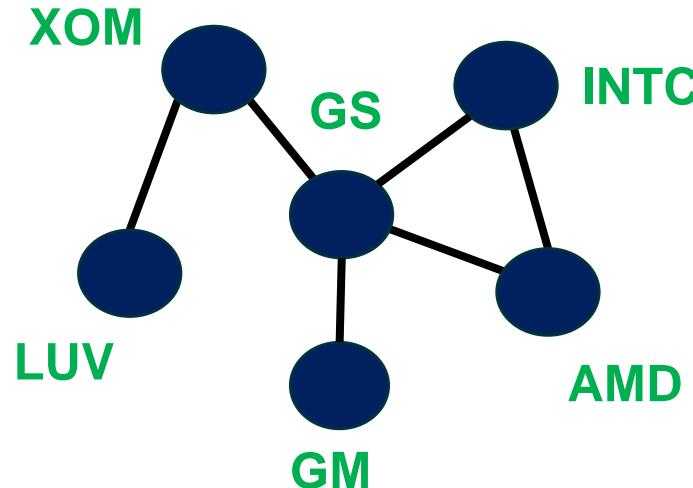
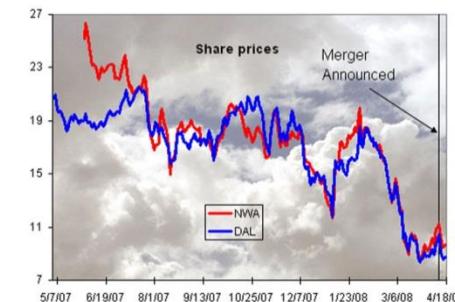
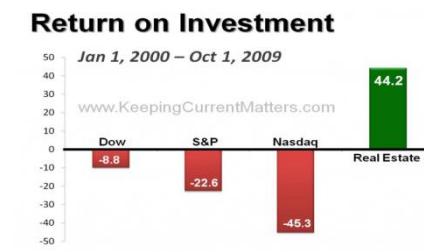


A Spectral Algorithm for Latent Tree Graphical Models

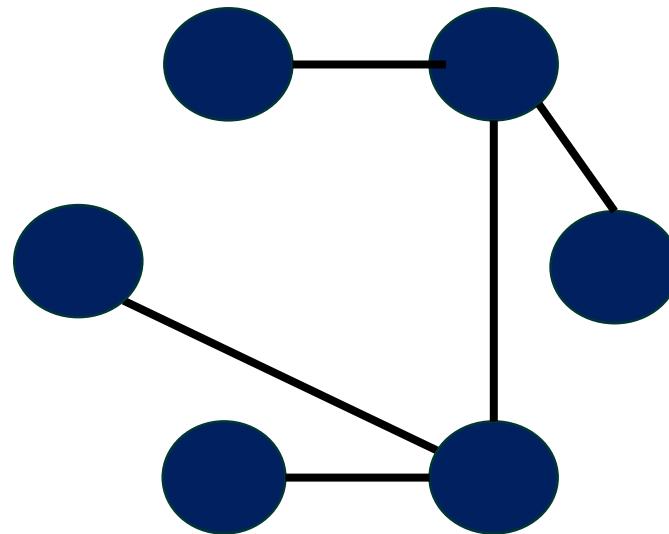
Ankur P. Parikh, Le Song, Eric P. Xing
School of Computer Science
Carnegie Mellon University

