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COLLECTIVE BEHAVIORS IN NATURE'S SYSTEMS




WHAT ALL THESE BEHAVIORS HAVE IN COMMON?

e Distributed “society” of autonomous individuals/agents
e Control is fully distributed among the agents
e Communications among the individuals are localized

* Interaction rules and information processing seem to be simple:
minimalist agent capabilities and interaction protocols

e System-level behaviors appear to transcend the behavioral
repertoire of the single agent

e Deliberative and/or self-organizing cooperation is at work

* Local information propagates in a multi-step fashion

The overall response of
the system features:

Robustness
Adaptivity
Scalability




SWARM INTELLIGENCE (SI): A (BROAD) DEFINITION

A relatively novel research field (~25 years)
that deals with collective behaviors
resulting from the local interactions
of (many) individual (minimalist) units

with each other and with their environment
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BOTTOM-UP VS. TOP-DOWN DESIGN

e Ontogenetic and phylogenetic evolution has (necessarily) followed a
bottom-up approach (grassroots) to “design” systems:

* Instantiation of the basic units (atoms, cells, organs, organisms, (g -== .= -

individuals, . . .) composing the system and let them TR RIS

(self-)organize to generate more complex/organized system-level =mEEn -

behaviors and/or structures s il
ORGANISE !

* Population + Interaction protocols are “more important” than
the single modules

e System-level structural patterns and behaviors are “emerging”
properties

* From an engineering point of view we can also choose a top-down approach:

* Acquisition of comprehensive knowledge about the problem/system to
deal with, analysis, decomposition, definition of a possibly optimal strategy

* Amenable to formal analysis, “predictable” response



APPLICATIONS OF Sl

e Combinatorial and global
continuous optimization

e Distributed network

control (routlng) e Clustering, data mining

~—.
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A IR e Reinforcement learning
‘e @ i (policy learning)




CHALLENGES OF SI DESIGN

4+ Characteristics/skills of the agents

4+ Size of the population (related to previous choice + “costs”)

4+ Neighborhood definition

4+ Interaction protocols and information to exchange

4+ Where the information is updated (agent, channel, environment)
4+ Use or not of randomness (or, heuristic decisions)

4+ Synchronous or asynchronous activities and interactions

+ ..

% * S| approaches are typically

heuristics / meta-heuristics
Lots of parameters

Predictability and efficiency are important issues
s a top-down approach better?
Yes when everything is stationary, “known”, and “tractable”



COMMUNICATION, TOPOLOGY, MOBILITY

Different ways of modeling communications, connection topology, and
spatial distribution have given raise to different SI frameworks

4+ Point-to-point communication (one-to-one): two agents get in direct contact
(e.g., antennation, trophallaxis, axons and dendrites in neurons)

+ Limited-range information broadcast (one-to-many): the signal propagates to
some limited extent throughout the environment and/or is available for a short time
(e.g., fish” use of lateral line to detect water waves, visual detection)

4+ Indirect communication: two individuals interact indirectly when one of them
modifies the environment and the other responds to the modified environment,
maybe at a later time (e.g., stigmergic, pheromone communication in ant colonies)

4+ Physical mobility: individuals move through the states of the environment, such as
the connection topology changes over time (based on communication capability),
and different areas of the environment are accessed in parallel by different agents

+ Static positioning, state evolution: connection topology and/or positioning in the
environment do not change over time. Local information propagates in multi-hop
modality. The internal state of an individual changes over time.



SI ALGORITHMIC FRAMEWORKS (AND RELATIVES)

4+ Stigmergy, Mobility = Ant Algorithms and in particular to Ant Colony
Optimization (ACO) [Dorigo & Di Caro, 1999], which is based on the shortest
path finding abilities of ant colonies

4+ Stigmergy — Cultural Algorithms [Reynolds, 1994], population-based
algorithms derived from processes of cultural evolution and exchange in societies

4+ Limited broadcast, Mobility = Particle Swarm Optimization (PSO) [Kennedy &
Eberhart, 2001], related to fish schooling and bird flocking behaviors

4+ Point-to-point = Hopfield neural networks [Hopfield, 1982], derived from brain’s
structure and behavior

4+ Point-to-point and neighbor limited broadcast = Cellular Automata [Wolfram,
1984], Gossip algorithms [Demers et al., 1987] derived from infection models

4+ Different combinations of communication and mobility = Swarm robotics,
Adaptive network routing, Consensus algorithms

4+ Genetic algorithms, Artificial immune systems, . . .



