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WHAT ALL THESE BEHAVIORS HAVE IN COMMON?

The overall response of 
the system features:  

Robustness 
Adaptivity 
Scalability 

• Distributed “society” of autonomous individuals/agents  

• Control is fully distributed among the agents  

• Communications among the individuals are localized  
• Interaction rules and information processing seem to be simple: 

minimalist agent capabilities and interaction protocols  

• System-level behaviors appear to transcend the behavioral 
repertoire of the single agent  

• Deliberative and/or self-organizing cooperation is at work  

• Local information propagates in a multi-step fashion

Swarm Intelligence design applies 
these same principles to obtain these 

same objectives as in Nature’s 
complex adaptive systems 



A relatively novel research field (~25 years)  
that deals with collective behaviors  
resulting from the local interactions  
of (many) individual (minimalist) units  

with each other and with their environment

Modeling:   
Study of collective behaviors  
in natural and social systems

Engineering:  
Bottom-up design  

of distributed systems  

SWARM INTELLIGENCE (SI): A (BROAD) DEFINITION



BOTTOM-UP VS. TOP-DOWN DESIGN

• From an engineering point of view we can also choose a top-down approach:  

• Acquisition of comprehensive knowledge about the problem/system to 
deal with, analysis, decomposition, definition of a possibly optimal strategy 

• Amenable to formal analysis, “predictable” response

• Ontogenetic and phylogenetic evolution has (necessarily) followed a 
bottom-up approach (grassroots) to “design” systems:  

• Instantiation of the basic units (atoms, cells, organs, organisms, 
individuals, . . . ) composing the system and let them 
(self-)organize to generate more complex/organized system-level 
behaviors and/or structures  

• Population + Interaction protocols are “more important” than 
the single modules 

• System-level structural patterns and behaviors are “emerging” 
properties 



APPLICATIONS OF SI

• Combinatorial and global 
continuous optimization

• Distributed network 
control (routing) • Clustering, data mining

• Reinforcement learning 
(policy learning)

• Multi/Swarm robotic systems

• ….



VCHALLENGES OF SI DESIGN

✦ Characteristics/skills of the agents  

✦ Size of the population (related to previous choice + “costs”)  

✦ Neighborhood definition  

✦ Interaction protocols and information to exchange  

✦ Where the information is updated (agent, channel, environment)  

✦ Use or not of randomness (or, heuristic decisions)  

✦ Synchronous or asynchronous activities and interactions  

✦  ... 

Lots of parameters 
Predictability and efficiency are important issues  

Is a top-down approach better?   
Yes when everything is stationary, “known”, and “tractable”

SI approaches are typically 
heuristics / meta-heuristics



COMMUNICATION, TOPOLOGY, MOBILITY

✦ Point-to-point communication (one-to-one): two agents get in direct contact    
(e.g., antennation, trophallaxis, axons and dendrites in neurons) 

✦ Limited-range information broadcast (one-to-many): the signal propagates to 
some limited extent throughout the environment and/or is available for a short time 
(e.g., fish’ use of lateral line to detect water waves, visual detection) 

✦ Indirect communication: two individuals interact indirectly when one of them 
modifies the environment and the other responds to the modified environment, 
maybe at a later time (e.g., stigmergic, pheromone communication in ant colonies) 

✦ Physical mobility: individuals move through the states of the environment, such as 
the connection topology changes over time (based on communication capability), 
and different areas of the environment are accessed in parallel by different agents 

✦ Static positioning, state evolution: connection topology  and/or positioning in the 
environment do not change over time. Local information propagates in multi-hop 
modality. The internal state of an individual changes over time. 

Different ways of modeling communications, connection topology, and 
spatial distribution have given raise to different SI frameworks 



VSI ALGORITHMIC FRAMEWORKS (AND RELATIVES)

✦ Stigmergy, Mobility → Ant Algorithms and in particular to Ant Colony 
Optimization (ACO) [Dorigo & Di Caro, 1999], which is based on the shortest 
path finding abilities of ant colonies  

✦ Stigmergy → Cultural Algorithms [Reynolds, 1994],  population-based 
algorithms derived from processes of cultural evolution and exchange in societies  

✦ Limited broadcast, Mobility → Particle Swarm Optimization (PSO) [Kennedy & 
Eberhart, 2001], related to fish schooling and bird flocking behaviors 

✦ Point-to-point → Hopfield neural networks [Hopfield, 1982], derived from brain’s 
structure and behavior  

✦ Point-to-point and neighbor limited broadcast → Cellular Automata [Wolfram, 
1984], Gossip algorithms [Demers et al., 1987] derived from infection models 

✦ Different combinations of communication and mobility → Swarm robotics, 
Adaptive network routing, Consensus algorithms 

✦ Genetic algorithms, Artificial immune systems, . . .        



