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OPTIMIZATION PROBLEMS

• Casting AI problems as optimization 
problems has been one of the primary 
trends of the last 15 years

• A seemingly remarkable fact:
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Search 
problems

Optimization 
problems

Variable type Discrete Continuous
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FORMAL DEFINITION
• Optimization problems are of the form

min
𝒙
𝑓 𝒙

such	that	𝒙 ∈ ℱ
o 𝑓: ℝ1 ⟼	ℝ is the objective function
o 𝒙 ∈ ℝ1 is the optimization vector variable
o ℱ ⊆ ℝ1 is the feasible set (constraints)

• 𝒙∗ ∈ ℝ1 is an optimal solution (global minimum) if                       
𝒙∗ ∈ ℱ and 𝑓 𝒙∗ ≤ 𝑓(𝒙) for all 𝒙 ∈ ℱ

• Mathematical programming problem

3



15781 Fall 2016: Lecture 13

PROPERTIES

• Given an optimization problem:
min
𝒙
𝑓 𝒙

such	that	𝒙 ∈ ℱ
• min

𝒙
𝑓 𝒙 is equivalent to m𝑎𝑥

𝒙
−𝑓 𝒙

• If ℱ = 	∅		the problem has no solution (unfeasible)
• If ℱ	is an open set, only the inf (sup) is guaranteed 

but not min (max)
• The problem is unbounded if f → −∞
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UNCONSTRAINED 1D EXAMPLE CASES
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Convex Opt
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UNCONSTRAINED 3D EXAMPLE CASES
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Convex Opt
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(CONSTRAINED) EXAMPLE CASES OF
MATHEMATICAL PROGRAMMING
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Linear

Non-linear

Convex

Non-convex

Reals

Zeals

Certainty

Stochastic
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EXAMPLE OF CONSTRAINED MP
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EXAMPLE: LEAST-SQUARES FITTING

• Given 𝑥?, 𝑦? for 
𝑖 = 1, … ,𝑚, find 
ℎ 𝑥 = 𝑎𝑥 + 𝑏 that 
optimizes

min
I,J

K 𝑎𝑥? + 𝑏 − 𝑦? L
M

?NO
(𝑎 is slope, 𝑏 is 
intercept)
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𝑥?

𝑦?
ℎ 𝑥? − 𝑦?



15781 Fall 2016: Lecture 13

EXAMPLE: WEBER POINT

• Given 𝑥?, 𝑦? for 𝑖 = 1,… ,𝑚, 
find the point (𝑥∗, 𝑦∗) that 
minimizes the sum of Euclidean 
distances:

min
P∗,Q∗

K 𝑥∗ − 𝑥? L + 𝑦∗ − 𝑦? L				
M

?NO

• Many modifications, e.g., might 
want 𝑎 ≤ 𝑥∗ ≤ 𝑏, 𝑐 ≤ 𝑦∗ ≤ 𝑑
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(𝑥? ,𝑦?)

(𝑥∗, 𝑦∗)
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MACHINE LEARNING

• Many machine learning problems can be 
described as minimizing a loss function

min
𝜶∈ℝU

K𝐿 K𝛼X𝑥X
? , 𝑦 ?

1

XNO

M

?NO

o 𝒙 ? ∈ ℝ1 are input features
o 𝑦 ? ∈ ℝ (regression) or 𝑦 ? ∈ {0,1} (classification) 

are outputs 
o 𝜶 ∈ ℝ1 are model parameters
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THE OPTIMIZATION UNIVERSE

12

Linear
programming

Quadratic 
programming

Semidefinite 
programming

Convex
problems

Nonconvex
problems

Integer
programming
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CONVEX OPTIMIZATION

• A convex optimization problem is a special 
case of a general optimization problem

min
𝒙
𝑓 𝒙

such	that	𝒙 ∈ ℱ
where the target function 𝑓: ℝ1 → ℝ is a 
convex function, and the feasible region	ℱ
is a convex set
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CONVEX SETS

