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Supervised learning: classification

OUTLINE



CLASSIFICATION PROBLEMS

» Sometimes we want to predict discrete outputs rather than continuous
» Is the email spam or not? (YES/NO)

» What digit is in this image? (0/1/2/3/4/5/6/7/8/9)



EXAMPLE: CLASSIFYING HOUSEHOLD
APPLIANCES

» Differentiate between two refrigerators using their power consumption signatures
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CLASSIFICATION TASKS

» Input features: () ¢ R™, i=1,...,m
» E.g: () € R3 = (Duration i, Power i, 1)

» Output: y(9) € {—1,+1} (binary classification task)
» BE.g.: y®) =TIs it fridge 17

» Model Parameters: 8 ¢ R"

» Hypothesis function: hg(z) : R - R

» Returns continuous prediction of the output y, where the value indicates how
“confident” we are that the example is —1 or +1

» sign(hg(x)) is the actual binary prediction

» We will focus on linear predictors hg(z) = 270



CLASSIFIER BEHAVIOR: SCORE

» Given an example (x,y), the value
he(x) = 276

is termed the score of the classification performed according to the hypothesis function
and current parameters, hg(x)

» Intuitively, the score represents the degree to which the classification is positive or
negative, how confident the classifier is making the prediction

» In the context of binary classification with binary features &, the score has a nice
interpretation: it aggregates the contribution of each feature, weighted appropriately.
Each feature “votes” on the classification.

z1



CLASSIFIER BEHAVIOR: MARGIN

» The margin on an example (z,y) is (7 @)y and represents how (in)correct is the
classification made by 6. The larger the margin, the better.

» Non-positive margins correspond to classification errors
» Geometrically, if ||@]] = 1, then the margin of an sample input @ is exactly the signed

distance from its feature vector hg(x) to the decision boundary. In the general case, the
distance of z from the linear boundary is (x78)/||0]|

T
x 0
» Geometric margin: actual (signed) distance from a point to decision boundary: HTH)y
T2
h=x-0>0
h=x-6=0,
n=x-0<0 NF1
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EXAMPLE: SEISMIC DATA
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» x1 = body wave magnitude, x9 = surface wave magnitude » More data, the two

classes are non linearly
separable: it does not
exist a linear decision
boundary

» Two features: White = data from earthquakes, black = data
from nuclear tests
» The two classes are linearly separable,
heo(x) = xT0 = 0325 + 0121 + Ogzo where,
zg=1, g = —4.9, 01 = —1.7, 05 = —1
» The classification hypothesis is: sign(hg(x)) = +1 if
hg(x) = 7@ > 0, and -1 otherwise



LOSS FUNCTIONS

» Example, z() € R, one single data feature, binary classification task (y(i) e {-1,+1}),
0 = [6o, 01]

» Linear classifier: hg(xz) = 012 + 0y
» Loss function £: R x {—1,+1} — Ry

» Let’s take £ = (A + 612 — y)? and let’s find the values for @ that minimize the loss over
the whole training set

Yy
+1 X X X




LOSS FUNCTIONS

» Example, () € R, one single data feature, binary classification task (y(i) e {-1,+1}),
6 = [60,61]

» Linear classifier: hg(xz) = 012z + 0o
» Loss function £: R x {—1,+1} — Ry

» Let’s take £ = (6 + 612 — y)? and let’s find the values for @ that minimize the loss over
the whole training set

» Do we need a different loss function?
Y
+1 X X X

0 > T
—— Least squares



LOSS FUNCTIONS

Example, () € R, one single data feature, binary classification task (y(i) e {-1,+1}),
6 = [00,01]

Linear classifier: hg(xz) = 012 + 0o
Loss function £: R x {—1,4+1} — R4

Let’s take £ = (6p 4+ 612 — y)? and let’s find the values for @ that minimize the loss over
the whole training set

Do we need a different loss function?
Y
+1 X X X

0 > T
—— Least squares
—1+X X —— Perfect classifier




ACCURACY LOSS FUNCTION

» Instead of measuring squared deviations, let’s measure the accuracy of classification
» Simplest way to measure loss as (0/1) accuracy is: count the number of mistakes
» Again, let’s assume a linear hypothesis function, but this time sign(hg(x)) is used

Uho(z),y) = { 1 if y # sign(h())

0 otherwise
=1{y - hy(z) < 0}

If ¥ and hg(2(?) have discording sign (i.e., they disagree on classifying sample z()
then their product (i.e., the margin) is negative and {y@) - hg (x('b)) < 0} equals to 1 —

add error count
2

Loss

0.5

¥ - ho(x)

= (),
mlmemlze 1221 V4 (he ('), y )
10



MINIMIZATION OF ACCURACY LOSS?

