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Probabilistic Graphical Models

Ubiquitous in many applications, where it is necessary to model
structure and dependencies among a set of variables.
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Tree Graphical Models Loopy Graphical Models

Very restrictive model
Structure Learning — Easy
Parameter learning — Easy
Inference — Easy

Very rich model
Structure Learning — Hard
Parameter learning — Hard
Inference — Hard

- 6




/® L ) I
Laboratory for Statistical Artificial InteLlipence & INtegrative Genomics

Latent Tree Graphical Models

Add additional unobserved variables to enrich flexibility of model

Integrating hidden
variable out

Latent tree Loopy model

 Reasonably rich model
e Structure Learning — Tractable (Choi et al. 2010)
« Parameter learning/Inference — 7?77
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Expectation Maximization

* Recovers parameters
explicitly and therefore can
recover hidden states

« Slow — First Order
Optimization Method

 Local Minima

 Lack of Theoretical
Guarantees

Spectral Algorithm

Does not explicitly recover
parameters, so cannot recover
hidden states (We can only
compute observed marginals).

(Very) Fast — No optimization
needed

Local Minima Free

Consistent
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Focusing on Inference

e Explicitly recovering the hidden states makes the problem
fundamentally non-convex.

e But in many applications the goal is to simply do prediction
(i.e. compute marginals among observed variables)
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Spectral Algorithm

e Do NOT explicitly learn latent parameters
e Instead learn “transformed” version of parameters.

A and B depend on hidden

P — AB «— variables
P = ASS™'B

Key: Construct S such that AS and S B only depend on
observed variables. Then we can easily compute P (without ever
learning A, B, or S individually)

Underlying dependence on spectral properties is what gives the
method the name spectral algorithm.
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e Hsu et al. — Spectral Algorithm for HMMs
Boots et al. - Reduced Rank HMMs

e Song et al. - Kernelized Spectral Method for nonparametric
HMMs

ﬂ

Challenges for Latent Trees
e Topology significantly more complex
* Not every hidden variable has an observed neighbor

bee n"
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Algorithm Overview

Latent Tree Representation Transformed Representation

Insert transform matrices
so that we can estimate
transformed quantities
instead of actual quantities

Compute joint probability as
sequence of matrix
multiplications

Prove that these
transformed quantities are

functions

Observable Representation
P of observed variables.
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Latent Tree Representation

Compute joint probability as
sequence of matrix
multiplications
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Parametrizing Latent Trees

Marginal root PT[R = k‘]

vector
<

Conditional
— probability table

( PrlX =ilR=7j] .. .. )
e All hidden nodes are internal
e Conditional Probability Tables (CPTs) cannot be directly
estimated from data
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Representing Joint Probability
Computation

OA1l OA2 OA3

We would like to compute the following joint probability of all
observed variables:

P[OAl — 0A1, OAQ — 0 A2, OA3 — OA3y cevennnns

Compute this using message passing

-
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Message Passing
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Message Passing

a vector

mOm(A) — IP){OAl = 0,41’14} = /

-

(remember we don’t know
how to explicitly compute this
since it depends on A...)
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Ct mOAlaOAQaOAB (A)

Representing the Produ t_—
ma(R) = Z PlA[Rlmo,,(A)mo ,,(A)mo,,(A)

M1 0a.043(A) = PlOa1 = 041|A] - PlOas = 042|A] - P[O43 = 0243|A]
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~ Instead let Message be Diagonal

Matrix
P[OAl — 041 ’A

' P[OAQ — 0A2’A] ' P[OAS — OASIA]

MA(R) — My (A)

M 12(A) M 45(A)
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Equivalence with Original Message

[

mA(R) — MAl(A)lA
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Representing the Sum

e Represent conditional probability table with a cube

Representation of Pr[R | A]
as a cube
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At the root......

