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OUTLINE

Machine learning with neural networks



SUPERVISED MACHINE LEARNING
CLASSIFICATION SETUP

» Input features z(¥) € R™

» Outputs y €Y (e.g. R, {—1,+1}, {1,...,p})
» Model parameters 0 € RF

» Hypothesis function hy : R® — R

» Loss function £: R x Y — Ry

» Machine learning optimization problem

inimi (ONICO)
minimize ;f(hg(x ), y'*)



LINEAR CLASSIFIERS

» Linear hypothesis class: ) ]
he(z) = 0T p(a"))

where the input can be any set of non-linear features ¢ : R — RF
» The generic function ¢ represents some (possibly) selected way to generate non-linear
features out of the available ones, for instance:

() = [temperature for day 1]
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GENERAL REPRESENTATION OF
LINEAR CLASSIFICATION




CHALLENGES WITH LINEAR MODELS

» Linear models crucially depend on choosing “good” features

» Some “standard” choices: polynomial features, radial basis functions, random features
(surprisingly effective)

» But, many specialized domains required highly engineered special features

» E.g., computer vision tasks used Haar features, SIFT features, every 10 years or so
someone would engineer a new set of features

» Key question 1: Should we stick with linear hypothesis functions? What about using
non-linear combinations of the inputs? — Feed-forward neural networks (Perceptrons)

» Key question 2: can we come up with algorithms that will automatically learn the
features themselves? — Feed-forward neural networks with multiple (> 2!) hidden layers
(Deep Networks)



FEATURE LEARNING:
USE TWO CLASSIFIERS IN CASCADE

» Instead of a simple linear classifier, let’s consider a two-stage hypothesis class where one
linear function creates the features, another models the classifier and takes as input the

features created by the first one:

hw(:z:) = W2¢(m) +bg = WQ(let + bl) + bo

where
w={W; € R"Xk,bl c Rk,WQ S RIXk,bQ € R}

» Note that in this notation, we’re explicitly separating the parameters on the “constant
feature” into the b terms



FEATURE LEARNING:
USE TWO CLASSIFIERS IN CASCADE

» Graphical depiction of the obtained function

» But there is a problem:
ha () = Wo(Wix + b1) +bo = Wa + b (1)

in other words, we are still just using a normal linear classifier: the apparent added
complexity by concatenating multiple is not giving us any additional representational
power, we can only discriminate linearly separable classes




ARTIFICIAL NEURAL NETWORKS (ANN)

» Neural networks provide a way to obtain complexity by:

Using non linear transformations of the inputs

Propagating the information among layers of processing units to realize multi-staged
computation

In deep networks, the number of stages is relatively large, allowing to automatically
learn hierarchical representations of the data features

Input fanction g ciiavion function  Output

(linear) (non linear) (to other units)
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TYPICAL NON-LINEAR
ACTIVATION FUNCTIONS

» Using non-linear activation functions at each node, the two-layer network of the previous
example, become equivalent to have the following hypothesis function:

ho(x) = foa(Wafi(Wiz + b1) + b2)
where f1, f2 : R — R are some non-linear functions (applied elementwise to vectors)

» Common choices for f; are hyperbolic tangent tanh(z) = (2% — 1)/(e2® + 1),
sigmoid /logistic o(z) = 1/(1 4+ e~ %), or rectified linear unit f(z) = max{0,z}

tanh sigmoid relu
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HIDDEN LAYERS
AND LEARNED FEATURES

» We draw these the same as before (non-linear functions are virtually always implied in the
neural network setting)

» Middle layer z is referred to as the hidden layer or activations

» These are the learned features, nothing in the data that prescribes what values these
should take, left up to the algorithm to decide

» To have a meaningful feature learning we need multiple hidden layers in cascade

» Networks



TYPES OF NETWORKS

Feed-forward networks (multilayer perceptrons)

_m m
A R R

Bi-directional networks (recurrent networks, Hopfield networks)




PROPERTIES OF NEURAL NETWORKS

» It turns out that a neural network with a single hidden layer (and a suitably large number
of hidden units) is a universal function approximator, can approximate any function
over the input arguments (but this is actually not very useful in practice, c.f. polynomials
fitting any sets of points for high enough degree)

» The hypothesis class hy is not a convex function of the parameters 6 = {W;,b;}

# Example: what is the loss function for the simplest 2-layer neural net ever

¥ Function: 1-1-1 neural net. Map 0.5 to 0.5 and -0.5 to -0.5
(identity function) with quadratic cost:

y = tanh(W, tanh(Wo.z)) L = (0.5 — tanh(W; tanh(17;,0.5)?