NOVAADRY VA

e Ant Colony Optimization (ACO) metaheuristic
e Stigmergy

e ACO for Combinatorial optimization problems (TSP)
e ACO for network problems

e Cellular Automata (maybe, a brief intro)
* Particle Swarm Optimization (PSO)
e Ant algorithms for clustering

e Swarm robotics fun
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STIGMERGY

4+ Stigmergy is at the core of most of all the amazing collective
behaviors exhibited by the ant/termite colonies (nest building,
division of labor, structure formation, cooperative transport)

4+ P. Grassé (1959) introduced the term to explain nest building in
termite societies (from the Greek stigma: sting and ergon: work,
incite to work!): A stimulating configuration triggers a building
action of a termite worker, transforming the configuration into
another configuration that may trigger in turn another (possibly
different) action by the same or other termites.

Guy Theraulaz and Eric Bonabeau. 1999. A brief history of stigmergy.
Artificial Life 5(2), 97-116.



STIGMERGY

4+ Stigmergy: any form of indirect communication among a set of (possibly)
concurrent and distributed agents which happens through acts of local
modification of the environment and local sensing of the outcomes of these
modifications

4+ Stigmergic variables: The local environment's
variables whose value determine in turn the
characteristics of agents’ response

4+ The presence of stigmergic variables is
"expected” (depending on parameter setting) to
give raise to self-organized global behaviors or

structural patterns (e.g., nest building, chaining)

Best analogy:
Stigmergic communication and control mechanisms Blackboard/Post-it style

in social insects have been reverse engineered to give
raise to a multitude of ant (colony) inspired algorithms

of asynchronous
communications




DIVERGING VS. CONVERGING STIGMERGY

4+ Stigmergy leading to diverging group behavior: each agent has a different
threshold to respond to the presence and the va

ue of a stigmergic variable

4+ Distribution of labor
4+ Automatic task allocation
4+ Specialization of work

* Examples:
* The height of a pile of dirty dishes floating in the sink (Everybody)
* Nest energy level in foraging robot activation (Krieger and Billeter, 1998)
* Level of customer demand in adaptive allocation of pick-up postmen,
clustering of objects (Bonabeau et al., 1997, Lumer and Faieta, 19%4)



DIVERGING VS. CONVERGING STIGMERGY

+ Stigmergy leading to converging group behavior: the majority of the agents
converge performing the same task or showing the same behavior

4+ Stigmergic variable: Intensity of pheromone trails in ant foraging —
Convergence of the colony on the shortest path between the nest and
sources of food (Goss, Aron, Deneubourg, and Pasteels, 1989)

4+ While walking or touching objects, ants release a
volatile chemical substance, called pheromone Vet * —

4+ Pheromone distribution modifies the environment (the
way it is perceived by other ants) creating a sort of

attractive potential field for the ants

Retracing the way back
©(T,M) Mass recruitment
Labor division
Find shortest paths
Communicate alerts

Pheromone



PHEROMONE LAYING-FOLLOWING EXPERIMENTS

4+ Use of ant colony inspire pheromone-based shortest path finding is at the core of
the work of the Ant Colony Optimization metaheuristic




PHEROMONE LAYING-FOLLOWING EXPERIMENTS

4+ Binary bridge with equal branches (Denebourg et al., 1990)

Upper Branch 100
A )
Nest Food g 0/  Loherbranh —e— |
20 . — o
Lower Branch | ‘a\e} } e o °
Backward\ 15 cm /Fvorward o s 10 15 20 25 30
Time (minutes)
(Un+r)?
Py(m+1) = P(m+1)=1-P4(m+1), m=U,+L

(Upn+ )%+ (L, + )P

* The number of ants that are on the upper and lower branch quantifies the amount of
pheromone deposit on the branch = Attraction towards the branch

* rquantifies a the tendency towards a purely exploratory choice (volatility)
* O biases the decision towards the branch with higher pheromone deposits
e r =20, & =2 fits real ants data

* With unequal branches, ants converge on the SP with a rate depending on Alength



