

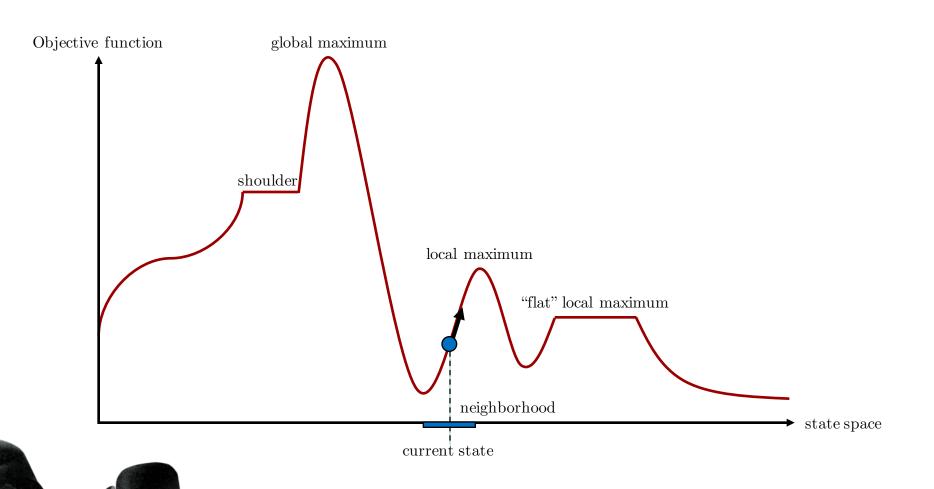
PATH SEARCH VS. LOCAL SEARCH

- The algorithms discussed so far are designed to find a goal state from a start state: the *path* to the goal constitutes a *solution* to the search problem
- In many problems the path doesn't matter: the goal state itself is the solution
- State space = set of "complete" configurations
 - Optimization problems: Find optimal configuration (objective or cost function)
 - Constraint Satisfaction Problems: Find configurations satisfying (all or the highest number of) constraints

PATH SEARCH VS. LOCAL SEARCH

- Local search algorithms at each step consider a *single* "current" state, and try to improve it by moving to one of its neighbors → Iterative improvement algorithms
- Pros and cons
 - No complete (no optimal), except with random restarts
 - \circ Space complexity $\mathcal{O}(b)$
 - Time complexity $\mathcal{O}(d)$, d can be ∞ !
 - o Can perform well also in large (infinite, continuous) spaces
 - Relatively easy to implement

STATE-SPACE LANDSCAPE



HILL-CLIMBING SEARCH

Like climbing Everest in thick fog with amnesia

- Move in the direction of increasing value (up the hill)
- Terminate when no neighbor has higher value
 Greedy (myopic) local search

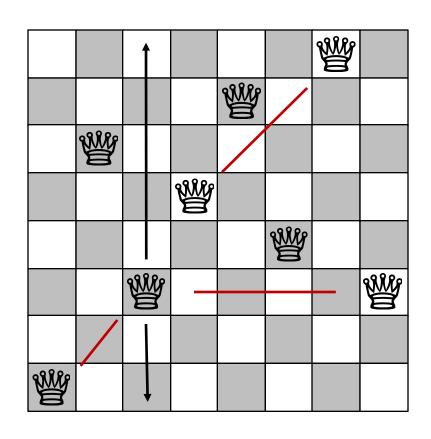
CSP EXAMPLE: N-QUEENS

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

State: Position of the n queens, one per column (or row)

Successor states: generated by moving a single queen to another square in its column (n(n-1))

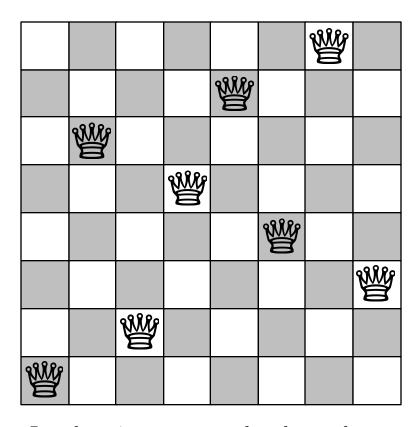
Cost of a state: the number of constraint violations