AmpgrLplatier 1 7690-71e0cka"
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» The number of parameters (weights and biases), layers (depth), topology (connectivity),
activation functions, all affect the performance and capacity of the network




DEEP LEARNING

» “Deep” neural networks refer to networks with multiple hidden layers
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» Mathematically, a k-layer network has the hypothesis function

zit1 = [iWiz; +b), i=1,...

hw(x) = 2k

where z; terms now indicate vectors of output features

k=1, z1 =

= hy(x)



»

WHY USE DEEP NETWORKS?

A deep architecture trades space for time (or breadth for depth): more layers (more
sequential computation), but less hardware (less parallel computation).

Many functions can be represented more compactly using deep networks than one-hidden
layer networks (e.g. parity function would require (2") hidden units in 3-layer network,
O(n) units in O(logn)-layer network)

Motivation from neurobiology: brain appears to use multiple levels of interconnected
neurons to process information (but careful, neurons in brain are not just non-linear
functions)

In practice: works better for many domains

Allow for automatic hierarchical feature extraction from the data



HIERARCHICAL FEATURE
REPRESENTATION

Low-Level| |Mid-Level| [High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]




EXAMPLES OF HIERARCHICAL
FEATURE REPRESENTATION

@ Hierarchy of representations with increasing level of abstraction
Ml Each stage is a kind of trainable feature transform

# Image recognition
P Pixel -» edge - texton —» motif » part - object

il Text
¥ Character - word —» word group — clause —» sentence — story
# Speech
b Sample - spectral band - sound - ... » phone —» phoneme —»
word
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EFFECT OF INCREASING
NUMBER OF HIDDEN LAYERS

» Speech recognition task




Training neural networks

OUTLINE



OPTIMIZING NEURAL NETWORK
PARAMETERS

» How do we optimize the parameters for the machine learning loss minimization problem
with a neural network
m
minié)mize Z;Z(hg(:r(’)),y(z))
i=

now that this problem is non-convex?

» Just do exactly what we did before: initialize with random weights and run stochastic
gradient descent

» Now have the possibility of local optima, and function can be harder to optimize, but we
won’t worry about all that because the resulting models still often perform better than
linear models



STOCHASTIC GRADIENT DESCENT FOR
NEURAL NETWORKS

» Recall that stochastic gradient descent computes gradients with respect to loss on each
example, updating parameters as it goes

function SGD({(z(®,y)}, hg, ¢, a)
Initialize: Wj,b; <— Random, j =1,...,k
Repeat until convergence:
Fori=1,...,m:
Compute VWj,ij(hg(x“)), y@), j=1,... k-1
Take gradient steps in all directions:
Wj = Wj — aVw, Llhg(z)),yD), j=1,...k
bj < bj —aVy Lhe(xD),yD), j=1,.. k
return {W;,b;}

» How do we compute the gradients VWj’ij(hg(CE(i)), y(D)?



BACK-PROPAGATION

» Back-propagation is a method for computing all the necessary gradients using one
forward pass (just computing all the activation values at layers), and one backward
pass (computing gradients backwards in the network)

» The equations sometimes look complex, but it’s just an application of the chain rule of
calculus and the use of Jacobians



JACOBIANS AND CHAIN RULE

» For a multivariate, vector-valued function f : R™ — R™, the Jacobian is a m X n matrix

9fi(z) Ofi(z) . . 9fi(z)

ox ox Oxp
0fa(e) 0fale) . 0fa(w)

(8f(il:) ) mxn Oz Oxo ATy

eR =
ox : : . .