SHORTEST PATHS WITH PHEROMONE LAYING-FOLLOWING
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FROM ANTS TO ACO: SIMPLE SP SCENARIO

Nest
Source e Food

= W/M Target

\f*

Pheromone Intensity Scale Pheromone

[ T

Lt

n decision states/nodes, x1,x2, ...Xn

m(T,Mm)

A path (solution) is constructed as through a sequence decisions issued at each

state according to a stochastic decision policy 7 (x; =, n¥)

Pheromone 7€ and heuristic #* are real-valued local information parameter arrays

Multiple ants iterating path construction

— Monte Carlo sampling: N joint probability distributions parametrized by 7and #

variable arrays




FROM ANTS TO ACO: GPI

e A (traveling) cost is associated to state transitions, costs are additive
* Once completed a solution:
e The sampled solution is evaluated (e.g., sum of the individual costs)

e “Credit” is assigned to each individual decision belonging to the solution

k

* The value of the pheromone variables 7% associated to each decision in the

solution are modified according to the “credit”
e Pheromone values can also decade/change for other reasons (e.g., evaporation)

e Pheromone values |locally encode how good is to take decision i vs. j as collectively
estimated/learned by the agent/ant population through repeated solution sampling

Pheromone distribution biases path construction

T
/\ Form of

T Paths Generalized Policy Iteration

NN

Outcomes of path construction are used to modify pheromone distribution



ANT COLONY OPTIMIZATION METAHEURISTIC:

(VERY) GENERAL ARCHITECTURE

procedure ACO_metaheuristic()
while (— stopping criterion)
schedule_activities
ant_agents_construct_solutions_using_pheromone( );
pheromone_updating();
daemon_actions(); /* optional ¥/
end schedule_activities
end while
return best _solution_generated,



ANT BEHAVIOR
SOLUTION CONSTRUCTION AND PHEROMONE UPDATING

T(CJ ’CN-I) /,/’ i

n(CJ’CN-J) 5




ACO FOR THE TRAVELING SALESMAN PROBLEM (TSP)

Given G(V, E) find the Hamiltionian tour of minimal cost : NP-Hard

Every cyclic permutation of n
integers is a feasible solution

m = (1,3,4,2,6,5,7,1), mo =(2,3,4,5,6,7,1,2)
C(ﬂ'g) — d23 -+ d34 -+ d45 -+ d56 -+ d67 -+ d71 -+ d12 = 93

Read also as set of edges:
2,3), 3,4), (4,5), (6,7), (7,1), (1,2)}

It's easier to consider fully connected graphs, |El = VI IV-1I:
If two nodes are not connect, d is infinite

"Related” combinatorial optimization problems : VRPs, SOP, TO, QAP, ...



ACO FOR THE TRAVELING SALESMAN PROBLEM (TSP)

* Pheromone variables: 7j; € R* expresses how beneficial is (estimated, up to now) to

have edge (i,j) in the solution to optimize final tour length — |El variables

* Heuristic values 7j; € R*: problem costs ¢jj € R* for traveling from i to j = |El variables

Solution construction strategies (no repair, no look-ahed)

* Extension: when ant k is in city i, how good is expected to include (feasible) city j

(next in the solution sequence x(t)? = f(Tjj, #ij

* Insertion: how good is expected to insert (feasible) edge (m,p) in the partial

solution x()? = f (Tmp Nmp)



(META-)ACO FOR CO PROBLEMS (CENTRALIZED SCHEDULE)

Initialize T;(0) to small random values and let t = 0;
repeat
Place ng ants on randomly chosen origin nodes;
foreach antk=1,...,nt do
Construct a tour xX(t) [Update pheromone step-by-step];
Evaluate tour xX(t);
end
foreach [selected] edge (i, j) of the graph do
Pheromone evaporation;
end
foreach [selected] antk=1,...,n¢ do
foreach [selected] edge (i, ) of xX(t) do
Update T using tour evaluation results;
end
end
Daemon actions [Local search];
t=t+1;
until stopping condition is true;
return best solution generated,;



ANT SYSTEM (1994)

e Transition probability:

()] (t) - ;
— f k(t
PE(t) = Toenko aOM® if j € NX(t)

0 if j & Ni(t)

where
T;j represents the a posteriori effectiveness of the move from

node / to node J
nij represents the a priori effectiveness of the move from / to j

— desirability of the move

* Other "most common” transition rule in ACO implementations:

aTi(t) + (1 —a)n(t)
S uext (o (aTw®) + (L — 0niw(t))

pii(t) =



AS: EXPLORATION - EXPLOITATION TRADEOFF

@ A balance between pheromone intensity, 7;;, and heuristic

information, 7;;
o If a=0:
e No pheromone information is used, i.e. previous search
experience is neglected
e The search then degrades to a stochastic greedy search
o If 3=0:
o The attractiveness of moves is neglected
o The search algorithm is similar to SACO

@ Heuristic information adds an explicit bias towards the most
attractive solutions, e.g.