N-QUEENS

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14		13	16	13	16
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	14	17	15		14	16	16
17	W	16	18	15	***	15	**
18	14		15	15	14		16
14	14	13	17	12	14	12	18

State with 17 conflicts, showing the #conflicts by moving a queen within its column, with best moves in red

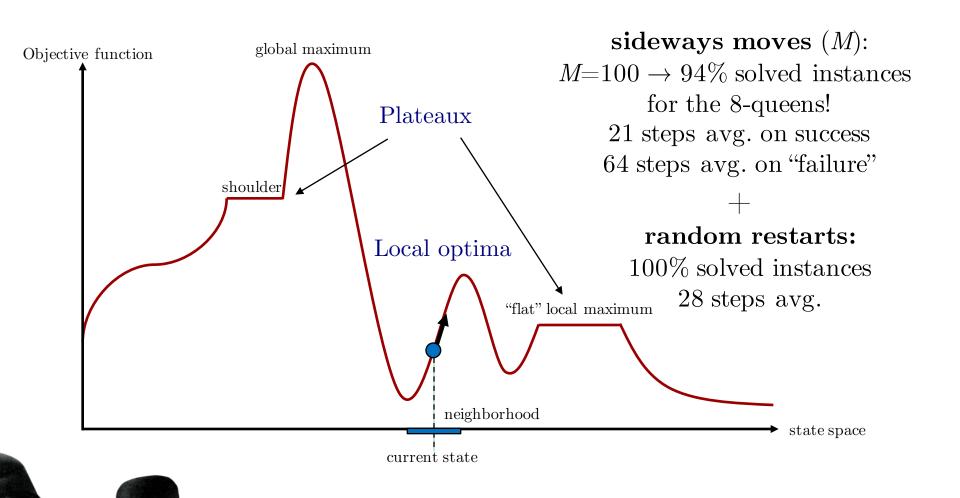


Local optimum: state that has only one conflict, but every move leads to larger #conflicts

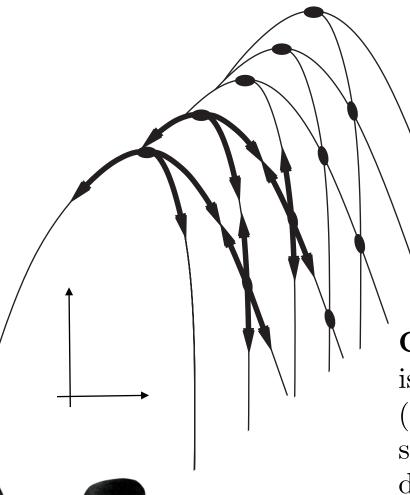
HILL-CLIMBING PERFORMANCE ON N-QUEENS

- Hill-climbing can solve large instances of n-queens $(n = 10^6)$ in a few (ms)seconds
- 8 queens statistics:
 - State space of size ≈ 17 million
 - Starting from random state, steepest-ascent hill climbing solves 14% of problem instances
 - It takes 4 steps on average when it succeeds, 3 when it gets stuck 0
 - When "sideways" moves are allowed, performance improve ...
 - When multiple restarts are allowed, performance improves even more 0

HILL-CLIMBING CAN GET STUCK!



HILL-CLIMBING CAN GET STUCK!



Diagonal ridges:

From each local maximum all the available actions point downhill, but there is an uphill path!

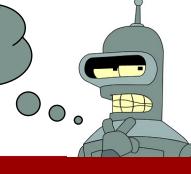
> Zig-zag motion, very long ascent time!