• A set ℱ ⊆ ℝ1 is convex if for all 𝒙, 𝒚 ∈ ℱ and 𝜃 ∈
0,1 , 𝜃𝒙 + 1 − 𝜃 𝒚 ∈ ℱ

• A set is convex if, given two points in it, it contains 
all their possible linear (convex) combinations 
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Convex set Nonconvex set
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CONVEX COMBINATION

15

• Given k points Pi 2 Rn, i = 1, . . . , k, a point z 2 Rn
is a convex

combination of the points Pi if:

z =

kX

i=1

�iPi, �i � 0 8i,
kX

i=1

�i = 1

• If k = 2 ! z = �P1 + (1� �)P2, �1 = �, �2 = (1� �)

• Example: k = 2, P1 = (2, 1), P2 = (6, 3), � = 0.75 ! z = (3, 1.5)

• Example: k = 3, P1 = (0, 0),P2 = (1, 0),P3 = (0, 1),�i = {0.5, 0.2, 0.3} !
z = (0.2, 0.3)
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CONVEX HULL
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• Given a set P of k points of Rn
, P = {P1,P2, . . . ,Pk}, the smallest

convex set, conv(P ), that includes P is the convex hull, P ✓ conv(P )

• conv(P ) is the set of all convex combinations of the points in P :

conv(P ) = {z 2 Rn
: z =

kX

i=1

�iPi, 8�i, i = 1, . . . , k | �i � 0 ^
kX

i=1

�i = 1}
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EXAMPLES OF CONVEX SETS

• ℱ = {𝒙 ∈ ℝ1: ∀𝑖 = 1,… , 𝑛, 𝑎 ≤ 𝑥? ≤ 𝑏}
• Proof:

o Let 𝒙, 𝒚 ∈ ℱ, and 𝜃 ∈ [0,1]
o For all 𝑖 = 1, … , 𝑛,

𝑎 ≤ 𝑥? and 𝑎 ≤ 𝑦?, so
𝜃𝑥? + (1 − 𝜃)𝑦? ≥ 𝜃𝑎 + 1− 𝜃 𝑎 = 𝑎

o Similarly, 𝜃𝑥? + (1 − 𝜃)𝑦? ≤ 𝑏
o Therefore 𝜃𝒙+ 1− 𝜃 𝒚 ∈ ℱ		∎
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𝑎

𝑏

𝑎 𝑏
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INTERSECTION OF CONVEX SETS
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Intersection of convex sets
ℱ = ⋂?NO

M 𝐶?
𝐶O,… , 𝐶M are convex

Proof (by contradiction):
• Let’s prove it first for two convex sets 

A and B.
• Let a and b be two points belonging to 

C = A ∩ B (and, therefore, to both A 
and B).

• Let’s assume there is a third point c on 
the line between that a and b, such that 
c ∉ C, meaning that C is not convex.

• But, for the convexity of A, every point 
on the line a-b must be in A, and the 
same holds for B → c must be in C!

• For m intersecting sets the same 
reasoning can be applied in pairs

a

b
c.
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EXAMPLES OF (NON)CONVEX SETS
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EXAMPLES OF CONVEX SETS

• Poll 1: Which of the following sets are 
convex:
1. ℱ =∪?NOM 𝐶? where 𝐶O,… , 𝐶M are convex
2. ℱ = 𝒙 ∈ ℝ1: 𝐴𝒙 = 𝒃 where 𝐴 ∈ ℝM×1,

𝒃 ∈ ℝM

3. Both
4. Neither
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LINEAR INEQUALITIES
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Linear inequalities
ℱ = 𝒙 ∈ ℝ1:𝐴𝑇𝒙 ≤ 𝑏

𝐴 ∈ ℝ1,𝑏 ∈ ℝ

2x1– x2 < 2

Half-space (≤ closed, < open)