1

i = g



AS: PHEROMONE EVAPORATION

@ To improve exploration abilities, and to prevent premature
convergence:

7ij(t) < (1 — p)7;(t)
with p € [0, 1]

@ p specifies the rate at which pheromones evaporate, causing
ants to “forget” previous decisions

@ p controls the influence of search history

@ For large values of p, pheromone evaporates rapidly, while
small values of p result in slower evaporation rates

@ Large values therefore implies more exploration, more random
search



AS: PHEROMONE UPDATE

Pheromone is iteratively deposited in an additive cumulative
modality based on solution quality

ny
ri(t+1) = 7i(t) + Y AT(t)
k=1

where
1

LK(t)

L%(t) is the length of the path constructed by ant k at time step t
ni is the number of ants

A'r,-f(t) =




QUESTIONS

1. Why an additive, cumulative rule for pheromone updating and
not an average, for instance?

(not looking for averages, but for the “sparse” best solutions)

2. |s there any potential problem with pheromone bounds?
(get to zero, unlimited growth)

3. Is there any potential problem of premature convergence?

4. |s it a good idea to have a large number of samples / ants given
the adopted rule for pheromone updating?
(all solutions do pheromone updating = A lot of "bad” ones!)

5. How do we balance policy evaluation and policy improvement?



AS: OTHER PHEROMONE UPDATE RULES

Idea: assign credits relative to some Q costant value related to problem’s costs
Q = an upper bound estimate on the length of the optimal tour, in Ant-cycle
Q = small value related to the range of cost values, Ant-density & Ant-Quantity

@ Three variations in the way pheromone deposits are calculated
@ Ant-cycle AS:

ATk (1) f(xf;?(t)) if link (i, ) occurs in path x*(t)
7‘.. p—
J 0 otherwise

e Ant-density AS:

e g | }
ATE(t) = Q if link (I,j) occurs in path x*(t)
J 0 otherwise

e Ant-quantity AS:

AT,:’;(t) _ 3% if link (.i,j) occurs in path x*(t)
0 otherwise



AS: ELITIST PHEROMONE UPDATE

@ The best ants add pheromone proportional to quality of their
paths

Tii(t + 1) = 7;i(t) + A7j(t) + neATj;(t)

where

0 otherwise

Q iy N
AT (t) ={ F(x(1)) if (i,7) € x(t)

e is the number of elite ants
x(t) is the current best route

@ Objective is to direct the search of all ants to construct a
solution to contain links of the current best route(s)



ANT COLONY SYSTEM (1998)

e ACS addresses main AS’ shortcomings and introduces
new components

e A different transition rule is used
* A different pheromone update rule is defined
* Step-by-step local pheromone updates are introduced

e Candidate lists are used to favor specific nodes and
save a lot of computation (at each step, check among

* n « |El possible decisions, |El can easily be 10N, N > 3)

* |ater (and more performing) versions make use of a
daemon component based on local search



ACS: TRANSITION RULE

@ The pseudo-random-proportional action rule:

= e maxueN.k(t){T,-u(t)ni(t)} if r < ry egreedy policy
J ifr>n

where r ~ U(0,1), and ry € [0, 1] is a user-specified parameter

o J € NX(t) is a node randomly selected according to
probability
Tis(£)n)(t)

ZUEN}" Tiu( t)ni(t)

N¥(t) is a set of valid nodes to visit

piy(t) =



ACS: EXPLOITATION - EXPLORATION TRADEOFF

@ Transition rule creates a bias towards nodes connected by
short links and with a large amount of pheromone

@ Parameter ry 1s used to balance exploration and exploitation:

o if r < rp, the algorithm exploits by favoring the best edge

o if r > ry, the algorithm explores

o the smaller the value of ry, the less best links are exploited,
while exploration is emphasized more