VROAD MAP

• Ant Colony Optimization (ACO) metaheuristic 
• Stigmergy 

• ACO for Combinatorial optimization problems (TSP) 

• ACO for network problems 

• Cellular Automata (maybe, a brief intro) 

• Particle Swarm Optimization (PSO)  

• Ant algorithms for clustering 

• Swarm robotics fun 



VSTIGMERGY 

✦ Stigmergy is at the core of most of all the amazing collective 
behaviors exhibited by the ant/termite colonies (nest building, 
division of labor, structure formation, cooperative transport)  

✦ P. Grassé (1959) introduced the term to explain nest building in 
termite societies (from the Greek stigma: sting and ergon: work, 
incite to work!): A stimulating configuration triggers a building 
action of a termite worker, transforming the configuration into 
another configuration that may trigger in turn another (possibly 
different) action by the same or other termites.

Guy Theraulaz and Eric Bonabeau. 1999. A brief history of stigmergy. 
Artificial Life 5(2), 97-116.



STIGMERGY 

✦ Stigmergy: any form of indirect communication among a set of (possibly) 
concurrent and distributed agents which happens through acts of local 
modification of the environment and local sensing of the outcomes of these 
modifications 

Best analogy:  
Blackboard/Post-it style  

of asynchronous 
communications

✦ Stigmergic variables: The local environment’s 
variables whose value determine in turn the 
characteristics of agents’ response 

✦ The presence of stigmergic variables is 
“expected” (depending on parameter setting) to 
give raise to self-organized global behaviors or 
structural patterns (e.g., nest building, chaining)

Stigmergic communication and control  mechanisms 
in social insects have been reverse engineered to give 

raise to a multitude of ant (colony) inspired algorithms



VDIVERGING VS. CONVERGING STIGMERGY 

✦ Stigmergy leading to diverging group behavior: each agent has a different 
threshold to respond to the presence and the value of  a stigmergic variable  
✦ Distribution of labor 
✦ Automatic task allocation 
✦ Specialization of work 

• Examples:  
• The height of a pile of dirty dishes floating in the sink (Everybody) 
• Nest energy level in foraging robot activation (Krieger and Billeter, 1998) 
• Level of customer demand in adaptive allocation of pick-up postmen, 

clustering of objects (Bonabeau et al., 1997, Lumer and Faieta, 1994)



VDIVERGING VS. CONVERGING STIGMERGY 

✦ Stigmergy leading to converging group behavior: the majority of the agents 
converge performing the same task or showing the same behavior 

✦ Stigmergic variable: Intensity of pheromone trails in ant foraging → 
Convergence of the colony on the shortest path between the nest and 
sources of food (Goss, Aron, Deneubourg, and Pasteels, 1989)

✦ While walking or touching objects, ants release a 
volatile chemical substance, called pheromone  

✦ Pheromone distribution modifies the environment (the 
way it is perceived by other ants) creating a sort of 
attractive potential field for the ants 
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VPHEROMONE LAYING-FOLLOWING EXPERIMENTS

✦ Use of ant colony inspire pheromone-based shortest path finding is at the core of 
the work of the Ant Colony Optimization metaheuristic



VPHEROMONE LAYING-FOLLOWING EXPERIMENTS

✦ Binary bridge with equal branches (Denebourg et al., 1990)
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• The number of ants that are on the upper and lower branch quantifies the  amount of 
pheromone deposit on the branch → Attraction towards the branch 

• r quantifies a the tendency towards a purely exploratory choice (volatility) 

• α biases the decision towards the branch with higher pheromone deposits 

• r = 20, α = 2  fits real ants data 

• With unequal branches, ants converge on the SP with a rate depending on Δlength