Gradient ascent doesn't have this issue: all state vector components are (potentially) changed when moving to a successor state, climbing can follow the direction of the ridge

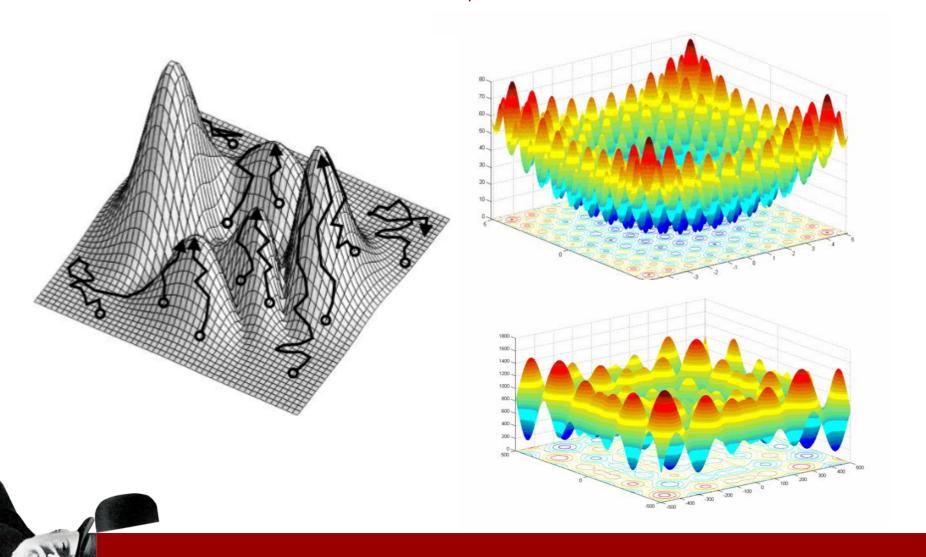
VARIANTS OF HILL-CLIMBING

- Sideways moves: if no uphill moves, allow moving to a state with the same value as the current one (escape shoulders)
- Stochastic hill-climbing: selection among the available uphill moves is done randomly (uniform, proportional, soft-max, ε-greedy, ...) to be "less" greedy
- First-choice hill-climbing: successors are generated randomly, one at a time, until one that is better than the current state is found (deal with large neighborhoods)
- Random-restart hill climbing: probabilistically complete

If at first you don't succeed, try, try again!

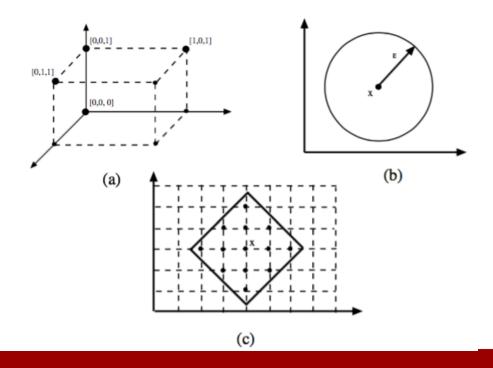


TRAJECTORIES, DIFFICULTIES

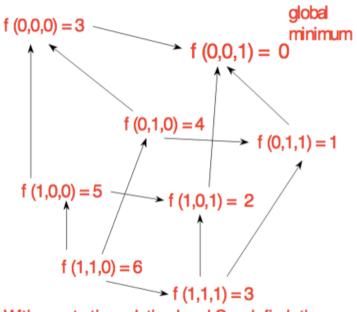


NEIGHBORHOOD

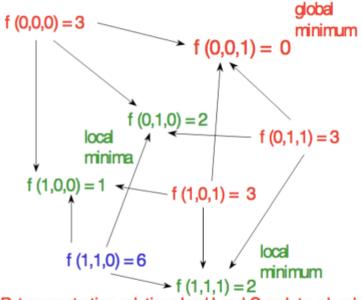
- A mapping (rule) that associate two states (s,s')
- It should preserve a certain degree of correlation between the value of s and that of s'
- It should balance size and search



GOOD VS. REALISTIC SCENARIOS

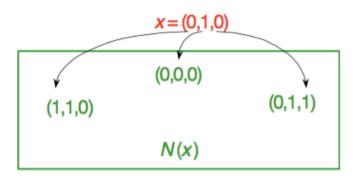


With any starting solution Local Search finds the global optimum.

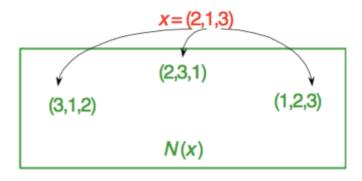


But some starting solutions lead Local Search to a local minimum.