» Unfortunately, minimizing sum of 0/1 losses leads to a hard optimization problem because
of the characteristics of the step/threshold loss function in the space of the parameters 0

» Trying to apply an analytic method fails, as well as applying gradient descent, since the
gradient of £ is zero almost everywhere, except at the step point, where 6 - & = 0, and the

gradient is undefined

» However, given that the problem is linearly separable, a simple weight update rule exists
that converges to the optimal linear separation

» The rule is called the perceptron learning rule. For a single training example

(@@, y():
O O + ay® — ho(x™))z)

» Typically the rule is applied one example at-a-time, choosing the examples at random,
similarly to stochastic gradient descent

» Perceptron learning rule is analogous to SGD for linear regression and squared losses
» If the problem is not linearly separable, perceptron update rule may not converge.

However, convergence is guaranteed if a decays as O(1/t) and data are presented
randomly.
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Left: earthquake, separable data set
Middle: earthquake, non-separable data set
Right: earthquake, non-separable data set, a(t) = 1000/(1000 + ¢)

Observation: Quite hectic and unpredictable behavior



SMOOTHING ACCURACY LOSS

» Because of the difficulties solving the minimization problem with 0/1, a whole range of
alternative “approximations” to 0/1 loss are used instead

» The hard, non-differential step is replaced by a continuous, differentiable function

Hinge loss:  £(h ) = max{1l — y - hg(x),0}
) = max{1 — y - ho(2),0)2
) = log(1 + e~ Y0 (@)
)=

e~ Yho(z)

0(x),y
Squared hinge loss:  £(hg(x),y
Logistic loss:  £(hg(x),y
(), y

Exponential loss:  £(hg(z),



SMOOTHING ACCURACY LOSS

0-1 Loss

Hinge Loss

3 Logistic Loss
Exponential Loss

Loss
N

! AN
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0
y % hy(x)

Common loss functions for classification. x-axis: Margin!




HINGE LOSS FUNCTION (SVMS)

LosShinge (€, y, W) = max{1 — (w - ¢())y, 0}

4

® 3

B , = Lossg 1
‘:/ = LoSShinge
3

1

-3 -2 -1 0 1 2 3
margin (w - ¢(z))y
e Intuition: hinge loss upper bounds 0-1 loss, has non-trivial gradient

e Try to increase margin if less than 1

Loss = 0 is equivalent to the margin being at least 1

Support Vector Machine (SVM): hinge loss + regularization penalty, linear prediction

m n
R . T 9
minimize Z max{l —y@ . z()" 9 0} + A Z 0;
i=1 1=1
The regularization penalty is to avoid that parameters get too high values — make
hypothesis simple — here “simplicity” is related to the length of

Geometric interpretation: Loss = 0 — (Margin) (7 8)y > 1 — (Geometric margin)
[16]]= (T 0)y > ||0]|~* — Keeping ||@]|| small is a way to increase the geometric margin

Lagrangian interpretation in terms of constraints on the fs



MAX MARGIN SVM

Margin Linear SVM SO|Uti0n

Slide from Quaid Morris
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LOGISTIC REGRESSION

Lossiogistic (@, y, W) = log(1 + e~(W-¢(@)v)

4

Loss(z,y, w)

3 2 -1 o0 1 2 3
margin (w - ¢(z))y

Logistic regression uses logistic loss

m n
minimize + log(1 + efy'z(i)Tg + A 62
i ; 8 ) ; ;
Intuition: Try to increase margin even when it already exceeds 1

No matter how correct you are predicting, you will have non-zero loss, and so there is still
an incentive (although a diminishing one) to push the margin even larger.