OA1l OA2 OA3

PlOa1 = 041,040 = 042,043 = 043, oo | =

’I‘TMAMBMclr
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Computation of Joint Probability

IED[OAl :OA130A2:OA23OA3:OA33 ......... ] —
r' Mo MpM1,
My =Tgpx1M,, M,,,M,,,14

Sequence of matrix multiplications
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Algorlthm Overview

Latent Tree Representation Transformed Representation

Insert transform matrices
so that we can estimate
transformed quantities
instead of actual quantities

Compute joint probability as
sequence of matrix
multiplications
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Transformed Representation

Transform matrices R~ = [

N\

P[O = O] = ’?"TMAMBMclr — ’?"TMARL_lMBMclr

L'M, R, L:'M, R, L' M

CA1 041 OA1~"0A1 049 0A2"-"0A2" 043 0A3

/

~

M.

0OA1

R, .14

OA3

My =T apx1L
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Transformed Representation

Original Quantity: OAl N

Estimate this
instead!

Original Quantity: rr—l—' I

Estimate this
Instead!

\_ And similarly for the cube and one vector.....
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Algorithm Outline

Latent Tree Representation Transformed Representation

Insert transform matrices
so that we can estimate
transformed quantities
instead of actual quantities

Compute joint probability as
sequence of matrix
multiplications

Prove that these
transformed quantities are

functions

Observable Representation
P of observed variables.
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Observable Representation

Consider the root:
’f‘T — T‘TLA

OA1l OA2 OA3

Consider the following Z(k 1) =POy4y =klR=1
choice for L : — (k) Ou ’ |

- &
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Observable Representation

r' =P[R|' |
T Not a function of observed
T — variables

PO, = k|R =[]

- r' =PR]' P[O4; = o|R] P[OAJT
- L -

function of observed
variables

7[o] =) PlOa1 = o|RIP[R] =P[Oy = o]

\ R integrated out by the matrix multiplication!
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Observable Representation

e If L =ZTthen L-1 does not exist since Z is not square!

Z(k,1) =P[O = k|R =[]

e Solution: Project Z down to the subspace of hidden
variables with a matrix U

L=z L'=(Zz'U)"’

7' =r'Ly, r’ =POy] U,

- &
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Observable Representation (Message)

M — Not a function of observed
A variables
~ ! function of observed
]\40141 — LOA1 MA RoAl variables
MoAl — f(OAl.- OAQ_- OAB)

— (P[O43.01|Up,, ) P[O43, O41. O45]Up

\_ OA1l OA2 OA3 /é
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Algorlthm Overview

Latent Tree Representation Transformed Representation

Add transform matrices to
estimate transformed
guantities instead of actual

guantities

Compute joint probability as
sequence of matrix
multiplications

Prove that these
transformed quantities are

functions

Observable Representation
P of observed variables.
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Sample Complexity

When empirical estimate of transformed quantities equals
true transformed quantities, joint probability estimate is equal
to the true joint probability.

Aggregate the errors across the quantities to get a bound.

Number of
Max degree hidden states depth

With high probalbility,

- 1. Sy)*ths
Z ‘P[i‘l ...... I ‘Q] — P[i‘l ...... 1 C}]‘ < () : (( e I:i,} o

Number of
Number of observed
samples states

&
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Simulations
e 4types of trees:
) \ )

Compare with:
 EM (high precision), EM (low precision) on latent tree
« Chow liu tree on best fully observable tree — more restricted model).
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Simulations-Error
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Simulations-Speed
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Stock Data Experiment

Acquired closing prices for 59 stocks from 1984 to 2011.Goal is to

condition on a few stocks and see how well they predict another
stock.

Latent tree structure learned using algorithm of Choi et al. 2010

\_  Chow Liu Tree Latent Tree
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Stock Data Results

0.4} l - All the approaches that use

CL the estimated latent tree
perform better than message
0 35+ I o dor J

Error

passing on the fully
observable estimated Chow
Liu tree.

5 10 20 30 50
number of query variables
Spectral
EM
Chow Liu




Conclusion

e Latent trees are a powerful as well as tractable way to
model relationships among variables

e Our spectral algorithm presents a fast, consistent, and
local-minima-free approach for parameter
learning/inference in latent trees.

e Future directions include spectral algorithms for loopy
graphs and kernelized spectral algorithms.




