

### **OPTIMIZATION PROBLEMS**

- Casting AI problems as optimization problems has been one of the primary trends of the last 15 years
- A seemingly remarkable fact:

|               | Search<br>problems | Optimization problems     |
|---------------|--------------------|---------------------------|
| Variable type | Discrete           | Continuous                |
| # solutions   | Finite             | Infinite                  |
| Complexity    | Exponential        | Polynomial (Convex class) |

#### FORMAL DEFINITION

- Optimization problems are of the form  $\min_{x} f(x)$  such that  $x \in \mathcal{F}$ 
  - $\circ$   $f: \mathbb{R}^n \mapsto \mathbb{R}$  is the objective function
  - $\circ$   $x \in \mathbb{R}^n$  is the optimization vector variable
  - $\circ$   $\mathcal{F} \subseteq \mathbb{R}^n$  is the feasible set (constraints)
- $\mathbf{x}^* \in \mathbb{R}^n$  is an optimal solution (global minimum) if  $\mathbf{x}^* \in \mathcal{F}$  and  $f(\mathbf{x}^*) \leq f(\mathbf{x})$  for all  $\mathbf{x} \in \mathcal{F}$
- Mathematical programming problem

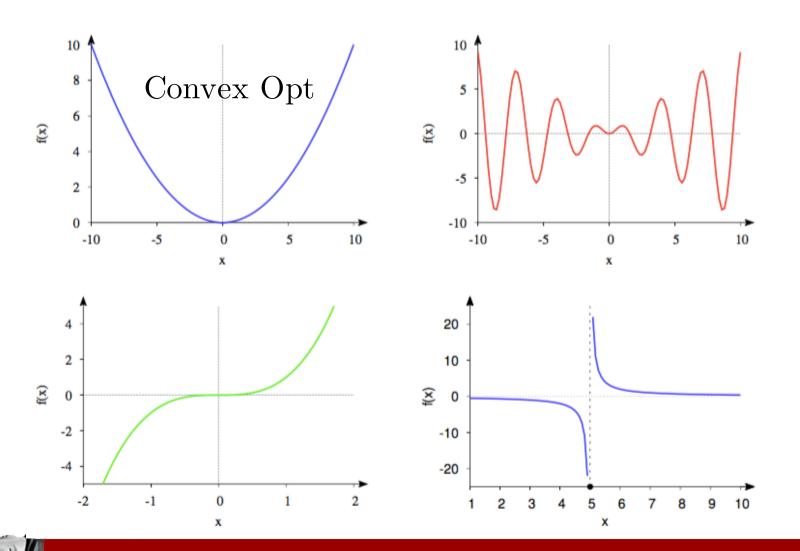
## PROPERTIES

• Given an optimization problem:

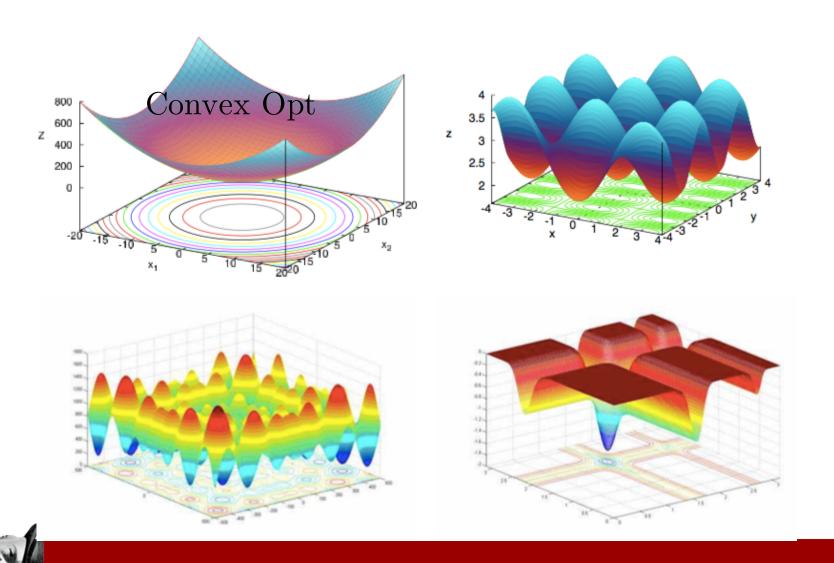
$$\min_{\mathbf{x}} f(\mathbf{x})$$
  
such that  $\mathbf{x} \in \mathcal{F}$ 

- $\min_{x} f(x)$  is equivalent to  $\max_{x} -f(x)$
- If  $\mathcal{F} = \emptyset$  the problem has no solution (unfeasible)
- If  $\mathcal{F}$  is an open set, only the  $\inf$  (sup) is guaranteed but not  $\min$  (max)
- The problem is unbounded if  $f \to -\infty$