Every single example results in an update of the parameters 0

Again, gradient descent is a reasonable algorithm
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PROBABILISTIC INTERPRETATION OF
LOGISTIC REGRESSION

» Like least squares, logistic regression has a probabilistic interpretation
» For binary classification problem, suppose that

1
1+ exp(—y - ho(x))

p(ylz; 0) =

and for each data point z(9), y(i) is sampled randomly from this distribution
» Then

e 1 (3) (9.
mlnlgmlze gogp(y |z**; 6)

= mini@mize log (1 + exp (*3/(” - he (m(z))))



MULTI-CLASS CLASSIFICATION

» When classification is not binary y € 0,1,...,k (i.e., classifying digit images), a common
approach is one-vs-all method

» Create a new set of y’s for the binary classification problem “is the label of this example

equal to 577
@ _ f1 if y® =3
Y771 =1 otherwise

and solve for the corresponding parameter 67

» For an input @, classify according to the hypothesis with the highest confidence:
argmax; hy; ()



OUTLINE

“Non-linear” regression/classification, overfitting, and model selection



NON-LINEAR
REGRESSION / CLASSIFICATION

Figures from Piyush Rai




IDEA OF KERNEL METHODS

» Map data to higher dimensions where it exhibits linear patterns
» Apply the linear model in the new input space
» Mapping = changing the feature representation

» Linear classifiers/regressors can be used!
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» Each example represented by a single b Map each example as z — {z, 22}

feature x

. . . » Each example now has two features

» No linear separator exists for this data (“derived” from the old representation)

» Data becomes linearly separable in the
new representation
Figures from Piyush Rai



NON-LINEAR FEATURE
TRANSFORMATION
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» Eajh example represented by two features » Map each example as
x = {z1, T2} m:{ml,mg}Hz:{x%,\/ixlxg,xg}

» Each example now has three features
Figures from Piyush Rai

DN
ot



w

X  Observed data
Linear regression prediction X

n
0

Peak Hourly Demand (GW)
N N N
NN o

=
0

=
o

70 75 80 85 90
High Temperature (F)

D
ol



26 X
5 24 x
5 XX ¢
c
c 2.2} X
§ X X
o 2r X X >2§<X
> X x &

3 1.8} X X X
T x XX >?<x Xx X
x 16l X X
< 1. N
&
1471 X
20 40 60 80

High Temperature (F)

Several days of peak demand vs. high temperature in Pittsburgh over all months



2.8

X Observed Data X
26| ——d=2 1

Peak Hourly Demand (GW)

20 40 60 80
High Temperature (F)

Linear regression with second degree polynomial features
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OVERFITTING

» We can either transform feature spaces and use linear hypothesis, or take the feature
spaces as they are given and use non-linear hypothesis

» In both cases the complezity of our hypothesis will depend on the number of parameters
and on the functional of the parametric hypothesis function

» Given the training data, we can always make the hypothesis more and more “complex” in
order to fit the data better and better

» To which extent should we push this way of proceeding?
» This would guarantee that the loss on the training data would get smaller and smaller

» Is this that we are aiming to?



GENERALIZATION LOSS AND
EMPIRICAL LOSS

Fundamental problem: we are looking for parameters that optimize

)y ()
m1n1(9m1ze ZE ho ("), y'\*)

=1

but what we really care about is loss of prediction on new examples (z/,y’)
— Generalization error)

This is the expected loss over all input-output pairs the learning machine will see . ..

To quantify this expectation, we need to define a prior probability distribution
P(X,Y) over the examples, which we assume as stationary (P doesn’t change)

The expected generalization loss is:

Lgen—Zahe (), y )P, y®)

=1

But P(X,Y) is not known, therefore it is only possible to estimate the generalization loss
with the empirical loss on a set of examples m < M:

1 ) )
Lemp = — > t(hg (=), y )



TRAINING AND VALIDATION LOSS

» Fundamental problem: we are looking for parameters that optimize the generalization
loss, using the empirical loss

» Solving the minimization problems for the empirical loss not necessarily brings the same
optimal generalization loss because of:

» unrealizability: the true hypothesis is not included in the considered universe
» wvariance: resulting from sampling different subsets of the possible data
» notse: predictions can differ for the same samples

» computational complexity: it might not be feasible to solve the problem to optimality

» Divide data into training set (used to find parameters for a fixed hypothesis class hgp),
and validation set (used to choose hypothesis class)

» What is the negative effect of doing this?



Peak Hourly Demand (GW)

2.8

261
2.4¢

2.2}

18¢
16}

1.4}

X  Training set X
. . X 4
X Validation set
XX
x .