PU (m+1) =
(Um + r)”

(Um + r)” + (Lm + r)h
PL(m+1) = 1�PU (m+1), m = Um +Lm

ForwardBackward



SHORTEST PATHS WITH PHEROMONE LAYING-FOLLOWING
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#Pheromone on a branch ∝  Frequency of fw/bw crossing ∝ Length (quality) of paths



FROM ANTS TO ACO: SIMPLE SP SCENARIO

Food
Nest

Pheromone Intensity Scale

Source
Target

• n decision states/nodes, x1,x2, …xn 

• A path (solution) is constructed as through a sequence decisions issued at each 

state according to a stochastic decision policy 𝜋ɛ(xk; 𝜏k, 𝜂k)   

• Pheromone 𝜏k and heuristic 𝜂k are real-valued local information parameter arrays 

• Multiple ants iterating path construction  

• → Monte Carlo sampling: N joint probability distributions parametrized by 𝜏 and 𝜂 

variable arrays
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FROM ANTS TO ACO: GPI

• A (traveling) cost is associated to state transitions, costs are additive 

• Once completed a solution: 

• The sampled solution is evaluated (e.g., sum of the individual costs) 

• “Credit” is assigned to each individual decision belonging to the solution 

• The value of the pheromone variables 𝜏k associated to each decision in the 
solution are modified according to the “credit” 

• Pheromone values can also decade/change for other reasons (e.g., evaporation) 

• Pheromone values locally encode how good is to take decision i vs. j as collectively 
estimated/learned by the agent/ant population through repeated solution sampling

Paths

π

τ

Pheromone distribution biases path construction

Outcomes of path construction are used to modify pheromone distribution

Form of  
Generalized Policy Iteration



ANT COLONY OPTIMIZATION METAHEURISTIC:  
(VERY) GENERAL ARCHITECTURE



ANT BEHAVIOR 
SOLUTION CONSTRUCTION AND PHEROMONE UPDATING
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ACO FOR THE TRAVELING SALESMAN PROBLEM (TSP)
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Given G(V, E) find the Hamiltionian tour of minimal cost : NP-Hard

Every cyclic permutation of n 
integers is a feasible solution

It’s easier to consider fully connected graphs, |E| = |V| |V-1|: 
If two nodes are not connect, d is infinite

⇡1 = (1, 3, 4, 2, 6, 5, 7, 1), ⇡2 = (2, 3, 4, 5, 6, 7, 1, 2)
c(⇡2) = d23 + d34 + d45 + d56 + d67 + d71 + d12 = 93

Read also as set of edges:  
{(2,3), (3,4), (4,5), (6,7), (7,1), (1,2)}

“Related” combinatorial optimization problems : VRPs, SOP, TO, QAP, …



ACO FOR THE TRAVELING SALESMAN PROBLEM (TSP)
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• Pheromone variables: 𝜏ij ∈ ℝ+ expresses how beneficial is (estimated, up to now)  to 

have edge (i,j) in the solution to optimize final tour length → |E| variables  

• Heuristic values 𝜂ij ∈ ℝ+: problem costs cij ∈ ℝ+ for traveling from i to j → |E| variables

• Extension: when ant k is in city i, how good is expected to include (feasible) city j 

(next in the solution sequence xk(t)? → f (𝜏ij, 𝜂ij) 

• Insertion: how good is expected to insert (feasible) edge (m,p)  in the partial 

solution xk(t)? → f (𝜏mp 𝜂mp)

Solution construction strategies (no repair, no look-ahed)



(META-)ACO FOR CO PROBLEMS (CENTRALIZED SCHEDULE)

Initialize ��j(0) to small random values and let t = 0;
repeat
Place nk ants on randomly chosen origin nodes;
foreach ant k = 1, . . . , nk do
Construct a tour �k(t) [Update pheromone step-by-step];
Evaluate tour �k(t);

end
foreach [selected] edge (�, j) of the graph do
Pheromone evaporation;

end
foreach [selected] ant k = 1, . . . , nk do
foreach [selected] edge (�, j) of �k(t) do
Update ��j using tour evaluation results;

end
end

Daemon actions [Local search];
t = t + 1;
until stopping condition is true;
return best solution generated;