#### Unconstrained 1D Example Cases



#### Unconstrained 3D Example Cases



# (CONSTRAINED) EXAMPLE CASES OF MATHEMATICAL PROGRAMMING

#### Linear

min<sub>$$\vec{x}$$</sub>  $2x_1 + x_2 - 4x_3$   
s.t.  $x_1 + x_2 \le 5$   
 $x_1, x_2, x_3 \ge 0$ 

min<sub>$$\vec{x}$$</sub>  $2x_1 + x_2 - 4x_3^3$   
s.t.  $x_1 + \sqrt{x_2} \le 5$   
 $x_1, x_2, x_3 \ge 0$ 

Non-linear

#### Convex

$$2x_1 + x_2 - 4x_3 
x_1^4 + x_2 \le 5 
x_1 + x_3 \ge 0$$

$$2x_1 + x_2 + 4x_3^3 x_1 + sin(x_2) \le 5 x_1 + x_3 \ge 0$$

Non-convex

#### Reals

$$2x_1 + x_2 - 4x_3 
x_1 + x_2 \le 5 
x_1, x_2, x_3 \ge 0$$

$$2x_1 + x_2 - 4x_3$$
  
 $x_1 + x_2 \le 5$   
 $x_1, x_2, x_3 \in \mathbb{Z}^+$ 

Zeals

#### Certainty

$$2x_1 + x_2 - 4x_3 x_1 + x_2 \leq 5 x_1, x_2, x_3 \in \{0, 1\}$$

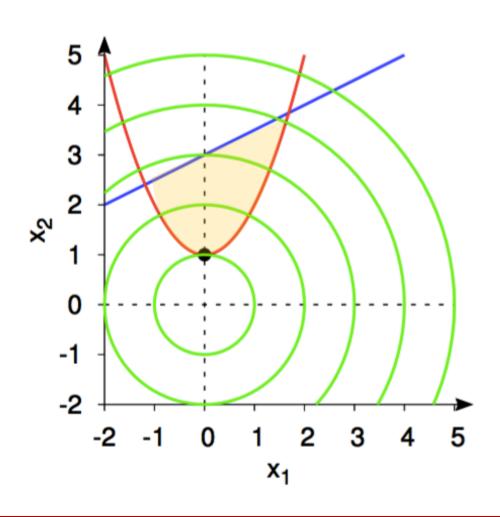
$$2x_1 + x_2 - \mathbb{E}_{\omega} Q(x_3, \omega)$$
  
 $x_1 + x_2 \leq 5$   
 $x_1, x_2, x_3 0, \omega \sim U[0, 10]$ 

Stochastic



#### Example of Constrained MP

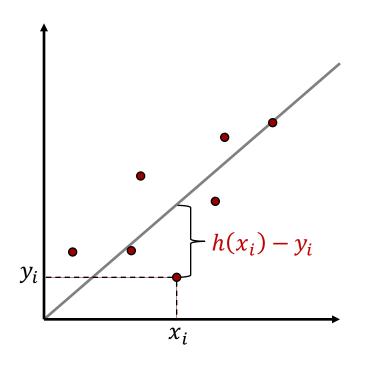
$$\min_{\vec{x}} z = x_1^2 + x_2^2$$
 $s.t.$   $x_1 - 2x_2 + 6 \ge 0$ 
 $-x_1^2 + x_2 - 1 \ge 0$ 
 $x_1, x_2 \ge 0$ 



# EXAMPLE: LEAST-SQUARES FITTING

• Given  $(x_i, y_i)$  for i = 1, ..., m, find h(x) = ax + b that optimizes  $\min_{a,b} \sum (ax_i + b - y_i)^2$ (a is slope, b is

intercept)