Convex (obvious by geometrical considerations):
Two points x and y in ℱ: ax ≤ b, ay ≤ b
𝜃𝑥 + 1− 𝜃 𝑦 ∈ ℱ? → 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ b/a
𝜃𝑥 + 1− 𝜃 𝑦 ≤ 𝜃(JI) + 1 − 𝜃 (JI) = b/a
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SYSTEMS OF LINEAR INEQUALITIES
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Linear inequalities
ℱ = 𝒙 ∈ ℝ1:𝐴𝒙 ≤ 𝒃
𝐴 ∈ ℝM×1,𝒃 ∈ ℝM

• Every half-space inequality defines a convex set
• Their intersection is convex

PolyhedronPolytopes
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CONVEX FUNCTIONS
A function 𝑓:ℝ1 → ℝ is convex if for any 𝒙,𝒚 ∈ ℝ1 and 𝜆 ∈ [0,1]

𝑓 𝜆𝒙 + 1 − 𝜆 𝒚 ≤ 𝜆𝑓 𝒙 + 1 − 𝜆 𝑓(𝒚)
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The graph of f is always below (or 
on) the line segment 𝜆f(x) + (1-𝜆)f(y) 

connecting (x, f(x)) to  (y, f(y)) 

The line interpolation between any 
two points in the domain, always over 

estimates the value of the function

For 𝑓:ℝ → ℝ, this equals to 
𝑓nn > 0

y



15781 Fall 2016: Lecture 13

• Exponential: 𝑓 𝑥 = 𝑒IP

o 𝑓nn 𝑥 = 𝑎L𝑒IP ≥ 0 for all 𝑥 ∈ ℝ

• Euclidean (L2) norm: 𝑓 𝒙 = 𝑥 L = ∑ 𝑥? L1
?NO

o 𝜃𝒙 + 1 − 𝜃 𝒚 L ≤ 𝜃𝒙 L + 1 − 𝜃 𝒚 L
= 𝜃 𝒙 L + (1 − 𝜃) 𝒚 L

• If 𝑓 𝒚 is convex in 𝒚, 𝑓(𝐴𝒙 − 𝒃) is convex in 𝒙

24

EXAMPLES OF CONVEX PROBLEMS

Affine transformation
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• Sublevel sets (isolines): If 𝑓 is convex, 
{𝑥 ∈ ℝ1: 𝑓 𝒙 ≤ 𝑐} is a convex set
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EXAMPLES OF CONVEX PROBLEMS

f(𝜆x+(1-𝜆)y) ≤ 𝜆f(x)+(1-𝜆)f(y) ≤ 𝜆c+(1-𝜆)c = c
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• Poll 2: Which functions are convex?
1. 𝑓 𝒙 = ∑ 𝑎?𝑓? 𝒙M

?NO where 𝑓? is convex and 
𝑎? ≥ 0 for 𝑖 = 1,… , 𝑚

2. 𝑔 𝒙 = ∑ 𝑥?1
?NO for 𝒙 ≥ 0

3. Both
4. Neither

26

EXAMPLES OF CONVEX PROBLEMS
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EXAMPLES OF CONVEX PROBLEMS

• Weber point in 𝑛 dimensions:

min
𝒙∗

K 𝒙∗ − 𝒙(?)
L

M

?NO
where 𝒙∗ ∈ ℝ1 is optimization variable and 
𝒙 O , … , 𝒙 M are problem data

• A convex optimization problem (why?)

