1
current state
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HILL-CLIMBING SEARCH

Like climbing Everest in thick fog with amnesia

function HiLL-CLIMBING( problem) returns a state that is a local maximum

inputs: problem, a problem
local variables: current, a node
neighbor, a node

current < MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor < a highest-valued successor of current
if VALUE[neighbor| < VALUE[current] then return STATE[current]

current < neighbor
end
* Move in the direction of increasing value (up the hill)

 Terminate when no neighbor has higher value

Greedy (myopic) local search
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CSP EXAMPLE: N-QQUEENS

Put n queens on an n X n board R W
with no two queens on the same =

. Wty /
row, column, or diagonal =

State: Position of the n queens,

W
one per column (or row) =
i
Successor states: generated by W7 — WA
moving a single queen to another = =
square in its column (n(n-1)) / I
W |

Cost of a state: the number of
constraint violations
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N-QUEENS
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State with 17 conflicts, showing the Local optimum: state that has only
#conflicts by moving a queen within one conflict, but every move leads to
its column, with best moves in red larger #conflicts
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HILL-CLIMBING PERFORMANCE
ON N-QUEENS

 Hill-climbing can solve large instances of n-queens (n = 109) in a few
(ms)seconds

L~

-

* &8 queens statistics:
o State space of size =17 million

o Starting from random state, steepest-ascent hill climbing solves 14%
of problem instances

o It takes 4 steps on average when it succeeds, 3 when it gets stuck
o When “sideways” moves are allowed, performance improve ...

o When multiple restarts are allowed, performance improves even more
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HILL-CLIMBING CAN GET STUCK!

global maximum Sideways moves (]\[)
M=100 — 94% solved instances

for the 8-queens!
21 steps avg. on success
64 steps avg. on “failure”

+

random restarts:

100% solved instances
28 steps avg.

Objective function
a

Plateaux

Local optima

“flat” local maximum

neighborhood
e > state space

1
current state
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HILL-CLIMBING CAN GET STUCK!

Diagonal ridges:
From each local maximum all the
available actions point downhill,
but there is an uphill path!

Zig-zag motion,
very long ascent time!

Gradient ascent doesn’t have this
issue: all state vector components are
(potentially) changed when moving to a
successor state, climbing can follow the
direction of the ridge
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VARIANTS OF HILL-CLIMBING

* Sideways moves: if no uphill moves, allow moving to a state with
the same value as the current one (escape shoulders)

* Stochastic hill-climbing: selection among the available uphill
moves is done randomly (uniform, proportional, soft-max,
e-greedy, ...) to be “less” greedy

* First-choice hill-climbing: successors are generated randomly, one
at a time, until one that is better than the current state is found

(deal with large neighborhoods)
 Random-restart hill climbing: probabilistically complete
If at first you

don’t succeed,
try, try again!
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TRAJECTORIES, DIFFICULTIES
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NEIGHBORHOOD

* A mapping (rule) that associate two states (s,s’)

* It should preserve a certain degree of correlation between
the value of s and that of s’

e It should balance size and search
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CALISTIC SCENARIOS

GOOD VS. Rl

globd gobal
f000)=3 — mirimum 1000)=3 — minimum
TS = {(0,0,1)= 0 > £(0,0,1)= 0
A ¥ AT
|
- I A |
f(0,1,0) =4 f(0,1,0)=2 |
4 —— £(0,1,1)=1 locd 4 < f(0,1,1)=3
/ A \ minima
f(1,O,T)=5 F—taon=2 / F.00)=1 ~/— ¢101)=3
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g (i11) =3 Bt sorme starting olution flgag ijo)cZZSeadwt local
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EXAMPLE NEIGHBORHOODS
x=(0,1,0) =(2,1,3)
/ (0,00) \ / (231) \
(1,1,0) 0,1,1) (31,2) (1,2.3)
N(x) N(x)
1-flip neighborhood, 2-swap neighborhood,
for 0-1 vectors for permutation vectors

k-exchange neighborhood (for TSP and similar problems): The
neighborhood N(s) of a solution s is the set of solutions s that
differ from s up to k solution components
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OPTIMIZATION EXAMPLE: TSP

Find the Hamiltonian tour of minimal cost

Every cyclic permutation of n
integers is a feasible solution

If two nodes are not connected, they can be
seen as connected by an arc of e length!