X X X X )%g(

X X % %29&
ORI X X X

X X
20 40 60 80

High Temperature (F)

Training set and validation set




2.8

X Training set
~ 267 X validation set X
=
C
=]
c
IS
IS
]
[a}
=l
5
o
T
X
[
[}
o

20 40 60 80
High Temperature (F)

Training set and validation set, fourth degree polynomial



2.8 I L —

X Training set
267 x  validation set

2.4¢

2.2}

18¢
16}

Peak Hourly Demand (GW)

1.4}

20 40 60 80
High Temperature (F)

Training set and validation set, 30th degree polynomial: the the loss looks like?



TRAINING VS. VALIDATION LOSS

» General intuition for training and validation loss

A
—— Training
— Validation

Loss

N

Model Complexity

» We would like to choose hypothesis class that is at the “sweet spot” of minimizing
validation loss
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MODEL COMPLEXITY AND
REGULARIZATION

» A number of different ways to control “model complexity”

» An obvious one we have just seen: keep the number of features (number of parameters)
low

» A less obvious method: keep the magnitude of the parameters small



» Intuition: a 30th degree polynomial that passes exactly through many of the data points
requires very large entries in 6
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REGULARIZED LOSS MINIMIZATION
PROBLEM

» We can directly prevent large entries in 6 by penalizing the magnitude of its entries

» Leads to regularized loss minimization problem
m . . n
miniemize Zl 4 (hg (™), y(z)) +A Zl 62
1= 1=

where A € Ry is a regularization parameter that weights the relative penalties of the size
of 6 and the loss

» Think about imposing a constraint on each parameter — Lagrange multipliers
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EVALUATING ML ALGORITHMS

» The proper way to evaluate an ML algorithm (e.g., look at Cross-Validation):
Break all data into training/testing sets (e.g., 70%/30%)
Break training set into training/validation set (e.g., 70%/30% again)
Choose hyperparameters using validation set
(Optional) Once we have selected hyperparameters, retrain using all the training set

Evaluate performance on the testing set



OUTLINE

PAC learning and generalization bounds........... ... . ... i 47



USEFUL BOUNDS?

» Generalization bounds (how good?):
Given a finite amount of data, if we learn a classifier, can we have a guarantee on how well
that classifier will do on future data?

» Sample complexity (how many samples?):
If we require a bound on the classifier accuracy on future data points, can we bound how
many training samples we need to get such a classifier?

» Probably Approximately Correct (PAC) model of learning:
Any hypothesis that is seriously wrong will almost certainly be “found out” with high
probability after a small number of examples, because it will make incorrect predictions.

» — Any hypothesis that is consistent with a sufficiently large set of training examples
is unlikely to be seriously wrong

» — The (learned) hypothesis must be probably approximately correct

» A PAC learning model provides guarantees on the accuracy of the learning machine when
generalizing from the training examples



PAC MODEL

Input feature space X
P(X,Y), distribution over X: unknown but fixed and stationary

Hypothesis space (or Concept class) H of functions (also called concepts)
h:X — {0,1}

A target function is given for the examples, y; € H
Samples are independent and identically distributed, according to P

Training set of examples Z = {(x;,y:(x;)),i=1,...,m}



PAC MODEL

» Error rate of a hypothesis h, which is the same as the expected generalization error:

err(h) = Prpcx y)le : h(@) # yi(@)]

err(h) is the probability that h missclassifies a new example, that is, the expected
proportion of mistakes the hypothesis will make

Accuracy, € > 0:
We would like to find a hypothesis h with

err(h) <e

Such a hypothesis is called approzimately correct, meaning that it’s “close” to the real
target function. Technically, it is located inside the e-ball around the true hypothesis
function. In the hypothesis space 3, let’s indicate with Hp s this ball, and with Hp,q
everything that lies outside of the e-ball (the “seriously wrong” hypotheses)

Confidence, ¢ > 0:
We would like to achieve Prlerr(h) <e >1-4§

48



PAC LEARNING ALGORITHM

PAC Learning algorithm/machine/agent L:
A function L : Z — H from the training examples to H, such that for every €, > 0 there
exists a number mg(e, §) such that for every m > mg and every X, if m examples Z are
drawn from P(X,Y’) then:

Prlerr(h) > ¢ <1-39,

where h € H is the hypothesis learned by L according to Z, that is, L(Z) = h

The hypothesis space H is (PAC-)learnable if there is a learning algorithm L for H

In other words, if a learning algorithm L returns a hypothesis h that is consistent with
at least mo examples (i.e., it classifies them correctly) then with a probability of at least
1 — 4, L has an generalization error of at most ¢ — It is PAC! (h lies in Hpac)

The number mg (e, d) of required samples is the sample complexity of the hypothesis
space, and is independent of P. It depends on the characteristics of H and on X

Unfortunately this bound is typically very large :(



VALUE OF THE SAMPLE COMPLEXITY

» All hypotheses in Hp,q are such that the expected generalization error is greater than e:
err(h) > €, Vh € Hpaq

» What is the probability that a hypothesis h € Hpyq is consistent with the first mo
samples? (i.e., it classifies them correctly?)

» By definition, err(h) > ¢ = The probability that h agrees with a given single example x;
is at most 1 —e: Prplx; : h(x;) = ye(xi)] <1—¢€

» Since all examples are independent, the bound on h being consistent with a set Z of mg
examples is:
Prplxi,i=1,...,mo : h(z;) = ye(x;)] < (1 — €)™

» The probability that Hp,q contains at least one consistent hypothesis is bounded by the
sum of the individual probabilities of each hypothesis in Hp,g, therefore, from the
previous relation:

P(Hpqq contains a consistent hypothesis) < |Hpqq|(1 — €)™0 < |H|(1 —e)™0 < |H|e ™0

where the last inequality derives from a general mathematical bound



VALUE OF THE SAMPLE COMPLEXITY

» We aim to make the probability P(Hpeq contains a consistent hypothesis) being less than

a small positive number §:
P |Fe=cm0 < 6

» In fact, when this is true, the probability that a hypothesis h is an inconsistent one (i.e.,
belongs to Hpeq) after being consistent on mg samples is less than 4.

» In other words, with a probability 1 — § the machine L returns a hypothesis h that has an
expected error rate of at most e

» The required number mg of samples that guarantees PAC learning when h shows
consistency on all the mg samples, is found by solving wrt to mg the inequality
|H|e—€™0 < § using the logarithms:

1 1
mo > 7(log —~ +log |9{|)
€ 4
» myg is the sample complexity of the hypothesis space H

» The sample complexity is o to the log of cardinality of the hypothesis space, such that it
explodes for large numerable spaces and it is not defined for infinite spaces

» The concept of VC-dimension extends the notions of analysis of expected the
generalization errors to hypothesis sets of infinite cardinality and provides tighter bounds.
It provides a substitute for the term log |H|



VALUE OF THE SAMPLE COMPLEXITY

» If 3 is the set of all Boolean functions h : X — {0,1} and X is an n-dimensional feature
space, then |H| = 22" (all possible mappings from n inputs to 2 outputs)
= mo = O(2"), it grows exponentially with the number of the input features
— It is necessary to see almost ALL the possible examples!

» Intuitively: since H contains all generic mappings h, then, for any set Z of m examples,
the set of hypothesis consistent with Z contains equal numbers of hypotheses that would
classify a new example &,,+1 as 0 and as 1
— to assess something about generalization we would need to see all the possible
examples.

» To obtain useful results for generalization to new, unseen examples, one way is to restrict
H, avoiding to be too general. However, this might remove the possibility to have PAC
learning, since H might not include any feasible hypothesis function in the e-ball.



OUTLINE

VC-dimension and generalization bounds



BETTER BOUNDS USING
VC-DIMENSION

This is what we will obtain using the VC-dimension. . .

2M
(¢ {10 (3¢) +1) - 10gcp
test error @

Gives Upper Bound of Test Error with probability 1 —n
M=Number of Training Samples
C is related to capacity of machine and is called Vapnik-Chervonenkis (VC) Dimension

test error < training error +penalty (complexity)

Upper-bound test error

Complexity Term (penalty)

Training error

VC Dimension http://panthimanshul7.wordpress.com/



DEFINITIONS:
SET SHATTERING AND VC-DIMENSION

» Shattering: Let H be a hypothesis space (also called a concept class) defined over an
instance (feature) space X. Let Z = {@1,®2,...,&m} C X a subset (of examples) from
the instance space. The concept class H shatters (“to break into pieces”) Z if every
possible function on Z can be represented by some h € H. A function on Z is a mapping
from an input @ to an output y.