Probabilistic Graphical Models

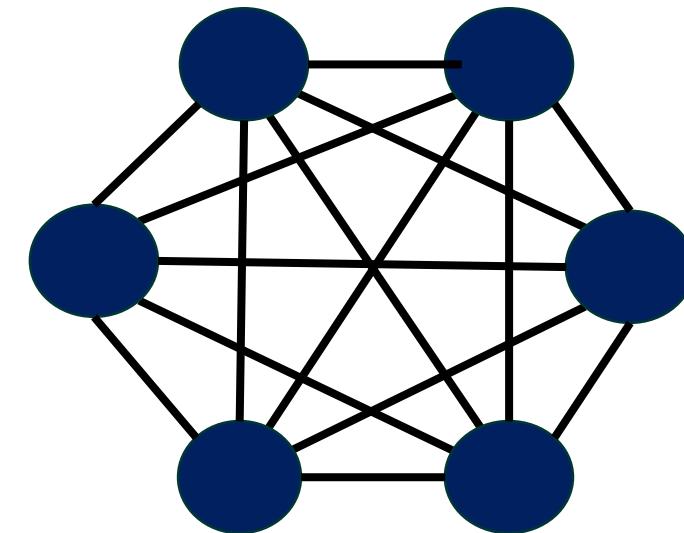
Ubiquitous in many applications, where it is necessary to model structure and dependencies among a set of variables.



Tree Graphical Models



Loopy Graphical Models

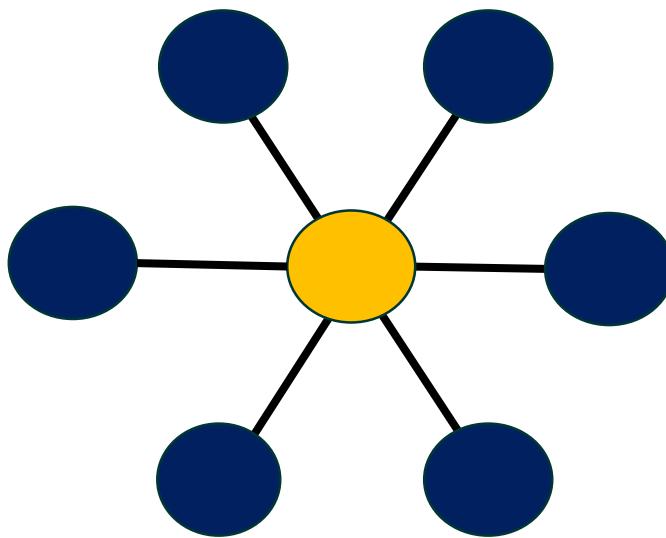


- **Very restrictive model**
- **Structure Learning – Easy**
- **Parameter learning – Easy**
- **Inference – Easy**

- **Very rich model**
- **Structure Learning – Hard**
- **Parameter learning – Hard**
- **Inference – Hard**

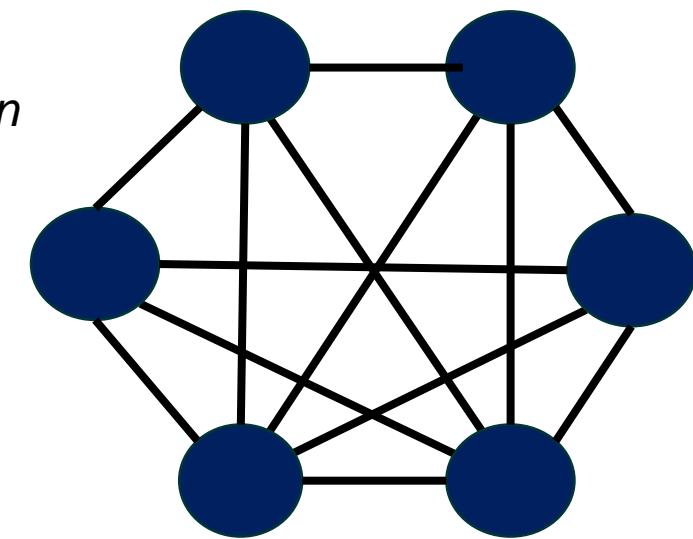
Latent Tree Graphical Models

Add additional unobserved variables to enrich flexibility of model



Latent tree

Integrating hidden variable out



Loopy model

- Reasonably rich model
- Structure Learning – Tractable (Choi et al. 2010)
- Parameter learning/Inference – ???

