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Existing Work

e \We assume:
e The network evolves, and therefore are related
e we need to INFER the Lineage of Networks
from as few as ONE microarray per cell line
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e A sparse regression approach to jointly estimating all the
networks in the genealogy (which we call Treegl)

e L1 penalty enforces sparseness

e Total variation penalty penalizes differences among
adjacent cells in the genealogy, but also allows for sharp
differences
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Outline

e Theory and Algorithm
e Sparsity and the LASSO
* Neighborhood Selection for Network Reconstruction
e QOur algorithm: Treeq|

e Breast Cancer Progression and Reversal Analysis
» Description of Data
* Overview of Recovered Networks
* Interactions among GO groups
* GO analysis
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Theory and Algorithm
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Reverse engineer lineage-specific
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Challenges

e Very small sample size
* observations are scarce and costly

Noisy data

e Large dimensionality of the data (~10% genes)
e # variables >> # of samples
 |least squares regression fails!
e complexity regularization is required

And now the data are non-iid since underlying probability
distribution is changing !
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Sparsity

e One common assumption to make sparsity.

e Makes biological sense: Genes are only assumed to
Interface with small groups of other genes.

e Makes statistical sense: Learning is now feasible in high
dimensions with small sample size
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Sparsity: In a mathematical sense

e Consider least squares linear regression problem:
e Sparsity means most of the beta’s are zero.

) X1
B = argming||Y — X312
subject to: %2
p X3
> Bl >0 <C y
j=1
Xn-1
Xn

e But this is not convex!!! Many local optima, computationally
Intractable.
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L1 RegUIarization (LASSO) [Tibshirani 1996]

e A convex relaxation.

Constrained Form Lagrangian Form
B = argming | Y — X3||? B = argming Y — X8* + /|81
subject to:
p
Z 18| < C
j=1

e Still enforces sparsity!
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Network Learning with the
Grapthal LASSO [Meinshausen and Buhimann 2006]

e Perform neighborhood selection
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Network Learning with the

Graphical LASSO

e Use the LASSO to select the neighborhood of each node

B1 = argming, Y — XB1* + Al
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Network Learning with the

Graphical LASSO

e Repeat this for every node
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But this can only estimate one

network....

 \We need to learn a whole genealogy of networks.
e Too few samples to learn each network independently

e How to share information” among the samples of different
cell types while still exposing sharp differences?
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The Total Variation Penalty

Penalize differences between networks of adjacent cell types
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Our Method: Tree-Guided Graphical
LaSSO (Treegl) RSS for all cell types
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Optimization

e Loss function is convex

e Used CVX — MATLAB package for convex
optimization

e For large scale problems, the proximal accelerated
gradient method of Chen et al. (2011) can be used
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Simulation Framework

Randomly generate 70 graphs with the following genealogy.
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The algorithm does not know a priori which graphs are the same and which
aren’t.
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Simulation Results

5 samples per graph - 70 graphs
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Exploring the Progression and
Reversion of Breast Cancer cells
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Hong, et. al. JCB 164(4): 603-612 é
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Microarray Dataset Details

at LBNL

= Small sample size dataset (15
arrays in total)

= Merge data to increase the power
of the network analysis

@)
= QObtained from Dr. Mina Bissell's lab %58 S1(3)

(3 samples in each group) 0'70 0'7
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Results Overview
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Network Overview
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Interactions - Biological Processes

S1 cells

cell

T4 cells: Increased Cell Proliferation,
Growth, Signaling, Locomotion
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Interactions - Biological Processes

T4 cells MMP-T4R cells: Significantly
reduced interactions
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Interactions - Biological Processes

PI3BK-MAPKK-T4R: Reduced
T4 cells Growth, Locomotion and Signaling
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Interactions - Biological Processes

T4 cells EGFR-ITGB1-T4R — Reduced Growth
Proliferation, Locomotion and Signq}ling
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S1 Cells - GO Analysis
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T4 cells - GO Analysis

o Pa = . 0 @ cell proliferation
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o SRS WP g g RN 3 @D angiogenesis

@D blood vessel morphogenesis

intracellular signaling cascade
@ GTP binding
@ actin binding
@D growth factor activity
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MMP-T4R cells - GO Analysis

@ mitochondrion

@D fatty acid metabolic process

@» membrane enclosed lumen
primary metabolic process

@ nuclear transport

@ cofactor metabolic process

@ oxidative phosphorylation
o
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PISK-MAPKK-T4R cells - GO analysis
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EGFR-ITGB1-T4R cells - GO Analysis
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|dentification of Potential Drug
Targets .
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ANXA3 Subnetwork

@D regulation of MAP kinase activity
@D growth factor activity

@ cell proliferation
cytokine activity

@D phosphoric monoester hydrolase
activity

Description: Encodes a protein belonging to the annexin family, and is
known to play a role in the regulation of cell growth and is thought to
be a biomarker of cancer (Jung et al., 2010).
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CA9 Subnetwork

LOC653562

@ regulation of MAP kinase activity
@D cell proliferation

@P post-translational protein
modification

golgi apparatus part

@D protein metabolic process
transcription factor activity

Description: Encodes carbonic anhydrase IX. It has been implicated in cell
proliferation, and renal cell carcinoma (Jubb et al., 2004).




Laboratory for Statistical Artificial Intelligence & INtegrative Genomics

Conclusion

e We present a method to learn a collection of networks over

a genealogy.
» This allows us to efficiently integrate information across
samples while still exposing sharp differences

e \We perform an analysis of breast cancer cells using our

algorithm.

» Functional analysis shows that our method is producing
biologically valid results.

» Our approach may help biologists better decipher networks
specific to various breast cancer cells

» Thus providing better treatment for personalized medicine
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