ANT SYSTEM (1994)

• Other “most common” transition rule in ACO implementations:

pk�j(t) =
���j(t) + (1 � �)��j(t)
P

�2Nk
� (t)

Ä
����(t) + (1 � �)���(t)

ä



AS: EXPLORATION - EXPLOITATION TRADEOFF



AS: PHEROMONE EVAPORATION



AS: PHEROMONE UPDATE

Pheromone is iteratively deposited in an additive cumulative 
 modality based on solution quality



QUESTIONS

1. Why an additive, cumulative rule for pheromone updating and 
not an average, for instance?                                                    
(not looking for averages, but for the “sparse” best solutions) 

2. Is there any potential problem with pheromone bounds?       
(get to zero, unlimited growth) 

3. Is there any potential problem of premature convergence? 

4. Is it a good idea to have a large number of samples / ants given 
the adopted rule for pheromone updating?                              
(all solutions do pheromone updating → A lot of “bad” ones!)   

5. How do we balance policy evaluation and policy improvement?



AS: OTHER PHEROMONE UPDATE RULES

Idea: assign credits relative to some Q costant value related to problem’s costs 
Q = an upper bound estimate on the length of the optimal tour, in Ant-cycle  

Q = small value related to the range of cost values, Ant-density & Ant-Quantity



AS: ELITIST  PHEROMONE UPDATE



ANT COLONY SYSTEM (1998)

• ACS addresses main AS’ shortcomings and introduces 
new components 

• A different transition rule is used  

• A different pheromone update rule is defined  

• Step-by-step local pheromone updates are introduced 

• Candidate lists are used to favor specific nodes and 
save a lot of computation (at each step, check among  

• n ≪ |E| possible decisions, |E| can easily be 10N, N > 3) 

• Later (and more performing) versions make use of a 
daemon component based on local search   



ACS: TRANSITION RULE

ɛ-greedy policy



ACS: EXPLOITATION - EXPLORATION TRADEOFF



ACS: PHEROMONE UPDATE AND EVAPORATION

We are looking for the best, not the “average”



ACS: PHEROMONE UPDATE AND EVAPORATION

• Persistence, conservative approach: For small values of ρ1, the 
existing pheromone concentrations on the edges evaporate 
slowly, while the influence of the best route is dampened 

• Volatile, aggressive approach: For large values of ρ1, previous 
pheromone deposits evaporate rapidly, but the influence of the 
best path is emphasized  

• The effect of large ρ1 is that previous experience is neglected in 
favor of more recent experiences → more exploration 

• Simulated Anneling approach: If ρ1 is adjusted dynamically from 
large to small values, exploration is favored in the initial iterations 
of the search, while focusing on exploiting the best found paths in 
the later iterations 



ACS: ONLINE PHEROMONE UPDATE

A “good” choice is potentially made locally “less good” after 
being selected. This is to favor exploring other local choices 

during the same iteration loop

Pheromones don’t go to zero!



ACS: CANDIDATE LISTS



ACS: (OLD) PERFORMANCE (1997)



ACS: DAEMON ACTION, LOCAL SEARCH

• At the end of each iteration, a local search is applied to 
all tours built by the ants 

• The resulting iteration (or global so far) best tour gets 
pheromone updating  

• Selected LS: 3-Opt 

• Computationally expensive, but rewarding!



2-OPT LOCAL SEARCH (SUPPORT MATERIAL)



3-OPT LOCAL SEARCH (SUPPORT MATERIAL)



ANT-TABU (2001)



MAX-MIN-AS (1999): PHEROMONE UPDATE



MMAS (1999): PHEROMONE UPDATE



MMAS (1999): PHEROMONE UPDATE

n



ACO SUMMARY

• Reverse engineering of stigmergic pheromone laying-
following mechanisms in ant colonies 

• Monte Carlo sampling (MCMC), Generalized policy learning 

• A number of different heuristic recipes (common in SI and 
other heuristic optimization domains) 

• State of the art performance (when coupled with LS) 

• Guaranteed performance: yes, in the probabilistic limit 

• Applied to a large variety of CO problems 

• Hundreds of publications 

• Applied in the real world: Barilla, Migros, port management, 
logistics, ….