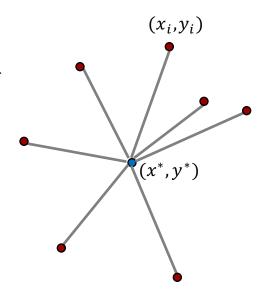


#### EXAMPLE: WEBER POINT

• Given  $(x_i, y_i)$  for i = 1, ..., m, find the point  $(x^*, y^*)$  that minimizes the sum of Euclidean distances:

$$\min_{x^*,y^*} \sum_{i=1}^m \sqrt{(x^* - x_i)^2 + (y^* - y_i)^2}$$

• Many modifications, e.g., might want  $a \le x^* \le b$ ,  $c \le y^* \le d$ 



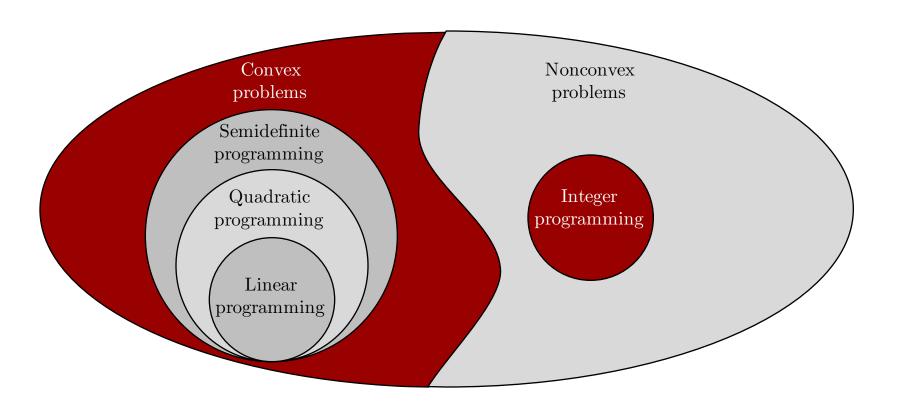
#### Machine Learning

• Many machine learning problems can be described as minimizing a loss function

$$\min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^m L\left(\sum_{j=1}^n \alpha_j x_j^{(i)}, y^{(i)}\right)$$

- $x^{(i)} \in \mathbb{R}^n$  are input features
- $y^{(i)} \in \mathbb{R}$  (regression) or  $y^{(i)} \in \{0,1\}$  (classification) are outputs
- $\alpha \in \mathbb{R}^n$  are model parameters

## THE OPTIMIZATION UNIVERSE



#### CONVEX OPTIMIZATION

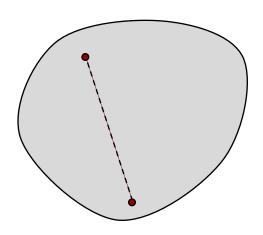
• A convex optimization problem is a special case of a general optimization problem  $\min f(x)$ 

such that  $x \in \mathcal{F}$ 

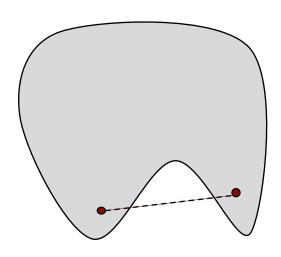
where the target function  $f: \mathbb{R}^n \to \mathbb{R}$  is a convex function, and the feasible region  $\mathcal{F}$ is a convex set

## CONVEX SETS

- A set  $\mathcal{F} \subseteq \mathbb{R}^n$  is convex if for all  $x, y \in \mathcal{F}$  and  $\theta \in$  $[0,1], \theta x + (1-\theta)y \in \mathcal{F}$
- A set is convex if, given two points in it, it contains all their possible linear (convex) combinations



Convex set



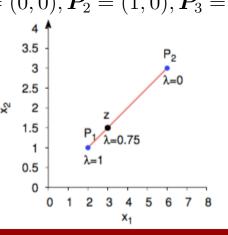
Nonconvex set

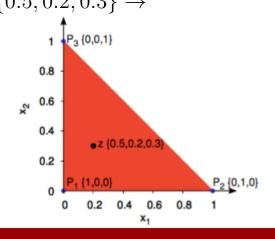
### CONVEX COMBINATION

• Given k points  $P_i \in \mathbb{R}^n$ , i = 1, ..., k, a point  $z \in \mathbb{R}^n$  is a **convex** combination of the points  $P_i$  if:

$$z = \sum_{i=1}^{k} \lambda_i \mathbf{P}_i, \quad \lambda_i \ge 0 \ \forall i, \quad \sum_{i=1}^{k} \lambda_i = 1$$

- If k = 2  $\rightarrow z = \lambda P_1 + (1 \lambda)P_2$ ,  $\lambda_1 = \lambda$ ,  $\lambda_2 = (1 \lambda)$
- Example: k = 2,  $P_1 = (2,1)$ ,  $P_2 = (6,3)$ ,  $\lambda = 0.75 \rightarrow z = (3,1.5)$
- Example: k = 3,  $\mathbf{P}_1 = (0,0), \mathbf{P}_2 = (1,0), \mathbf{P}_3 = (0,1), \lambda_i = \{0.5, 0.2, 0.3\} \rightarrow$ z = (0.2, 0.3)

