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Probabilistic Graphical Models

Ubiquitous in many applications, where it is necessary to model 

structure and dependencies among a set of variables.
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Tree Graphical Models

• Very restrictive model

• Structure Learning – Easy

• Parameter learning – Easy

• Inference – Easy

Loopy Graphical Models

• Very rich model

• Structure Learning – Hard 

• Parameter learning – Hard

• Inference – Hard



Latent Tree Graphical Models
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Add additional unobserved variables to enrich flexibility of model

• Reasonably rich model

• Structure Learning – Tractable (Choi et al. 2010)

• Parameter learning/Inference – ???

Integrating hidden 

variable out

Loopy modelLatent tree
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Expectation Maximization

• Recovers parameters 

explicitly and therefore can 

recover hidden states

• Slow – First Order 

Optimization Method

• Local Minima

• Lack of Theoretical 

Guarantees

Spectral Algorithm

• Does not explicitly recover 

parameters, so cannot recover 

hidden states (We can only 

compute observed marginals).

• (Very) Fast – No optimization 

needed

• Local Minima Free

• Consistent



Focusing on Inference
 Explicitly recovering the hidden states makes the problem 

fundamentally non-convex.

 But in many applications the goal is to simply do prediction 

(i.e. compute marginals among observed variables)
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Spectral Algorithm
 Do NOT explicitly learn latent parameters

 Instead learn “transformed” version of parameters.
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A and B depend on hidden 

variables

Key: Construct S such that AS and S-1 B only depend on 

observed variables. Then we can easily compute P (without ever 

learning A, B, or S individually)

Underlying dependence on spectral properties is what gives the 

method the name spectral algorithm.



Related Work
 Hsu et al. – Spectral Algorithm for HMMs

 Boots et al. - Reduced Rank HMMs

 Song et al. - Kernelized Spectral Method for nonparametric 

HMMs

 Challenges for Latent Trees

 Topology significantly more complex

 Not every hidden variable has an observed neighbor
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Compute joint probability as 

sequence of matrix 

multiplications

Algorithm Overview
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Latent Tree Representation

Insert transform matrices 

so that we can estimate 

transformed quantities 

instead of actual quantities

Transformed Representation

Prove that these 

transformed quantities are 

functions

of observed variables.
Observable Representation



Compute joint probability as 

sequence of matrix 

multiplications

Algorithm Overview
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Latent Tree Representation



 All hidden nodes are internal

 Conditional Probability Tables (CPTs) cannot be directly 

estimated from data

Parametrizing Latent Trees
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Marginal root 

vector

Conditional 

probability table



Representing  Joint Probability 

Computation
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R

A B
C

OA1 OA2 OA3

We would like to compute the following joint probability of all 

observed variables:

Compute this using message passing



Message Passing
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A

R



Message Passing

14

a vector

(remember we don’t know 

how to explicitly compute this 

since it depends on A…)

A

R



Representing the Product
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Instead let Message be Diagonal 

Matrix
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Equivalence with Original Message



Representing the Sum
 Represent conditional probability table with a cube

18

Representation of Pr[R | A]

as a cube



At the root……
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Computation of Joint Probability
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Sequence of matrix multiplications



Compute joint probability as 

sequence of matrix 

multiplications

Algorithm Overview
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Latent Tree Representation

Insert transform matrices 

so that we can estimate 

transformed quantities 

instead of actual quantities

Transformed Representation



Transformed Representation
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Transform matrices 



Transformed Representation
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Original Quantity:

Transformed 

Quantity:

And similarly for the cube and one vector…..

Original Quantity:

Transformed 

Quantity:
Estimate this 

instead!

Estimate this 

instead!



Compute joint probability as 

sequence of matrix 

multiplications

Algorithm Outline
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Insert transform matrices 

so that we can estimate 

transformed quantities 

instead of actual quantities

Latent Tree Representation Transformed Representation

Prove that these 

transformed quantities are 

functions

of observed variables.
Observable Representation



Observable Representation
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Consider the root:

R

A B
C

OA1 OA2 OA3

Consider the following 

choice for  L : 



Observable Representation
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R integrated out by the matrix multiplication!

Not a function of observed 

variables

function of observed 

variables



Observable Representation
 If L = ZT then L-1 does not exist since Z is not square!

 Solution: Project Z down to the subspace of hidden 

variables with a matrix U
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Observable Representation (Message)
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R

A

OA1 OA2 OA3

Not a function of observed 

variables

function of observed 

variables



Algorithm Overview
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Compute joint probability as 

sequence of matrix 

multiplications

Add transform matrices to 

estimate transformed 

quantities instead of actual 

quantities

Prove that these 

transformed quantities are 

functions

of observed variables.

Latent Tree Representation Transformed Representation

Observable Representation



Sample Complexity
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• When empirical estimate of transformed quantities equals 

true transformed quantities, joint probability estimate is equal 

to the true joint probability.

• Aggregate the errors across the quantities to get a bound.

With high probability, 

Max degree depth

Number of 

samples

Number of 

hidden states

Number of 

observed 

states



 4 types of trees:
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Simulations

Compare with:

• EM (high precision), EM (low precision) on latent tree

• Chow liu tree on best fully observable tree – more restricted model).



Simulations-Error

Spectral

EM

Chow Liu

Spectral

EM

Chow Liu



Simulations-Speed

Spectral

EM

Chow Liu

Spectral

EM

Chow Liu



Stock Data Experiment
Acquired closing prices for 59 stocks from 1984 to 2011.Goal is to 

condition on a few stocks and see how well they predict another 

stock.

Latent tree structure learned using algorithm of Choi et al. 2010

Chow Liu Tree
Latent Tree



Stock Data Results

All the approaches that use 

the estimated latent tree 

perform better than message 

passing on the fully 

observable estimated Chow 

Liu tree.

Spectral

EM

Chow Liu



Conclusion

 Latent trees are a powerful as well as tractable way to 

model relationships among variables

 Our spectral algorithm presents a fast, consistent, and 

local-minima-free approach for parameter 

learning/inference in latent trees.

 Future directions include spectral algorithms for loopy 

graphs and kernelized spectral algorithms.
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