Ofm(z) Ofm(z) = Ofm(z)

LS dzo S

» For a scalar-valued function f :R"™ — R, the Jacobian is the transpose of the gradient
F) T
J;Ef) =Vaf(x)

» For a vector-valued function, row ¢ of the Jacobian corresponds to the gradient of the
component f; of the output vector, i = 1,...,m. It tells how the variation of each input
variable affects the variation of the output component

» Column j of the Jacobian is the impact of the variation of the j-th input variable,
j=1,...,n, on each one of the m components of the output

» Chain rule for the derivation of a composite function:

0f(g(x)) _ 0f(9(x)) dg(x)

ox dg(z) Oz




MULTI-LAYER / MULTI-MODULE FF

» Multi-layered feed-forward architecture
(cascade): module/layer ¢ gets as input the
feature vector x;_1 output from module ¢ — 1,

’ applies the transformation function F;(x;—1, W;),
and produces the output «;

v

Each layer i contains (Ng); parallel nodes

(x3)j, j=1,...,(Ng);. Each node gets the input
from previous layer’s nodes through

(Ngz)i—1 = (Nw); connections with weights

» Each layer learns its own weight vector W;.

Y

» F; is a vector function. At each node j of layer i,
the transformation function is
(Fy)j = f((W.L)]T -(x;—1);) and f is the activation
function (e.g., a sigmoid), that can be safely

considered being the same for all nodes.

™ » In the following the notation is made simpler by
Duﬁity dropping the second indices and reasoning at the
P aggregate vector level of each layer.



FORWARD PROPAGATION

y » Forward Propagation:

at/dx, Y » Following the presentation of the training
input xo, the output vectors x; resulting
from the activation function F; at all layers
i=1,...,n, are computed in sequence,
starting from x1, and are stored

» The output of the network, the loss £ (to be
minimized), results from the forward
propagation at output layer and computing
the deviation with respect to the target Y:

WY,z W) = C(zn,Y)

output Y




COMPUTING GRADIENTS

» At each iteration of SGD, the gradients with

gT Loss respect to all the parameters of the system need
to be computed (i.e., the weights W;, that could
‘ C(x,Y) ’ be split in weights for input and weights for bias,
- ; but hereafter we just use the general form W;)
1 1
*no| | 9¢/0%, Y » After the Forward pass, let’s start setting up the
w ! relations for the Backward pass
" Fn(xnfljw'n)

=1
‘o
v

Let’s consider the generic layer ¢: from the
A 8/0x, Forward propagation, its output value is available
i and is @; = F;(zi—1, W;)

xi vl'af/axl
—

» In addition, let’s assume that we already know
ot
awi ’
that is, we know for each component of the vector
x; the variation of ¢ in relation to a variation of
Target x;. We can assume that we know 8674 since we
output ¥ will proceed backward



COMPUTING GRADIENTS

Target
output Y

or

» Since we assume as known v and we have
i

computed &; = F;(x;—1, W;), we can use the
chain rule to compute oW which is the quantity
of interest, and which tells us the variation in ¢ as
a response to a variation in the weights of W;:

ot _ ot oFi(xi—1, Wi)

oW,  dx; oW;

where x; is a substitute for F;(ax;_1, W;)

Dimensionally, the previous equation is as follows:
[1 X Nw] =[1X Ng|-[Ng X Nw]

OF; (i1, W;)

oW;
respect to W;

is the Jacobian matriz of F; with

The element (k, 1) of the Jacobian quantifies the
variation in the k-th output when a variation is
exerted on the [-th weight

((”)Fi(a:l‘,l,Wi) _ 8[Fi(mi717 WZ)LC
oW Xl 8[WZ]

l

00



COMPUTING GRADIENTS

g

[ ClxnY)
= A
X, | 9¢/ox, Y
v
w,
Ey(xq,-1, W,
Py (-1, Wn)
ow,, T | 06/0%, 4
1
X #66’/5:@
W,
aé,i Fi(xio W)
oW, X X a¢fax; 4
x| wae/ax,
Target
Xy Input x output ¥

» Let’s keep assuming that we known BBTE and let’s use it
this time to compute 3 8_@
i1

» Applying the chain rule:

ol _ ol BFi(aci_l,W,-)
Bmi_l o 8:1:1

oxi_1
» Dimensionally, the previous equation is as follows:
[1 X Ng] =[1 X Nz]- [Nz X Nz

