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Progression and Reversion of 

Breast Cancer cells
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Existing Work

 Pool samples, and infer a single network

 or estimate cell-line specific network independently

 We assume:

 The network evolves, and therefore are related

 we need to INFER the Lineage of Networks

from as few as ONE microarray per cell line
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Our Approach

 A sparse regression approach to jointly estimating all the 

networks in the genealogy (which we call Treegl)

 L1 penalty enforces sparseness

 Total variation penalty penalizes differences among 

adjacent cells in the genealogy, but also allows for sharp 

differences
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Outline

 Theory and Algorithm

 Sparsity and the LASSO

 Neighborhood Selection for Network Reconstruction

 Our algorithm: Treegl

 Breast Cancer Progression and Reversal Analysis

 Description of Data

 Overview of Recovered Networks

 Interactions among GO groups

 GO analysis
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Theory and Algorithm
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Reverse engineer lineage-specific 

"rewiring" gene networks

t*

n=some small #
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Challenges
 Very small sample size

 observations are scarce and costly

 Noisy data

 Large dimensionality of the data (~104 genes)

 # variables >> # of samples

 least squares regression fails! 

 complexity regularization is required

 And now the data are non-iid since underlying probability 

distribution is changing !
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Sparsity
 One common assumption to make sparsity.

 Makes biological sense: Genes are only assumed to 

interface with small groups of other genes.

 Makes statistical sense: Learning is now feasible in high 

dimensions with small sample size
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Sparsity: In a mathematical sense
 Consider least squares linear regression problem:

 Sparsity means most of the beta’s are zero.

 But this is not convex!!! Many local optima, computationally 

intractable.
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L1 Regularization (LASSO) [Tibshirani 1996]

 A convex relaxation.

 Still enforces sparsity!
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Constrained Form Lagrangian Form



Network Learning with the 

Graphical LASSO [Meinshausen and Buhlmann 2006]

 Perform neighborhood selection
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Network Learning with the 

Graphical LASSO
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 Use the LASSO to select the neighborhood of each node



Network Learning with the 

Graphical LASSO
 Repeat this for every node
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But this can only estimate one 

network….

 We need to learn a whole genealogy of networks.

 Too few samples to learn each network independently

 How to ``share information” among the samples of different 

cell types while still exposing sharp differences?
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The Total Variation Penalty
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Penalize differences between networks of adjacent cell types
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Our Method: Tree-Guided Graphical 

Lasso (Treegl) 
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RSS for all cell types

sparsity

Sparsity of difference



Optimization

 Loss function is convex

 Used CVX – MATLAB package for convex 

optimization

 For large scale problems, the proximal accelerated 

gradient method of Chen et al. (2011) can be used
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Simulation Framework 

Randomly generate 70 graphs with the following genealogy. 

The algorithm does not know a priori which graphs are the same and which 

aren’t.

10 graphs
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10 graphs

10 graphs

Branch points are when 

the true graph structure 

changes
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Simulation Results
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Exploring the Progression and 

Reversion of Breast Cancer cells



Breast Cancer Progression Series
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Hong, et. al. JCB 164(4): 603-612

Dr. Mina Bissell, Berkeley



Microarray Dataset Details
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 Obtained from Dr. Mina Bissell’s lab     

at LBNL

 Small sample size dataset (15 

arrays in total)

 Merge data to increase the power 

of the network analysis

(3 samples in each group)

MMP 

inhibitors(3)

PI3K-MAPKK  

inhibitors(3)

EGFR-ITGB1  

inhibitors(3)

T4 (3)

S1 (3)



Results Overview
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Network Overview
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S1 cells
T4 cells: Increased Cell Proliferation, 

Growth, Signaling, Locomotion

Interactions – Biological Processes



Interactions – Biological Processes
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MMP-T4R cells: Significantly 

reduced interactions
T4 cells



Interactions – Biological Processes
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PI3K-MAPKK-T4R: Reduced 

Growth, Locomotion and SignalingT4 cells



Interactions – Biological Processes

29

EGFR-ITGB1-T4R – Reduced Growth 

Proliferation, Locomotion and Signaling

T4 cells



S1 Cells – GO Analysis
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T4 cells – GO Analysis
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MMP-T4R cells – GO Analysis

32



PI3K-MAPKK-T4R cells – GO analysis
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EGFR-ITGB1-T4R cells – GO Analysis
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Identification of Potential Drug 

Targets

Hubs in T4 

Network



ANXA3 Subnetwork
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regulation of MAP kinase activity

growth factor activity

cell proliferation
cytokine activity
phosphoric monoester hydrolase 
activity

Description: Encodes a protein belonging to the annexin family, and is 

known to play a role in the regulation of cell growth and is thought to 

be a biomarker of cancer (Jung et al., 2010).



CA9 Subnetwork
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regulation of MAP kinase activity
cell proliferation

post-translational protein 
modification

golgi apparatus part
protein metabolic process
transcription factor activity

Description: Encodes carbonic anhydrase IX. It has been implicated in cell 

proliferation, and renal cell carcinoma (Jubb et al., 2004).



Conclusion
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 We present a method to learn a collection of networks over 

a genealogy.

 This allows us to efficiently integrate information across 

samples while still exposing sharp differences

 We perform an analysis of breast cancer cells using our 

algorithm.

 Functional analysis shows that our method is producing 

biologically valid results. 

 Our approach may help biologists better decipher networks 

specific to various breast cancer cells

 Thus providing better treatment for personalized medicine
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