1= (1,3,4,2,6,5,7,1), m = (2,3,4,5,6,7,1,2)
c(ma) = dog + d3q + das + dse + de7 + d71 + d12 = 93

Read also as set of edges: {(2,3), (3,4), (4,5), (5,6), (6,7), (7,1), (1,2)}
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OPTIMIZATION EXAMPLE: TSP

K-exchange neighborhood:

N(s) is the set of tours s” can be obtained

from s by exchanging k£ edges in s with £
edges in F|{s} (E is the graph’s edge set)

Each s’ is obtained deleting a selected set
of k edges in s and rewiring the resulting
fragments into a complete tour by
imserting a different set of k edges

(Z) possible ways to drop k edges in a tour
(k — 1)!2k_1 ways to relink the disconnected paths
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2-OPT LOCAL S:

I k I k

Two edges, (i,j) and (l,k), are selected, removed, and replaced by
two other edges (i,k) and (45,1) (or, (k,i), (1,5))

One of the two paths needs to get reverted!

Gain: (i,k) + (5,1) - (i,5) - (k1)

n(n-1)=0(n?) possible successors in the 2-exchange neighborhood
-> quadratic search complexity for each single 2-opt step move
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2-OPT LOCAL SEARCH

- - Edges to be removed
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3-OPT LOCAL SEARCH
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* Including the initial solution, as well as 2-opt moves, there is a
total of 23 feasible rewirings for each selected triple of edges

* n(n —1)(n — 2) = O(n’) successors

* One move does not revert the path — appropriate for asymmetric TSP
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2-OPT VS. 3-OPT

2-opt neighborhood

o

2-opt neighborhood

O

o

2-optimal solution

3-opt neighborhood

3-opt neighborhood

3-opt neighborhood
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4

4-OPT DOUBLE BRIDGE

b: d b a

 Does not revert the tours
« Computational complexity of a single step: O(n?)
e Often used in conjunction with 2-opt and 3-opt
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(SOME) PERFORMANCE COMPARISON

Average Percent Excess over the Held-Karp Lower Bound

N = 10> 10* 10° 10* 10* 10 10° 10°° 10°

Random Euclidean Instances

GR 19.5 18.8 17.0 16.8 16.6 14.7 14.9 14.5 14.2
CwW 9.2 10.7 11.3 11.8 11.9 12.0 12.1 12.1 12.2
CHR 9.5 9.9 9.7 9.8 99 9.8 9.9 - -
2-Opt 4.5 4.8 4.9 4.9 50 4.8 4.9 4.8 49
3-Opt 2.5 2.5 3.1 3.0 3.0 29 3.0 29 3.0

Random Distance Matrices

GR 100 160 170 200 250 280 - = -
2-Opt 34 51 70 87 125 150 - - -
3-Opt 10 20 33 46 63 80 - - ~

D. Johnson and L. McGeoch, The Traveling Salesman Problem: a case study in local optimization, in Local
Search in Combinatorial Optimization, E. H. L. Aarts and J. K. Lenstra (editors), John Wiley and Sons,
Ltd., 1997
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SIMULATED ANNEALING

Escape from local optima by accepting, with a probability
that decreases during the search, also moves that are

worse than the current solution (going downhill!)