Expectation Maximization

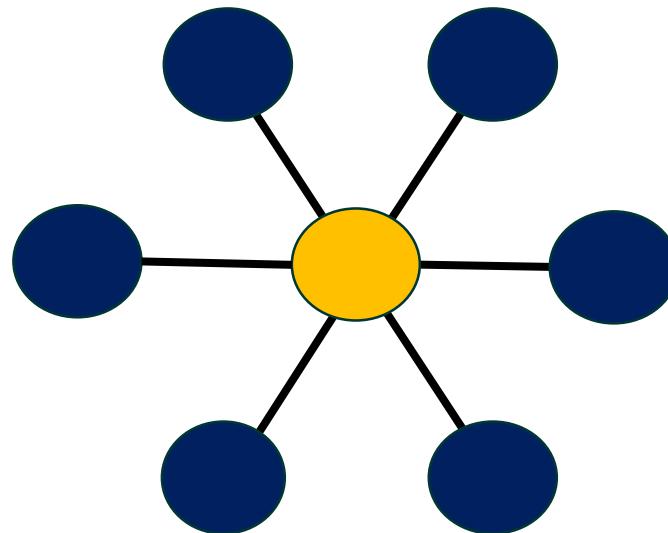
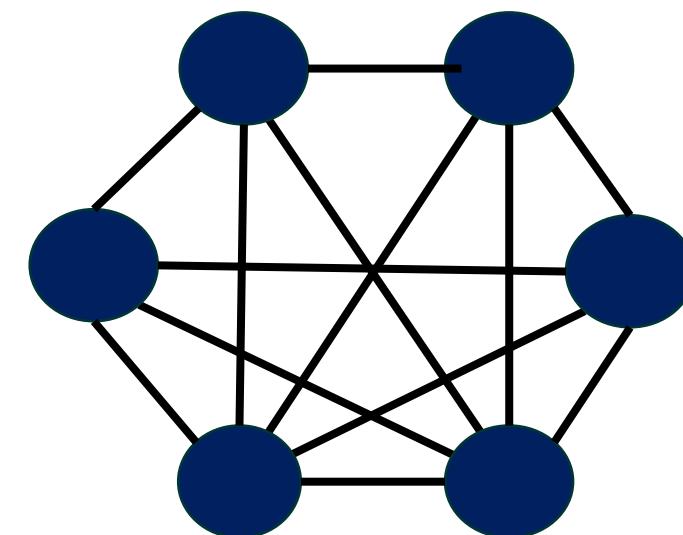
- Recovers parameters explicitly and therefore can recover hidden states
- Slow – First Order Optimization Method
- Local Minima
- Lack of Theoretical Guarantees

Spectral Algorithm

- Does not explicitly recover parameters, so cannot recover hidden states (We can only compute observed marginals).
- (Very) Fast – No optimization needed
- Local Minima Free
- Consistent

Focusing on Inference

- Explicitly recovering the hidden states makes the problem fundamentally non-convex.
- But in many applications the goal is to simply do prediction (i.e. compute marginals among observed variables)



Spectral Algorithm

- Do **NOT** explicitly learn latent parameters
- Instead learn “transformed” version of parameters.