@ The transition rule is the same as that of AS when r > g



ACS: PHEROMONE UPDATE AND EVAPORATION

We are looking for the best, not the “average”

@ Global update rule:

o Only the globally best ant, x™(t), is allowed to reinforce
pheromone concentrations on the links of the corresponding
best path

7i(t +1) = (1 — p1)7;(t) + p1ATy(t)

where

1 if (i,)) € x(t)
(1) =4 for@y T
Aij(t) { 0 otherwise

with f(x*(t)) = |xT(t)|, in the case of finding shortest paths
o Favors exploitation
o x1(t) as the iteration-best vs global-best



ACS: PHEROMONE UPDATE AND EVAPORATION

e Persistence, conservative approach: For small values of p;, the
existing pheromone concentrations on the edges evaporate
slowly, while the influence of the best route is dampened

* Volatile, aggressive approach: For large values of p1, previous
pheromone deposits evaporate rapidly, but the influence of the
best path is emphasized

* The effect of large p1 is that previous experience is neglected in
favor of more recent experiences = more exploration

e Simulated Anneling approach: If p; is adjusted dynamically from
large to small values, exploration is favored in the initial iterations
of the search, while focusing on exploiting the best found paths in
the later iterations



ACS: ONLINE PHEROMONE UPDATE

A "good” choice is potentially made locally “less good” after
being selected. This is to favor exploring other local choices
during the same iteration loop

@ Local update rule:
o Applied by each ant as soon as a new link is added to the path:

Ti(t) = (1 — p2)7;(t) + p270

with p; also in (0, 1), and 79 is a small positive constant

/

Pheromones don't go to zero!



ACS: CANDIDATE LISTS

o NX(t) is organized to contain a list of candidate nodes
e Candidate nodes are preferred nodes, to be visited first

o Let nj < [NX(t)| denote the number of nodes in the
candidate list

@ The n; nodes closest to node /, i.t.0. cost, are included in the
candidate list and ordered by increasing distance

@ When a next node is selected, the best node in the candidate
list Is selected

o If the candidate list is empty, then node j is selected from the
remainder of N(t)



ACS: (OLD) PERFORMANCE (1997)

Problem name ACS GA EP SA Optimum
Eil50 425 428 426 443 425
(427.96) (N/A) (427.86) (N/A) (N/A)
[1,830] [25,000] (100,000) (68,512)
Eil75 535 545 542 580 535
(542.37) (N/A) (549.18) (N/A) (N/A)
[3,480) (80,000] [325,000) [173.250]
KroA100 21,282 21,761 N/A N/A 21,282
(21,285.44) (N/A) (N/A) (N/A) (N/A)
[4,820) [103,000] [N/A] [N/A]
Problem name ACS ACS ACS Standard | Optimum | Relativeerrar| CPUsecto
best integer | number of | average | devidion|  (2) generate a
length tars integer (1)@ tour
(1)  |generated to| length .
w“
d198 15,888 585,000 16,054 71 15,780 0.68 % 0.02
(198-city problem)
pcbdd2 51,268 595,000 51,690 188 50,779 0.96 % 0.05
(442-city problem)
ats532 28,147 830,658 28,523 275 27,686 1.67 % 0.07
(532-city problem)
ra783 9,015 991,276 9,066 28 8,806 2.37 % 0.13
(783-city problem)
fl1577 22,977 942,000 23,163 116 | [22,204 -] 3.27+3.48 % 0.48
(1577-city problem) 22,249]




ACS: DAEMON ACTION, LOCAL SEARCH

e At the end of each iteration, a local search is applied to
all tours built by the ants

e The resulting iteration (or global so far) best tour gets
pheromone updating

e Selected LS: 3-Opt

e Computationally expensive, but rewarding!