Stochastic, solution-improvement metaheuristic for
global optimization

Inspired by the process of annealing of solids in
metallurgy:

 The temperature of the solid is increased until it melts

 The temperature is slowly decreased through a quasi-
static process until the solid reaches a minimal energy
state in which a regular crystal structure appears
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SIMULATED ANNEALING

procedure Simulated Annealing()
S = {set of all feasible solutions};
N = neighborhood structure defined over S;
s +— Generate a starting feasible solution;  // e.g., with a construction heuristic
sbest — s
T <—Determine a starting value for temperature;
while (NOT YET frozen) // termination criterion
while (NOT YET AT equilibrium FOR THIS TEMPERATURE)
s’ «+~Choose a random solution from neighborhood N (s); // e.g., select a random 2-opt move
AE + f(s) — f(s);
if (AE <0)  // downhill, locally improving move
s+ §';
if (f(s) < f(s"))
sbest — s
else // uphill move
T <—Choose a random number uniformly from [0,1];
if (r < e AE/ T) /I accept the uphill, not improving, move
s« &
end if
end while
T <—Lower the temperature according to the selected cooling schedule;
end while
return sbst;
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&

EFFECT OF TEMPERATURI

Acceptation probability
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PROPERTIES

« Acceptation probability depends on the current candidate solution
and on the previous one — The solution sequence can be seen as a
Markov chain

L

* If T decreases “slowly enough” the algorithm will asymptotically
converge in probability to the global optimum — Asymptotically
complete and optimal

 C(Convergence can be guaranteed if at each step T drops no more
quickly than C/log n, C=constant, n # of steps so far

* (Cooling schedules that work in practice often lack of convergence
properties :-(

* For TSP, n! solutions, the required # of iterations k = O (n”%_l>
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A POPULAR TEMPERATURE
SCHEDULE: EXPONENTIAL COOLING

&

e Temperature drops roughly as C", C' € (0, 1)

* A fixed number of moves is performed at each temperature,
after which one arbitrarily declares “equilibrium” and reduces
the temperature by a standard factor, T}, ; = yT, vy € [0,1] is
a constant (y = 0.95 is a common choice)

 Under an exponential cooling regime, the temperature reaches
values sufficiently close to zero after a polynomaially-bounded
amount of time and the “frozen” state can be declared
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EXPONENTIAL COOLING
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AR AR AR
(SOME) PERFORMANCE COMPARISON
Random Euclidean Instances
Average Percent Excess Running Time in Seconds

Variant 102 10%3 10° 107 10%° 10°
SA, (Baseline Annealing) a=1 34 3.7 4.0 1240 188.00 3170.00
SA | + Pruning a=1 2.7 3.2 3.8 3.20 18.00 81.00
SA | + Pruning a=10 1.7 1.9 2.2 32.00 155.00 758.00
SA, (Pruning + Low Temp) a=10 1.6 1.8 2.0 14.30 50.30 229.00
SA, a=40 1.3 1.5 1.7 58.00 204.00 805.00
SA, a=100 | 1.1 1.3 1.6 | 141.00 655.00 1910.00
2-Opt 4.5 4.8 4.9 0.03 0.09 0.34
Best of 1000 2-Opts 1.9 2.8 3.6 6.60 16.20 52.00
Best of 10000 2-Opts 1.7 2.6 34 66.00 161.00 517.00
3-Opt 2.5 2.5 3.1 0.04 0.11 0.41
Best of 1000 3-Opts 1.0 1.3 2.1 11.30 33.00 104.00
Best of 10000 3-Opts 0.9 1.2 1.9 | 113.00 326.00 1040.00
Lin-Kernighan L5 1.7 2.0 0.06 0.20 0.77
Best of 100 LK’s 0.9 1.0 1.4 4.10 14.50 48.00
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SUGGESTIONS FOR FURTHER READINGS

M. Gendreau and J.-Y. Potvin (Editors), Handbook of
Metaheuristics, Springer 2010

H. Hoos, T. Stueztle, Stochastic Local Search: Foundations &
Applications, Morgan Kauffmann, 2004

E. Aarts and J. Lenstra (Editors), Local Search in Combinatorial
Optimization, Princeton University Press, 2003
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