$$P = AB \quad \leftarrow \quad \text{A and B depend on hidden variables}$$

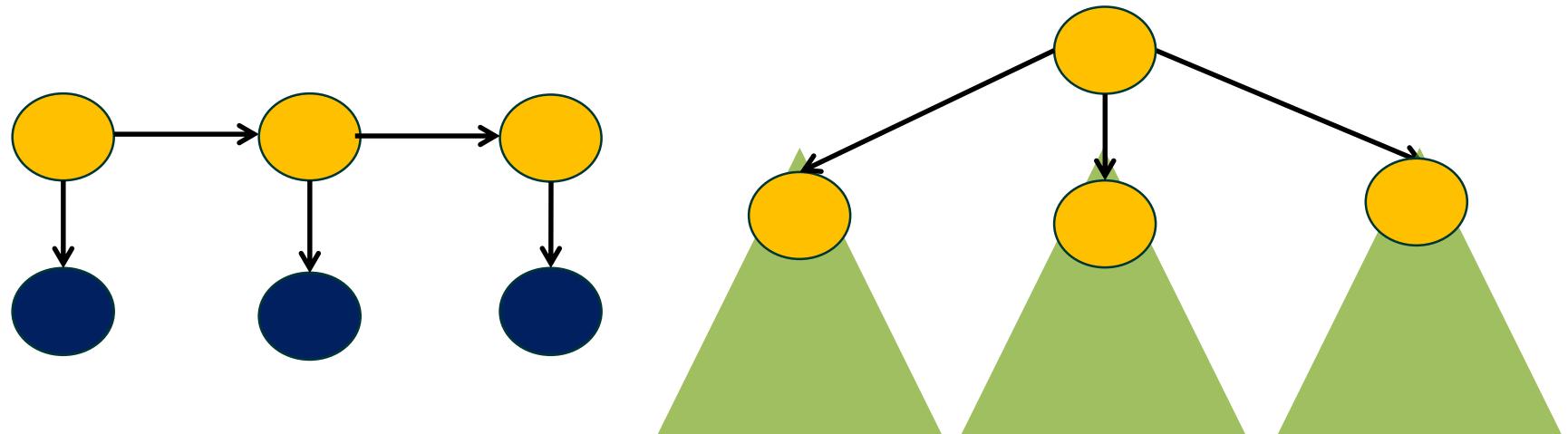
$$P = A S S^{-1} B$$

Key: Construct **S** such that **AS** and **S⁻¹ B** only depend on observed variables. Then we can easily compute **P** (without ever learning **A**, **B**, or **S** individually)

Underlying dependence on spectral properties is what gives the method the name spectral algorithm.

Related Work

- Hsu et al. – Spectral Algorithm for HMMs
- Boots et al. - Reduced Rank HMMs
- Song et al. - Kernelized Spectral Method for nonparametric HMMs
- **Challenges** for Latent Trees
 - Topology significantly more complex
 - Not every hidden variable has an observed neighbor



Algorithm Overview

Latent Tree Representation

Compute joint probability as sequence of matrix multiplications

Transformed Representation

Insert transform matrices so that we can estimate transformed quantities instead of actual quantities

Observable Representation

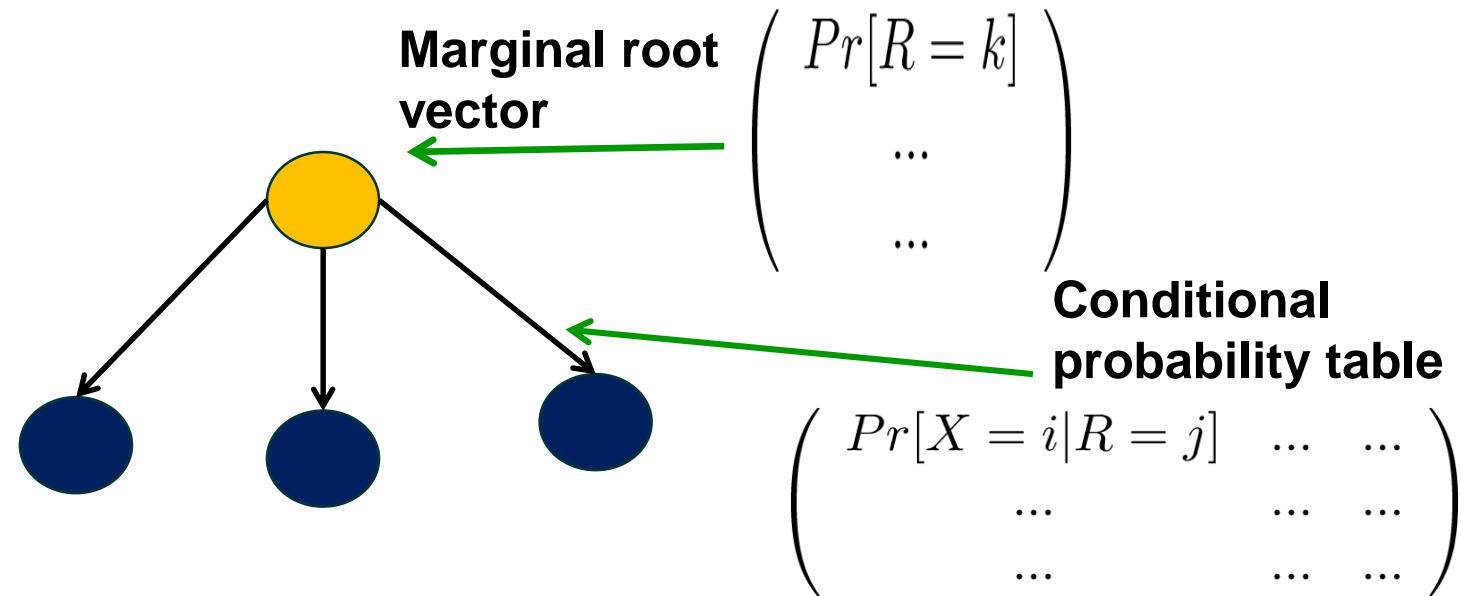
Prove that these transformed quantities are functions of observed variables.