27

Affine transformation over a convex function (Euclidean 
norm) +  Linear combination which is also convex
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EXAMPLES OF CONVEX PROBLEMS

• Linear programming:
min
𝒙
	𝒄t𝒙

s.t.	𝐴𝒙 = 𝒂
						𝐵𝒙 ≤ 𝒃

where 𝒙 ∈ ℝ1 is optimization variable, and 
𝒄 ∈ ℝ1, 𝐴 ∈ ℝM×1, 𝑎 ∈ ℝM, 𝐵 ∈ ℝw×1,	
𝒃 ∈ ℝw are problem data

• A convex optimization problem (why?)
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GLOBAL AND LOCAL OPTIMALITY

• A point 𝒙 ∈ ℝ1 is globally optimal (global 
minimum) if 𝒙 ∈ ℱ and for all 𝒚 ∈ ℱ, 𝑓 𝒙 ≤ 𝑓(𝒚)

• A point 𝒙 ∈ ℝ1 is locally optimal if 𝒙 ∈ ℱ and 
there exists 𝑅 > 0 small such that for all 𝒚 ∈ ℱ
with 𝒙 − 𝒚 L ≤ 𝑅, 𝑓 𝒙 ≤ 𝑓(𝒚)

• Theorem: For a convex optimization problem, all 
locally optimal points are globally optimal
(one, or infinite global optima)

29
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PROOF OF THEOREM

• Suppose 𝒙 is locally 
optimal for some 𝑅, but 
not globally optimal

• There is 𝒚 such that 
𝑓 𝒚 < 𝑓(𝒙)

• Define
𝒛 = 𝜃𝒙 + 1 − 𝜃 𝒚

for 𝜃 = 1 − {
L 𝒙|𝒚 }

30

𝒚

𝒙
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PROOF OF THEOREM

• Then:
o 𝒛 is feasible (for small enough 𝑅)
o 𝑓 𝒛 = 𝑓 𝜃𝒙+ 1 − 𝜃 𝒚 ≤ 𝜃𝑓 𝒙 + 1 − 𝜃 𝑓(𝒚)

										< 𝜃𝑓 𝒙 + 1 − 𝜃 𝑓 𝒙 = 𝑓(𝒙)

o 𝒙 − 𝒛 L =
{

L P|Q }
𝒙 − 𝒚

L
= {

L
< 𝑅

it’s inside thee R ball!
• Therefore, 𝒙 is not locally optimal, 

contradicting our assumption ∎
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MAXIMA OF CONVEX FUNCTIONS

32

On the frontier of the domain
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How could this 
theorem help us in 

solving convex 
optimization 
problems?
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REMINDER: HILL-CLIMBING SEARCH

34

state space

Objective function global maximum

shoulder

local maximum

“flat” local maximum

current state
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SOLVING CONVEX PROBLEMS

• Convex optimization problems can 
be solved in polynomial time 

• For unconstrained problems, use 
gradient descent

• Constrained problems require a 
projection operator that, given 𝒙, 
returns the “closest” 𝒚 ∈ ℱ

35



15781 Fall 2016: Lecture 13

SOLVING CONVEX PROBLEMS

• There are a wide range of tools that can 
take optimization problems in “natural” 
forms and compute a solution

• Examples include: CVX (MATLAB), 
YALMIP (MATLAB), AMPL (custom 
language), GAMS (custom language), 
cvxpy (Python)

36
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SOLVING CONVEX PROBLEMS

Given 𝒂(?) ∈ ℝL for 𝑖 = 1, … , 𝑚,

min
𝒙
K 𝒙 −𝒂 ?

L

M

?NO
	s.t.		𝑥O + 𝑥L = 0
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import cvxpy as cp
import numpy as np

n = 2
m = 10
A = np.random.randn(m,n)
x = cp.Variable(n)
f = sum([cp.norm(x - A[i,:],2) for i in range(m)])
constraints = [sum(x) == 0]
result = cp.Problem(cp.Minimize(f), constraints).solve()
print x.value

𝜋 Constrained
Weber
Point
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AMPL: A SET OF SOLVERS + 
NICE MODELING LANGUAGE
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SUMMARY

• Terminology:
o Convex optimization problem
o Convex set
o Convex function
o Local and global optimum

• Big ideas: 
o In convex problems, every locally optimal

solution is globally optimal!
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