» Restricting the reasoning that follow to binary classification tasks where y € {0, 1}, we
can rephrase it saying that a set of instances Z is shattered by H if for any binary labeling
of the elements in Z there is a consistent hypothesis in 3 (i.e., there is a choice of the
learning parameters 6 such that the training error goes to zero).

» The number of possible mappings (i.e., binary labelings) on Z is equal to 2121

» Vapnik-Chervonenkis (VC) dimension: VC(H) is the maximum number of points
that can be shattered by H (i.e., the maximum cardinality of a set shattered by H). The
VC-dimension is oo is the maximum does not exist.



SHATTERING 3 POINTS IN RR?
WITH CIRCLES

All possible binary labelings of a set Z of three points in the plane

Can we find circle functions that shatter the set for all possible labelings?

Circles must separate the “negative” (blue) labels from the “positive” (white) ones: circles
must either enclose all negatively labeled points without enclosing any positively labeled
point, or vice versa. It does not matter which class is which, since swapping the labels
would only require the classifier to be inverted (i.e., to change sign).



SHATTERING 3 POINTS IN RR?
WITH CIRCLES

Every possible labeling can be covered by a circle, so we can shatter the 3 points set
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SHATTERING 3 POINTS IN R?
WITH CIRCLES

It’s seems it doesn’t work! This does work!

» We should be precise when defining the class of functions h we are considering

» In this case, the class is h(z1,22) = a[(z1 — c1)? + (z2 — c2)?] — 72, that is circles
centered in (c1,c2) of radius r. The coefficient a can be +1 or -1. If a = +1,
sign(h(z1,22)) > 0 classifies as “1” the samples falling outside of the circle, and “0” those
falling inside the circle. Vice versa when a < 0.

» Therefore, in the case of the example, the circle is around the white (“1”) labeled sample,
but the classifier can still correctly classify the blue (“0”) samples as negative ones using
a=+1.

» In general, we can assume that we use functions such that the sign of the classifier can be
inverted



OTHER SHATTERING EXAMPLES IN 2D

» In the first row, h(z1,22) = 23 + 3 — r2, and the classifier is as usual the sign(h(z1,z2))
function. The last case can’t be shattered, differently from the previous example, since the
parameter a is missing, and the sign function classifies as positive what is outside of the
origin-centered circle, while the white point would lie inside the circle. There is no way to
place a circle centered in the origin such that the two samples are classified correctly: the
circle will always enclose the blue point and classify the white point in the same way. In
general, it doesn’t matter how the two points are placed, such a situation will always arise
since one the two points is necessarily closer to the origin than the other.

» In the second row, hg(z1,z2) = 6121 + 0222 + Op. It’s always possible to find a vector 0
such that the function hg (an oriented line) correctly classifies three points, as long as
they are not collinear (i.e., as long as they are in general positions)

™
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SHATTERING FOUR POINTS IN 2D

» There’s no way to shatter four points using circles, since the labeling in the figure won’t

be feasible for a circle (left)
» It’s however possible using ellipsis (center)
» There’s no way to shatter four points using lines, again the labeling in the figure is not

.
/)
/@

/ !

/ /

achievable by a linear separator (right)
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MEASURING THE VC-DIMENSION

The quantify the VC-dimension of a concept class H{ over an instance space X:
Demonstrate it can shatter one set of size n (lower bound). This does not mean that
H can shatter any set of size n!

Demonstrate it cannot shatter any set of size n + 1 (upper bound). For all
n + 1-dimensional sets there is (at least) one labeling that can’t be shattered

Over a R? instance space, a linear classifier (oriented line) hg(z1,x2) = 0121 + 222 + 6o
can shatter sets of 3 points (as long as they are not collinear) but cannot shatter any set
of four points. Therefore, the VC-dimension of a linear learning machine over R? is 3.

The result can be generalized: the VC-dimension of the set of the oriented hyperplanes in
R™isn + 1.