EXAMPLE NEIGHBORHOODS



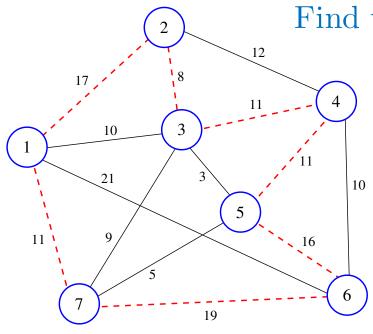
1-flip neighborhood, for 0-1 vectors



2-swap neighborhood, for permutation vectors

k-exchange neighborhood (for TSP and similar problems): The neighborhood N(s) of a solution s is the set of solutions s' that differ from s up to k solution components

OPTIMIZATION EXAMPLE: TSP



Find the Hamiltonian tour of minimal cost

Every cyclic permutation of n integers is a feasible solution

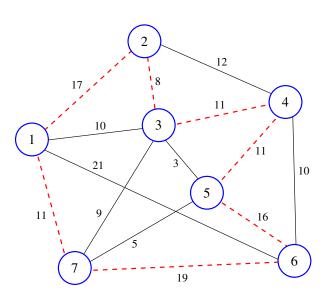
If two nodes are not connected, they can be seen as connected by an arc of ∞ length!

$$\pi_1 = (1, 3, 4, 2, 6, 5, 7, 1), \quad \pi_2 = (2, 3, 4, 5, 6, 7, 1, 2)$$

$$c(\pi_2) = d_{23} + d_{34} + d_{45} + d_{56} + d_{67} + d_{71} + d_{12} = 93$$

Read also as set of edges: $\{(2,3), (3,4), (4,5), (5,6), (6,7), (7,1), (1,2)\}$

OPTIMIZATION EXAMPLE: TSP



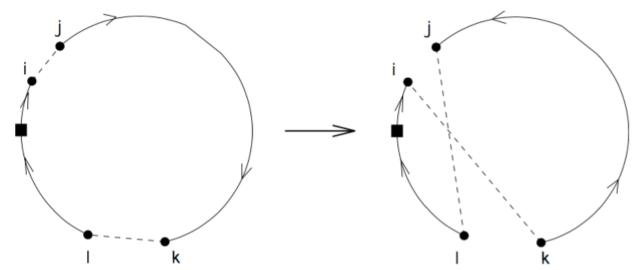
K-exchange neighborhood:

N(s) is the set of tours s' can be obtained from s by exchanging k edges in s with kedges in $E \setminus \{s\}$ (E is the graph's edge set)

Each s' is obtained deleting a selected set of k edges in s and rewiring the resulting fragments into a complete tour by inserting a different set of k edges

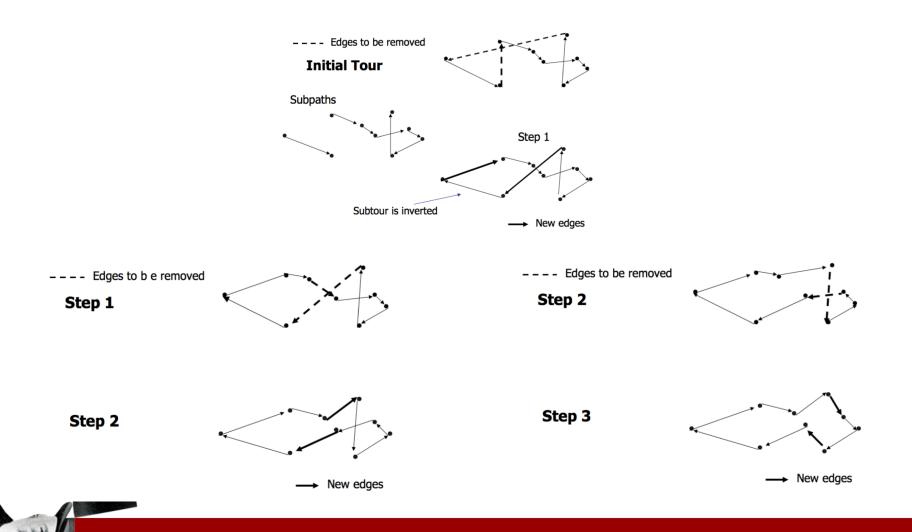
 $\binom{n}{k}$ possible ways to drop k edges in a tour $(k-1)!2^{k-1}$ ways to relink the disconnected paths