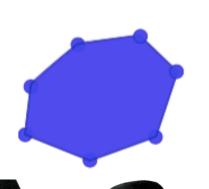


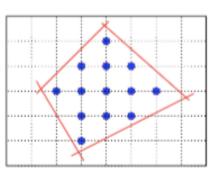


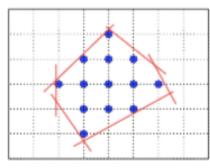
## CONVEX HULL

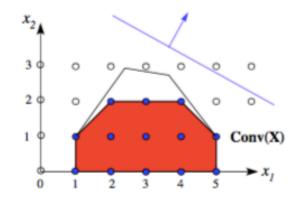
- Given a set P of k points of  $\mathbb{R}^n$ ,  $P = \{P_1, P_2, \dots, P_k\}$ , the smallest convex set, conv(P), that includes P is the **convex hull**,  $P \subseteq conv(P)$
- conv(P) is the set of all convex combinations of the points in P:

$$conv(P) = \{ z \in \mathbb{R}^n : z = \sum_{i=1}^k \lambda_i \mathbf{P}_i, \quad \forall \lambda_i, i = 1, \dots, k \mid \lambda_i \ge 0 \land \sum_{i=1}^k \lambda_i = 1 \}$$



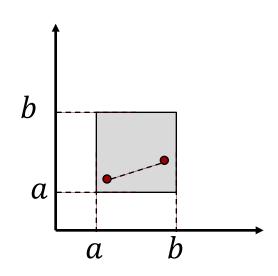




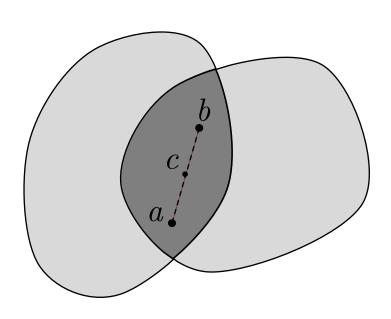


### EXAMPLES OF CONVEX SETS

- $\mathcal{F} = \{x \in \mathbb{R}^n : \forall i = 1, ..., n, a \le x_i \le b\}$
- Proof:
  - Let  $x, y \in \mathcal{F}$ , and  $\theta \in [0,1]$
  - For all i = 1, ..., n,  $a \leq x_i$  and  $a \leq y_i$ , so  $\theta x_i + (1 - \theta)y_i \ge \theta a + (1 - \theta)a = a$
  - Similarly,  $\theta x_i + (1 \theta)y_i \le b$
  - Therefore  $\theta x + (1 \theta)y \in \mathcal{F}$