The VC-dimension of axis-aligned hyperplanes is also n 4+ 1. In fact, as a special case of
the general oriented hyperplanes, it’s possible to find an n-dimensional example, but it
would clearly fail shattering in the n 4+ 1-dimensional case

Over a R? instance space, the VC-dimension of general circle functions is 3. Instead, for
origin-centered circles, the VC-dimension is 2 (they can clearly consistently classify set of
one element, but not sets of two elements)

The VC-dimension gives concreteness to the notion of “power” (capacity) of a learning
machine: an upper bound on the number of examples that a class of hypothesis could
consistently classify
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AXIS PARALLEL RECTANGLES IN 2D

» X is the set of all points in R?

» H is the set of all axis parallel rectangles in 2D

» (Left) VC > 3 since there is a placement of 3 points that can be shattered

» (Right) VC > 4 since there is a placement of 4 points that can be shattered

» (Middle) VC = 4 since for all placements of 5 points, there exists a labeling that can’t be

shattered
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INTERVALS ON THE REAL LINE

The concept class is defined by two parameters 61 and 02 in [0,1], that define an interval
[01, 62] on the real line. A concept function tags an input sample = € (0,1) as positive if
01 < x < 63, and negative otherwise.

VC-dim > 2. Selected a sample of 2 points 1 and z2 in (0, 1), we need to show that there
are values of 61 and 62 which realize all the possible four labelings:

{(+7 +)7 (_7 _)7 (+7 _)7 (_7 +)}

This is clearly possible as one can place the interval [01, 02] such that the intersection with
the interval [z1, z2] is null, (thus producing (-, -)), or to fully include [z1, z2] (thus
producing (+, +)) or to partially intersect [x1,z2] such that z1 or zo are excluded (thus
producing the remaining two labelings).

VC-dim cannot be more that 2, since any sample of three points {z1,z2,z3} on the line
(0,1) cannot be shattered (z1 < 2 < x3). It is sufficient to show that one of the labelings
is not realizable: in particular, the labeling (+, -, 4+) cannot be realizable by any interval
[01,02] because if z1,x3 are labeled positive then by definition the interval [01, 2] must
fully include the interval [z1,z3] and since z1 < x2 < z3 then z2 must be labeled positive
as well, which makes the labeling unfeasible.




ADDITIONAL SOURCES

More examples, as well as an accessible treatment of the topics related to the VC
dimension and PAC learning can be found in
http://www.liaolin.com/Courses/vc-dimension.pdf

The following are the slides from Emma, that summarize the results deriving from the use
of the VC dimension
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VC DIMENSION

 Poll 3: X = real line, C = intervals, what is

VC-dim(C)?
1 5
2 o0

* Poll 4: X = real line, C = unions of
intervals, what is VC-dim(C)?
2 4

3 o'e)



SAMPLE COMPLEXITY

* Theorem: a concept class C with VC-
dim(C)= oo is not PAC learnable

* Theorem: Let C with VC-dim(C)= d. Let

L be an algorithm that produces an h € C
that is consistent with the given samples
S. Then L is a learning algorithm for C

with my = Cg( 10g5 —log )



Agnostic Learning: VC Bounds

[Schélkopf and Smola, 2002]

With probability at least (1-6) every & € H satisfies

VO(H)(n 20 +1) +1n 8
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Structural Risk Minimization .

Which hypothesis space should we choose?
« Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

VO (H)(In j—,'f-"m +1)+In%
errortrye(h) < ETTﬂffmin(h)_}'V}l ASCD ﬂ

T

* unfortunately a somewhat loose bound...



errorirye(h) << errorypgin(h)+

Structural Risk Minimization
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ML Model Class Selection:
What You Should Know

« Define training error, generalization error and model
selection problem
« Be able to apply training set partitioning to both identify
a model class expect to yield good generalization error,
and provide an estimation of that generalization error
(and explain why this procedure is reasonable)
« Empirical approach:
 partition data
« Define VC dimension and be able to
* Prove the VC dimension of a particular model class
» Use it to obtain a bound on the generalization error
* Know how many data points are needed to learn a
PAC classifier as a function of VC



Online Resources

http://www.autonlab.org/tutorials/vcdim08.pdf
http://www.cs.cmu.edu/~awm/10701/slides/PAC-learning-10-25-05.pdf

https://alliance.seas.upenn.edu/~cis520/wiki/index.php?n=Recitations.VCDim

http://web.engr.oregonstate.edu/~xfern/classes/cs534/midterm-solutions-07.pdf

http://www.cs.cmu.edu/~guestrin/Class/10701/slides/learningtheory-bigpicture.pdf
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