OF;(xi—1, W;
> M is the Jacobian matriz of F; with respect
Oxi—1
to x;—1

» The element (k,1) of the Jacobian quantifies the
variation in the k-th output when a variation is exerted
on the [-th input

» The equation above is a recurrence equation!
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BACK-PROPAGATION (BP)

» To sequentially compute all the gradients needed by
SGD, a backward sweep is applied, which is called the
back-propagation algorithm, that precisely makes
use of the recurrence equation for Ba—ai

Loss
£
[ |
: 4
X, | a¢/dx, Y
vy
Fo(Xn-q, Wy)
X, A | 00/0x,,
1
x; #Bf’/axL
Fi(xi- W)
X A 98/0x
1
XV yailix,
Fi(xoW1)
Target
Input x output ¥

=

=

Ba:n 6271,
Ot _ 00 OFu(@n1, Wa)
C OTn_1  On Oxpn—1
A O OFy(zn_1,Wy)
OW,, Oz oW,
ot O OFa_1(®n—2, Wn_1)

ot 9C(x,,Y)
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aFn—l(wn—27 Wn—l)

8Wn_1 - 6£Un—1

... until we reach the first, input layer

computed!

6v‘/n—l

3

1
— all the gradients a—, Vi=1,...,n have been
oW,

(0]



ACTIVATION FUNCTIONS EXAMPLES

» Remember that the transfer function at layer ¢ is Fy(x;—1, W;) = f(W-T . azifl), and for

2
the j-th neuron in layer 1, (Na)
®)i—1

(F); = F(W)] - (ic1);) = > wij w1
=1

where f(-) is the activation function

» Linear activation function: f(z) = Az+ B
» (Fy);=A- ((Wz)f -(x;—1)j) + B, used in the Forward pass

OF: (i 1. W,
» M = AW, used in the Backward pass

ox;_1

» Hyperbolic tangent activation function: f(z) = tanh(z) = 2;;::

» (Fl)] = tanh ((Wz)f . (mi—l)j), used in Fw pass

» f'(z) =1 —tanh?(z) — w =1—tanh?(WT - ;1) used in Bw pass
» Logistic / sigmoid activation function: f(z) = T5e=

p
» (F); = ———2————— used in Fw pass
= T,
OF; (@i 1,W; .
b (@) = (A f(2) - LW (W 1) (1 f(WT - @im1)) used in

Bw pass



NO ARCHITECTURAL CONSTRAINTS

# Any connection is permissible

P> Networks with loops must be
“unfolded in time”.

> # Any module is permissible

AN P As long as it is continuous and
differentiable almost everywhere
with respect to the parameters, and
with respect to non-terminal inputs.




AVAILABLE TOOLS

» Gradients can still get somewhat tedious to derive by hand, especially for the more
complex models that follow

» Fortunately, a lot of this work has already been done for you

» Tools like Theano (http://deeplearning.net/software/theano/), Torch
(http://torch.ch/), TensorFlow (http://www.tensorflow.org/) all let you specify the
network structure and then automatically compute all gradients (and use GPUs to do so)

» Autograd package for Python (https://github.com/HIPS/autograd) lets you compute the
derivative of (almost) any arbitrary function using numpy operations using automatic
back-propagation


http://deeplearning.net/software/theano/
http://torch.ch/
http://www.tensorflow.org/
https://github.com/HIPS/autograd

WHAT’S CHANGED SINCE THE 8057

» Most of these algorithms were developed in the 80s or 90s

» So why are these just becoming more popular in the last few years?
» More data
» Faster computers (GPUs)

» (Some) better optimization techniques



[SSUES

» Vanishing gradients: as we add more and more hidden layers, back-propagation
becomes less and less useful in passing information to the lower layers. In effect, as
information is passed back, the gradients begin to vanish and become small relative to the
weights of the networks.

» Each gradient assigns “credit” to each neuron i for the (mis)classification of the input
sample, however, credit depends (backward) on the average error associated to the
neurons that take the output of 4, such that going backward the credit has the
tendency to vanish

» If the activation function has a gradient “mostly” null, as in the case of sigmoids,
then, again, gradient corrections become very small

» Overfitting!
» How many layers/nodes? (which is related to overfitting ...)
» Non-convexity (only local minimima can be reached), computation time, ...