#### Intersection of convex sets



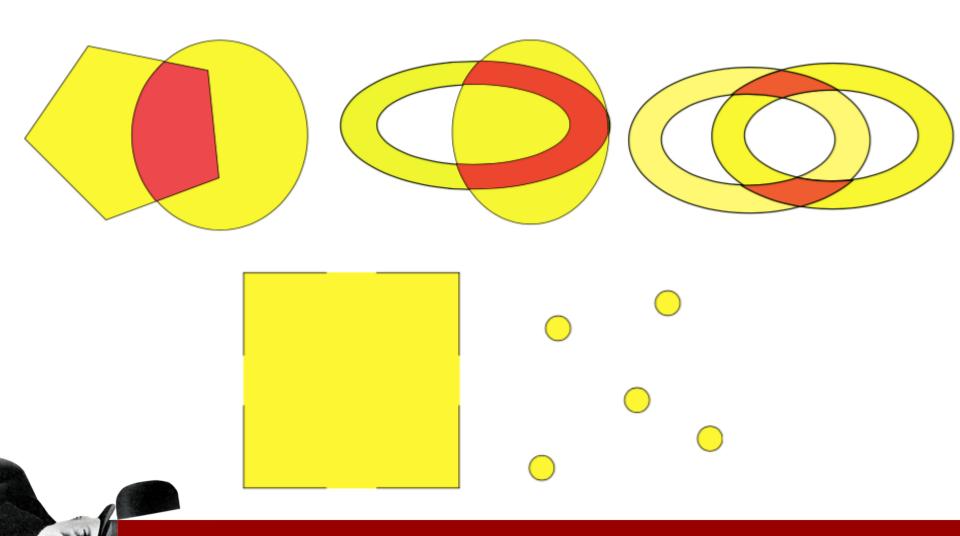
#### Intersection of convex sets •

$$\mathcal{F} = \bigcap_{i=1}^m C_i$$
  
$$C_1, \dots, C_m \text{ are convex}$$

#### Proof (by contradiction):

- Let's prove it first for two convex sets A and B.
- Let a and b be two points belonging to  $C = A \cap B$  (and, therefore, to both A) and B).
- Let's assume there is a third point c on the line between that a and b, such that  $c \notin C$ , meaning that C is not convex.
- But, for the convexity of A, every point on the line a-b must be in A, and the same holds for  $B \to c$  must be in C!
- For m intersecting sets the same reasoning can be applied in pairs

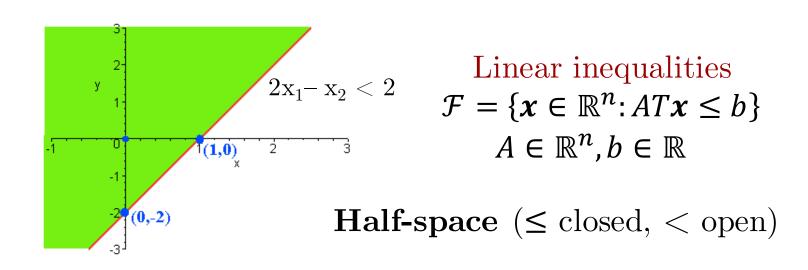
# EXAMPLES OF (NON)CONVEX SETS



#### EXAMPLES OF CONVEX SETS

- Poll 1: Which of the following sets are convex:
  - 1.  $\mathcal{F} = \bigcup_{i=1}^m C_i$  where  $C_1, \dots, C_m$  are convex
  - 2.  $\mathcal{F} = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{b} \} \text{ where } A \in \mathbb{R}^{m \times n},$  $\boldsymbol{b} \in \mathbb{R}^m$
  - 3. Both
  - 4. Neither

#### LINEAR INEQUALITIES



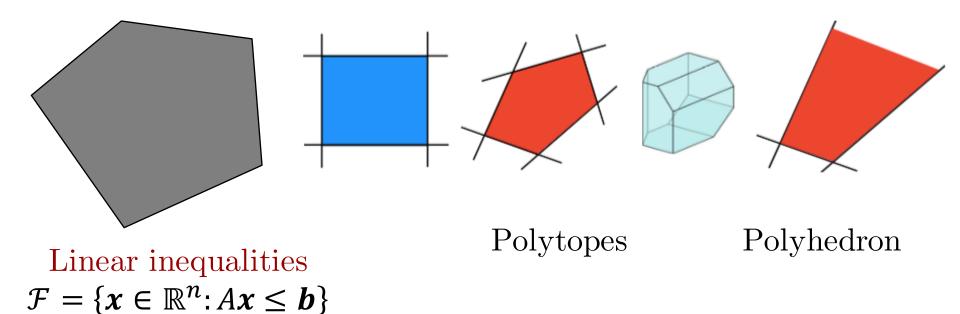
Convex (obvious by geometrical considerations):

Two points x and y in  $\mathcal{F}$ :  $ax \leq b$ ,  $ay \leq b$ 

$$\theta x + (1 - \theta)y \in \mathcal{F}? \to \theta x + (1 - \theta)y \le b/a$$

$$\theta x + (1 - \theta)y \le \theta(\frac{b}{a}) + (1 - \theta)(\frac{b}{a}) = b/a$$

# Systems of linear inequalities



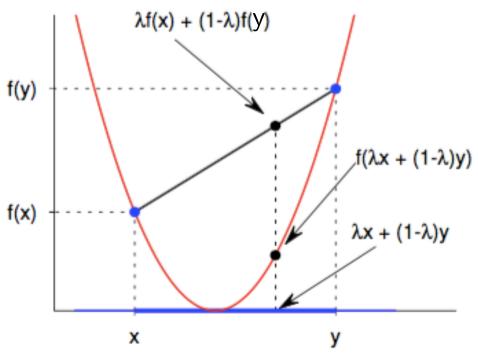
- Every half-space inequality defines a convex set
- Their intersection is convex

 $A \in \mathbb{R}^{m \times n}$ ,  $\boldsymbol{b} \in \mathbb{R}^m$ 

### CONVEX FUNCTIONS

A function  $f: \mathbb{R}^n \to \mathbb{R}$  is **convex** if for any  $x, y \in \mathbb{R}^n$  and  $\lambda \in [0,1]$ 