2-Opt local search

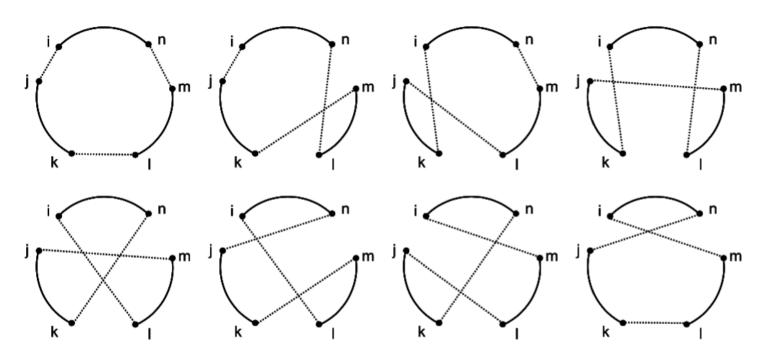


- Two edges, (i,j) and (l,k), are selected, removed, and replaced by two other edges (i,k) and (j,l) (or, (k,i), (l,j))
- One of the two paths needs to get reverted!
- Gain: (i,k) + (j,l) (i,j) (k,l)
- $n(n-1)=O(n^2)$ possible successors in the 2-exchange neighborhood → quadratic search complexity for each single 2-opt step move

2-Opt local search

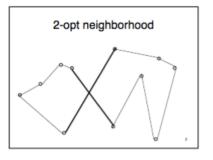


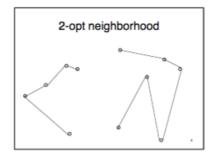
3-Opt local search

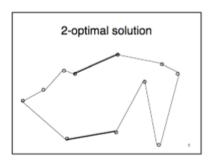


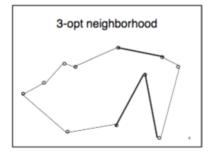
- Including the initial solution, as well as 2-opt moves, there is a total of 2^3 feasible rewirings for each selected triple of edges
- $n(n-1)(n-2) = O(n^3)$ successors
- One move does not revert the path \rightarrow appropriate for asymmetric TSP

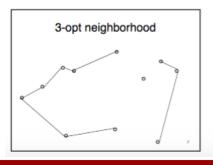
2-OPT VS. 3-OPT

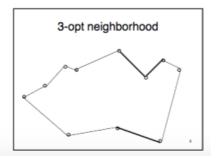




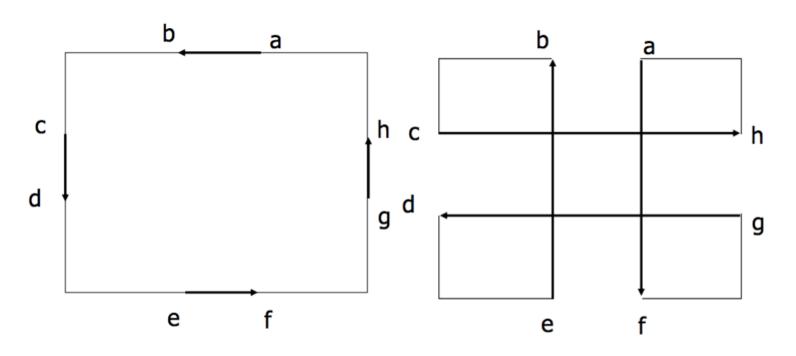








4-OPT DOUBLE BRIDGE



- Does not revert the tours
- Computational complexity of a single step: $O(n^2)$
- Often used in conjunction with 2-opt and 3-opt