» Time complexity of one BP iteration is O(|W|?), which is he input for one iteration of
SGD. No general guarantees on convergence time



IDEAS FOR OVERCOMING ISSUES

Hidden layers of autoencoders and RBMs act as effective feature detectors; these
structures can be stacked to form deep networks. These networks can be trained
greedily, one layer at a time, to help to overcome the vanishing gradient and
overfitting problems.

Unsupervised pre-training (Hinton et al., 2006): “Pre-train” the network have the
hidden layers recreate their input, one layer at a time, in an unsupervised fashion
» This paper was partly responsible for re-igniting the interest in deep neural networks,
but the general feeling now is that it doesn’t help much

Dropout (Hinton et al., 2012): During training and computation of gradients,
randomly set about half the hidden units to zero (a different randomly selected set for
each stochastic gradient step)

» Acts like regularization, prevents the parameters for overfitting to particular examples

Different non-linear functions (Nair and Hinton, 2010): Use non-linearity
f(z) = max{0,z} instead of f(z) = tanh(z)




Popularity and applications

OUTLINE



0.6

#neural network / #machine learning

0.0
1980 1985 1990 1995 2000 2005 2010 2015

Google scholar counts of papers containing “neural network” divided by count of papers
containing “machine learning”



#neural network / #machine learning

0.6 T T
Facebook launches Al research
0.5 center, Google buys DeepMind
0.4}
“AlexNet” deep neural network
wins ImageNet 2012 contest
0.3F

Popularization of backprop
for training neural networks

Academic papers on unsupervised
pre-training for deep networks

0.0
1980 1985 1990 1995 2000 2005 2010 2015

A non-exhaustive list of some of the important events that impacted this trend




» “AlexNet” (Krizhevsky et al., 2012), winning entry of ImageNet 2012 competition with a
Top-5 error rate of 15.3% (next best system with highly engineered features based upon

SIFT got 26.1% error)
2 T8 Tax

Max v Max pooling
pooling pooling

a2 \dense

40



mite

container ship

motor scooter

mite container ship motor scooter pard
black widow ifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
— Z 7T ~
¢!
e - v
K 4
g
b

grille mushroom Madagascar cat
convertible agaric squirrel monkey
grille mushroom spider monkey
pickup Jjelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

Some classification results from AlexNet
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» Google Deep Dream software: adjust input images (by gradient descent) to strengthen the
activations that are present in an image




i

» Question answering network (Vinyals and Le, 2015), using sequence to sequence learning
method (Sutskever et al., 2014)

<eos>

—>x

N N

L L]

B C

<eos>

s—>
X—> =<
<~—> N

Context
(Previous Sentences)

Machine: /i

Human: hello

Machine: could you please let me know what are
the operating systems you are using ?

Human: i am using linux

Machine: ok it was in the ssl vpn on which you
stated it was broken

Machine: please check if you are logged in to
corp network

Machine: what is the error that you are running
please

Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network
connect ?

Reply

Machine: is the network connect prompting for
any user certificate

Machine: ?

Human: yes

Machine: are you at home or at work at the mo-
ment ?

Machine: office ?

Human: i am at home

Machine: try this

Machine: goto <URL> page and enter your
name and password

Human: done

Machine: ry logging in with <NAME> and
check if its working fine now

Human: yes , now it works !

Human: hing like
that
Machine: may i know the version of network

connect you connect ?

refused or

Human: i am not sure i know that

ine: great
Machine: anything else that i can help
Human: no , that was very useful
Machine: you are other than <NAME> : )
Machine: have a nice night



» AlphaGo (Silver et al., 2016) beats Lee Sedol in 5 game competition

Artificial intelligence: Google's AlphaGo
beats Go master Lee Se-dol

@® 12 March 2016 = Technology

A computer program has beaten a master Go player 3-0 in a best-of-five
competition, in what is seen as a landmark moment for artificial intelligence.

Google's AlphaGo program was playing against Lee Se-dol in Seoul, in South
Korea.
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