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$



The graph of f is always below (or on) the line segment  $\lambda f(\boldsymbol{x}) + (1-\lambda)f(\boldsymbol{y})$  connecting  $(\boldsymbol{x}, f(\boldsymbol{x}))$  to  $(\boldsymbol{y}, f(\boldsymbol{y}))$ 

The line interpolation between any two points in the domain, always over estimates the value of the function

For  $f: \mathbb{R} \to \mathbb{R}$ , this equals to f'' > 0



#### Examples of convex problems

- Exponential:  $f(x) = e^{ax}$ 
  - $f''(x) = a^2 e^{ax} \ge 0 \text{ for all } x \in \mathbb{R}$
- Euclidean (L2) norm:  $f(x) = ||x||_2 = \sqrt{\sum_{i=1}^{n} (x_i)^2}$ 
  - $\|\theta \mathbf{x} + (1 \theta)\mathbf{y}\|_{2} \le \|\theta \mathbf{x}\|_{2} + \|(1 \theta)\mathbf{y}\|_{2}$   $= \theta \|\mathbf{x}\|_{2} + (1 \theta)\|\mathbf{y}\|_{2}$
- If f(y) is convex in y, f(Ax b) is convex in x

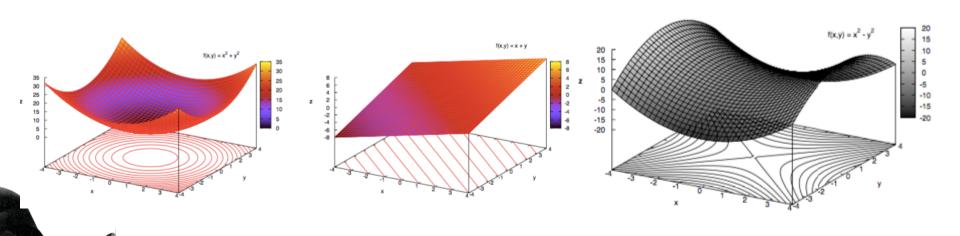
Affine transformation

#### Examples of convex problems

• Sublevel sets (isolines): If f is convex,

$$\{x \in \mathbb{R}^n : f(x) \le c\}$$
 is a convex set

$$f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y) \le \lambda c + (1-\lambda)c = c$$



#### EXAMPLES OF CONVEX PROBLEMS

- Poll 2: Which functions are convex?
  - 1.  $f(\mathbf{x}) = \sum_{i=1}^{m} a_i f_i(\mathbf{x})$  where  $f_i$  is convex and  $a_i \ge 0$  for i = 1, ..., m
  - 2.  $g(\mathbf{x}) = \sqrt{\sum_{i=1}^{n} x_i} \text{ for } \mathbf{x} \ge 0$
  - 3. Both
  - 4. Neither



#### EXAMPLES OF CONVEX PROBLEMS

• Weber point in *n* dimensions:

$$\min_{x^*} \sum_{i=1}^{m} ||x^* - x^{(i)}||_2$$

where  $\mathbf{x}^* \in \mathbb{R}^n$  is optimization variable and  $\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(m)}$  are problem data

• A convex optimization problem (why?)

Affine transformation over a convex function (Euclidean norm) + Linear combination which is also convex

#### EXAMPLES OF CONVEX PROBLEMS

• Linear programming:

$$\min_{\mathbf{x}} \mathbf{c}^{T} \mathbf{x}$$
s.t.  $A\mathbf{x} = \mathbf{a}$ 

$$B\mathbf{x} < \mathbf{b}$$

where  $x \in \mathbb{R}^n$  is optimization variable, and  $c \in \mathbb{R}^n$ ,  $A \in \mathbb{R}^{m \times n}$ ,  $a \in \mathbb{R}^m$ ,  $B \in \mathbb{R}^{k \times n}$ .  $\boldsymbol{b} \in \mathbb{R}^k$  are problem data

• A convex optimization problem (why?)