(SOME) PERFORMANCE COMPARISON

	Aver	age Perc	ent Exc	ess over	the Held	l-Karp L	ower B	ound	
N =	10 ²	10 ^{2.5}	10 ³	10 ^{3.5}	10 ⁴	10 ^{4.5}	10 ⁵	10 ^{5.5}	10 ⁶
	Random Euclidean Instances								
GR	19.5	18.8	17.0	16.8	16.6	14.7	14.9	14.5	14.2
CW	9.2	10.7	11.3	11.8	11.9	12.0	12.1	12.1	12.2
CHR	9.5	9.9	9.7	9.8	9.9	9.8	9.9	_	_
2-Opt	4.5	4.8	4.9	4.9	5.0	4.8	4.9	4.8	4.9
3-Opt	2.5	2.5	3.1	3.0	3.0	2.9	3.0	2.9	3.0
	Random Distance Matrices								
GR	100	160	170	200	250	280	_	_	_
2-Opt	34	51	70	87	125	150	_	_	_
3-Opt	10	20	33	46	63	80	_	-	-

D. Johnson and L. McGeoch, The Traveling Salesman Problem: a case study in local optimization, in Local Search in Combinatorial Optimization, E. H. L. Aarts and J. K. Lenstra (editors), John Wiley and Sons, Ltd., 1997

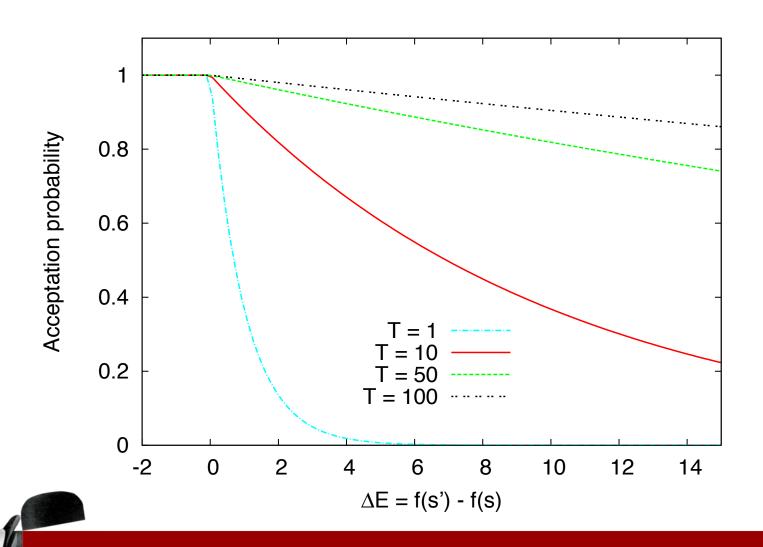
SIMULATED ANNEALING

- Escape from local optima by accepting, with a probability that decreases during the search, also moves that are worse than the current solution (going downhill!)
- Stochastic, solution-improvement metaheuristic for global optimization
- Inspired by the process of annealing of solids in metallurgy:
 - The temperature of the solid is increased until it melts
 - The temperature is slowly decreased through a quasistatic process until the solid reaches a minimal energy state in which a regular crystal structure appears

SIMULATED ANNEALING

```
procedure Simulated_Annealing()
  S = \{ \text{set of all feasible solutions} \};
  \mathcal{N}= neighborhood structure defined over S;
  s \leftarrow Generate a starting feasible solution; // e.g., with a construction heuristic
  s^{best} \leftarrow s:
  T \leftarrow Determine a starting value for temperature;
  while (NOT YET frozen) // termination criterion
    while (NOT YET AT equilibrium FOR THIS TEMPERATURE)
       s' Choose a random solution from neighborhood \mathcal{N}(s); // e.g., select a random 2-opt move
       \Delta E \leftarrow f(s') - f(s);
       if (\Delta E \leq 0) // downhill, locally improving move
         s \leftarrow s';
         if (f(s) < f(s^{best}))
           s^{best} \leftarrow s:
      else // uphill move
          r \leftarrow Choose a random number uniformly from [0,1];
         if (r < e^{-\Delta E/T}) // accept the uphill, not improving, move
            s \leftarrow s'
      end if
  end while
  T \leftarrowLower the temperature according to the selected cooling schedule;
end while
return s^{best}:
```