Prcbemneane | ACS 3ot | ACS 3t | ACS3ot | ACS 3t | Qtimum | % Eror Frademrame | ACS3-gqit | ACS3-gt | ACS3-gt| STSP-GA | STSP-RA | STSP-GA | (Qtimum
best resut | best resdt averae average (2) (1)-(2) average averae %error averae averae %errar (3)
(ergth) | (s0) | (engh) | (se0) o isghy | o | OF) | (eah | (e | BP0

198 15,780 16 157817 | 238 15,780 | 0.01% di98 157817 | 238 001% | 15,780 253 000% | 15,780
(198-aty pradem) (198-city prabem)

lin318 42 029 101 42 029 537 | 42000 | 000% lirG18 42020 | 537 | 000% | 42020 | 2054 | 000% | 42029
(318-aty prddem) (318-city prablem)

at332 27,693 133 27,7182 810 2768 | 011% ?tt532 27,7182 810 011% | 27,6937 | 11,780 003% | 27,686
(532-aty prddem) (532-city probiem)

rd783 8 818 1317 88379 1980 8806 | 036% rares 88379 | 1280 | 036% | 88073 | 21,210 | 001% 8,806
(783-city pradem) ' (783-city pradem)




2-OPT LOCAL SEARCH (SUPPORT MATERIAL)

(-

\

« Two edges, ( i,7) and (l,k), are selected, removed and replaced by
two other edges (i,k) and (3,l) (or, (k, z) (1,7))

* One of the two paths needs to get reverted!
*  Gain: (ka) * (J:l) B (27.7) B (k)l)

* n(n-1)=0(n?) possible successors in the 2-exchange neighborhood
-> quadratic search complexity for each single 2-opt step move



3-OPT LOCAL SEARCH (SUPPORT MATERIAL)
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Including the initial solution, as well as 2-opt moves, there is a
total of 23 feasible rewirings for each selected triple of edges

n(n — 1)(n — 2) = O(n’) successors

One move does not revert the path — appropriate for asymmetric TSP



ANT-TABU (2001)

@ Adapts AS to include a local search using tabu search

@ Global update rule is changed such that each ant’s pheromone
deposit on each link of its constructed path is proportional to
the quality of the path:

) 0 f(x—(t)) — F(x*(t))
Tij(t+1) = (1—p)7;;(t)+ (f(Xk(t))) ( F(x(1)) )

f(x—(t)) is the cost of the worst path found so far
f(x(t)) is the cost of the best path found so far
f(x*(t)) is the cost of the path found by ant k




MAX-MIN-AS (1999): PHEROMONE UPDATE

@ Global update is similar to that of ACS
o |f based on only the global-best path, may exploit too much
o |f based on only the iteration-best, more exploration
e Used mixed strategies
o At point of stagnation, all 7;; are initialized to max value, after
which interation-best is applied for a number of iterations.
@ Point of stagnation:

Ziev Ai
ngG
where A; is the number of links leaving node / with 7;;-values
greater than AO; + Ti,min: d; = Ti,max — Ti,min

<e, €>0

Ti,min = m‘{"'u}

Ti,max = Snda\f),({T”}



MMAS (1999): PHEROMONE UPDATE

@ Clamping of pheromone:

o If after application of the global update rule 7j;(t + 1) > Tmax,
7;i(t + 1) is explicitly set equal to Tpax

o If 7jj(t + 1) < Tmin, Tij(t + 1) is set to Tmin

e Upper bound helps to avoid stagnation. How?

e What is the advantage of having a lower pheromone limit?

@ Local update, applied by each ant after adding a new link to
the path:

mij(t + 1) = 7i(t) + A7(t)



MMAS (1999): PHEROMONE UPDATE

@ Stagnation still occurred, due to large differences between min
and max pheromones

@ Smoothing strategy used to reduce the differences between
high and low pheromone concentrations

@ At point of stagnation, all pheromone concentrations are

Increased proportional to the difference with the maximum
bound:

ATij(t) o< (Tmax(t) — Tij(t))
@ Stronger pheromone concentrations are proportionally less
reinforced than weaker concentrations
@ Increases the chance of links with low pheromone intensity to

be selected as part of a path, and thereby increases the
exploration abilities of the algorithm



ACO SUMMARY

» Reverse engineering of stigmergic pheromone laying-
following mechanisms in ant colonies

* Monte Carlo sampling (MCMC), Generalized policy learning

e A number of ditterent heuristic recipes (common in Sl and
other heuristic optimization domains)

e State of the art performance (when coupled with LS)

e Guaranteed performance: yes, in the probabilistic limit

e Applied to a large variety of CO problems
e Hundreds of publications

* Applied in the real world: Barilla, Migros, port management,
logistics, ....