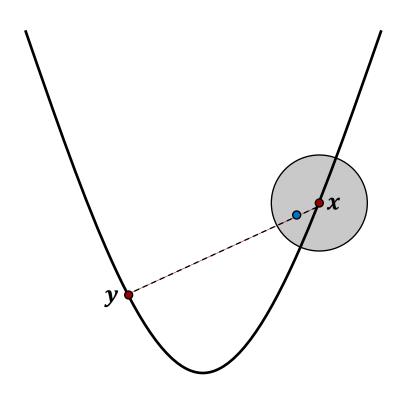
### GLOBAL AND LOCAL OPTIMALITY

- A point  $\mathbf{x} \in \mathbb{R}^n$  is globally optimal (global minimum) if  $\mathbf{x} \in \mathcal{F}$  and for all  $\mathbf{y} \in \mathcal{F}$ ,  $f(\mathbf{x}) \leq f(\mathbf{y})$
- A point  $\mathbf{x} \in \mathbb{R}^n$  is locally optimal if  $\mathbf{x} \in \mathcal{F}$  and there exists R > 0 small such that for all  $\mathbf{y} \in \mathcal{F}$  with  $\|\mathbf{x} \mathbf{y}\|_2 \le R$ ,  $f(\mathbf{x}) \le f(\mathbf{y})$
- Theorem: For a convex optimization problem, all locally optimal points are globally optimal (one, or infinite global optima)

## PROOF OF THEOREM

- Suppose  $\boldsymbol{x}$  is locally optimal for some R, but not globally optimal
- There is **y** such that f(y) < f(x)
- Define

$$z = \theta x + (1 - \theta)y$$
for  $\theta = 1 - \frac{R}{2\|x - y\|_2}$ 





#### PROOF OF THEOREM

#### • Then:

z is feasible (for small enough R)

$$f(\mathbf{z}) = f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$$
$$< \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{x}) = f(\mathbf{x})$$

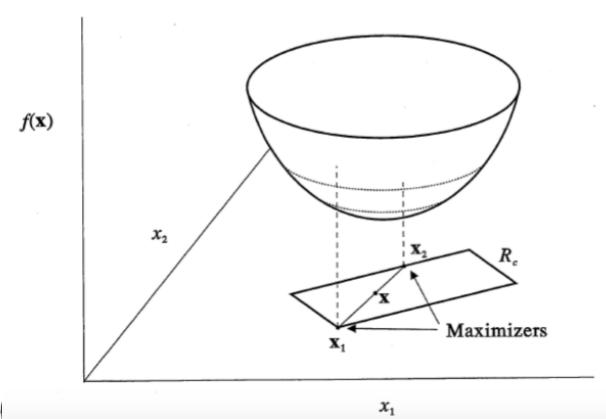
$$\| \boldsymbol{x} - \boldsymbol{z} \|_2 = \left\| \frac{R}{2 \|\boldsymbol{x} - \boldsymbol{y}\|_2} (\boldsymbol{x} - \boldsymbol{y}) \right\|_2 = \frac{R}{2} < R$$

it's inside thee R ball!

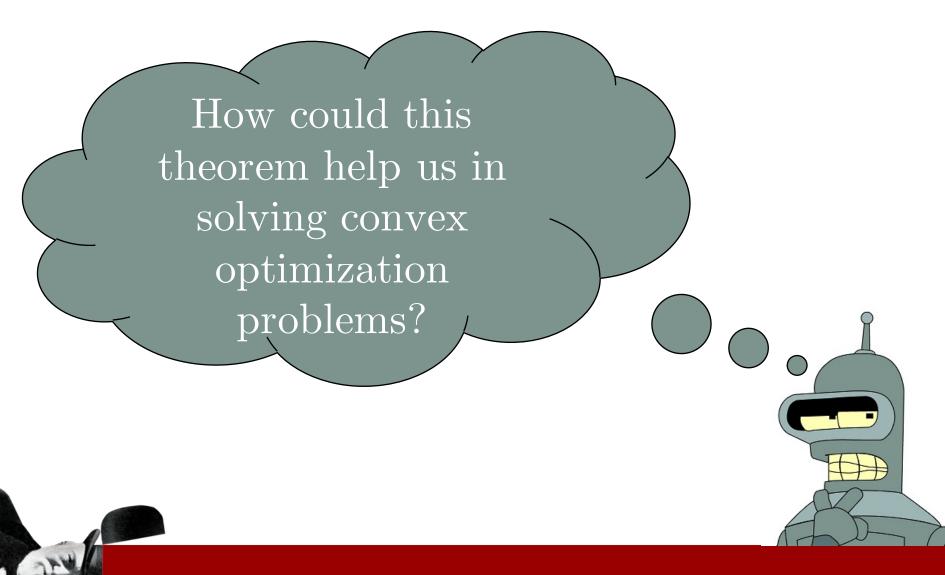
• Therefore, **x** is not locally optimal, contradicting our assumption ■