EFFECT OF TEMPERATURE



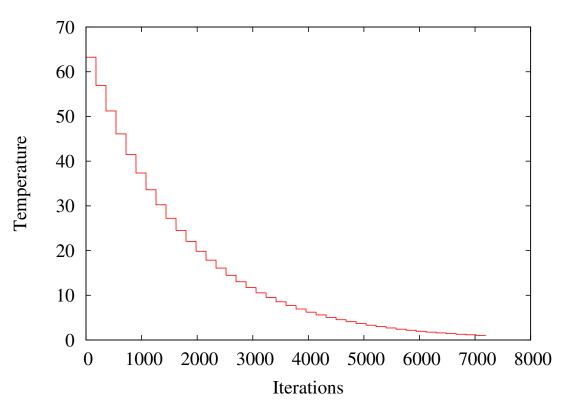
PROPERTIES

- Acceptation probability depends on the current candidate solution and on the previous one \rightarrow The solution sequence can be seen as a $Markov\ chain$
- If T_k decreases "slowly enough" the algorithm will asymptotically converge in probability to the global optimum \to Asymptotically complete and optimal
- Convergence can be guaranteed if at each step T drops no more quickly than $C/\log n$, C=constant, n # of steps so far
- Cooling schedules that work in practice often lack of convergence properties:-(
- For TSP, n! solutions, the required # of iterations $k = O(n^{n^{2n-1}})$

A POPULAR TEMPERATURE SCHEDULE: EXPONENTIAL COOLING

- Temperature drops roughly as C^n , $C \in (0, 1)$
- A fixed number of moves is performed at each temperature, after which one arbitrarily declares "equilibrium" and reduces the temperature by a standard factor, $T_{k+1} = \gamma T_k$, $\gamma \in [0,1]$ is a constant ($\gamma = 0.95$ is a common choice)
- Under an exponential cooling regime, the temperature reaches values sufficiently close to zero after a polynomially-bounded amount of time and the "frozen" state can be declared

EXPONENTIAL COOLING



Start T?

Temperature length?

(SOME) PERFORMANCE COMPARISON

		Random Euclidean Instances						
		Average Percent Excess			Running Time in Seconds			
Variant		10 ²	10 ^{2.5}	10 ³	10 ²	10 ^{2.5}	10 ³	
SA ₁ (Baseline Annealing)	$\alpha = 1$	3.4	3.7	4.0	12.40	188.00	3170.00	
SA ₁ + Pruning	$\alpha = 1$	2.7	3.2	3.8	3.20	18.00	81.00	
SA ₁ + Pruning	$\alpha = 10$	1.7	1.9	2.2	32.00	155.00	758.00	
SA ₂ (Pruning + Low Temp)	$\alpha = 10$	1.6	1.8	2.0	14.30	50.30	229.00	
SA ₂	$\alpha = 40$	1.3	1.5	1.7	58.00	204.00	805.00	
SA ₂	$\alpha = 100$	1.1	1.3	1.6	141.00	655.00	1910.00	
2-Opt		4.5	4.8	4.9	0.03	0.09	0.34	
Best of 1000 2-Opts		1.9	2.8	3.6	6.60	16.20	52.00	
Best of 10000 2-Opts		1.7	2.6	3.4	66.00	161.00	517.00	
3-Opt		2.5	2.5	3.1	0.04	0.11	0.41	
Best of 1000 3-Opts		1.0	1.3	2.1	11.30	33.00	104.00	
Best of 10000 3-Opts		0.9	1.2	1.9	113.00	326.00	1040.00	
Lin-Kernighan		1.5	1.7	2.0	0.06	0.20	0.77	
Best of 100 LK's		0.9	1.0	1.4	4.10	14.50	48.00	

SUGGESTIONS FOR FURTHER READINGS

M. Gendreau and J.-Y. Potvin (Editors), Handbook of Metaheuristics, Springer 2010

H. Hoos, T. Stueztle, Stochastic Local Search: Foundations & Applications, Morgan Kauffmann, 2004

E. Aarts and J. Lenstra (Editors), Local Search in Combinatorial Optimization, Princeton University Press, 2003