# MAXIMA OF CONVEX FUNCTIONS

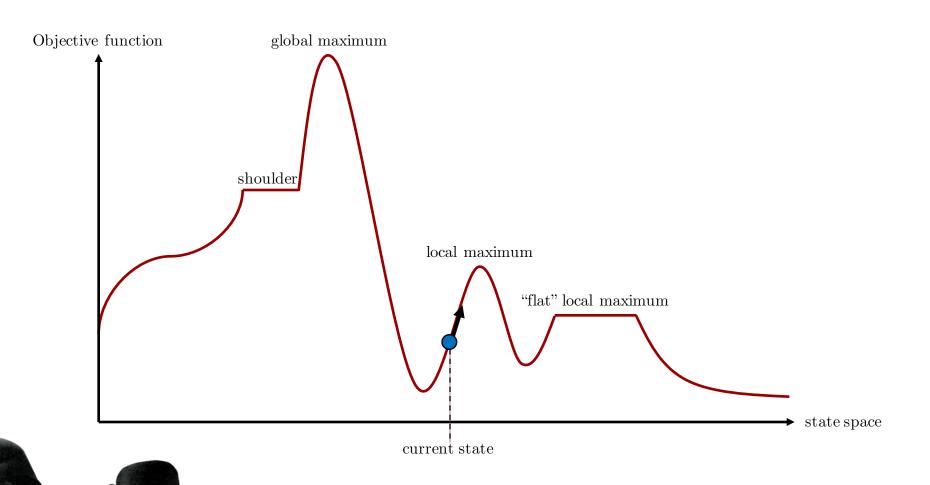
On the frontier of the domain





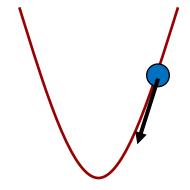


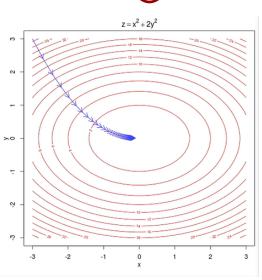
#### REMINDER: HILL-CLIMBING SEARCH



## SOLVING CONVEX PROBLEMS

- Convex optimization problems can be solved in **polynomial time**
- For unconstrained problems, use gradient descent
- Constrained problems require a projection operator that, given  $\boldsymbol{x}$ , returns the "closest"  $y \in \mathcal{F}$





### SOLVING CONVEX PROBLEMS

- There are a wide range of tools that can take optimization problems in "natural" forms and compute a solution
- Examples include: CVX (MATLAB), YALMIP (MATLAB), AMPL (custom language), GAMS (custom language), cvxpy (Python)

#### SOLVING CONVEX PROBLEMS

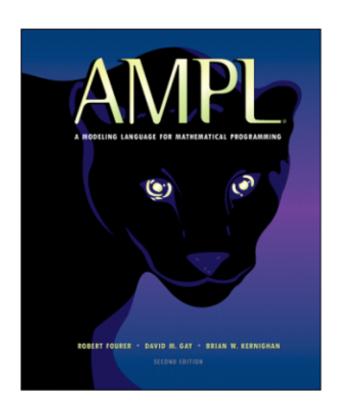


```
Given \boldsymbol{a}^{(i)} \in \mathbb{R}^2 for i = 1, ..., m,
                                                                        Constrained
\min_{x} \sum_{i=1}^{\infty} ||x - a^{(i)}||_{2} \text{ s.t. } x_{1} + x_{2} = 0
                                                                             Weber
                                                                              Point
```

```
import cvxpy as cp
                      import numpy as np
m = 10
A = np.random.randn(m,n)
x = cp.Variable(n)
                      f = sum([cp.norm(x - A[i,:],2) for i in range(m)])
                      constraints = [sum(x) == 0]
                      result = cp.Problem(cp.Minimize(f), constraints).solve()
                      print x.value
```



# AMPL: A SET OF SOLVERS + NICE MODELING LANGUAGE



```
set ORIG; # origins
set DEST; # destinations
set LINKS within {ORIG, DEST};
param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations
   check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # units to be shipped
minimize Total Cost:
   sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG}:
   sum {(i,j) in LINKS} Trans[i,j] = supply[i];
subject to Demand { j in DEST}:
   sum {(i,j) in LINKS} Trans[i,j] = demand[j];
```



# SUMMARY

#### • Terminology:

- Convex optimization problem
- Convex set
- Convex function
- Local and global optimum

#### • Big ideas:

In convex problems, every locally optimal solution is globally optimal!