Algorithm Overview

Latent Tree Representation

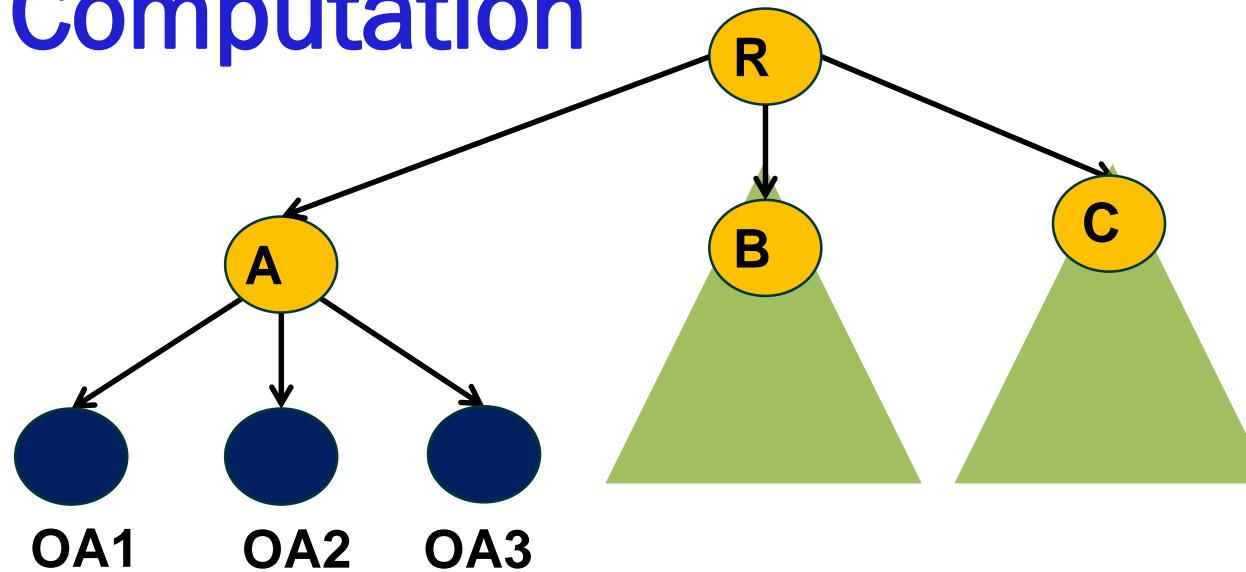
Compute joint probability as sequence of matrix multiplications

Parametrizing Latent Trees



- All hidden nodes are internal
- Conditional Probability Tables (CPTs) **cannot be directly estimated from data**

Representing Joint Probability Computation

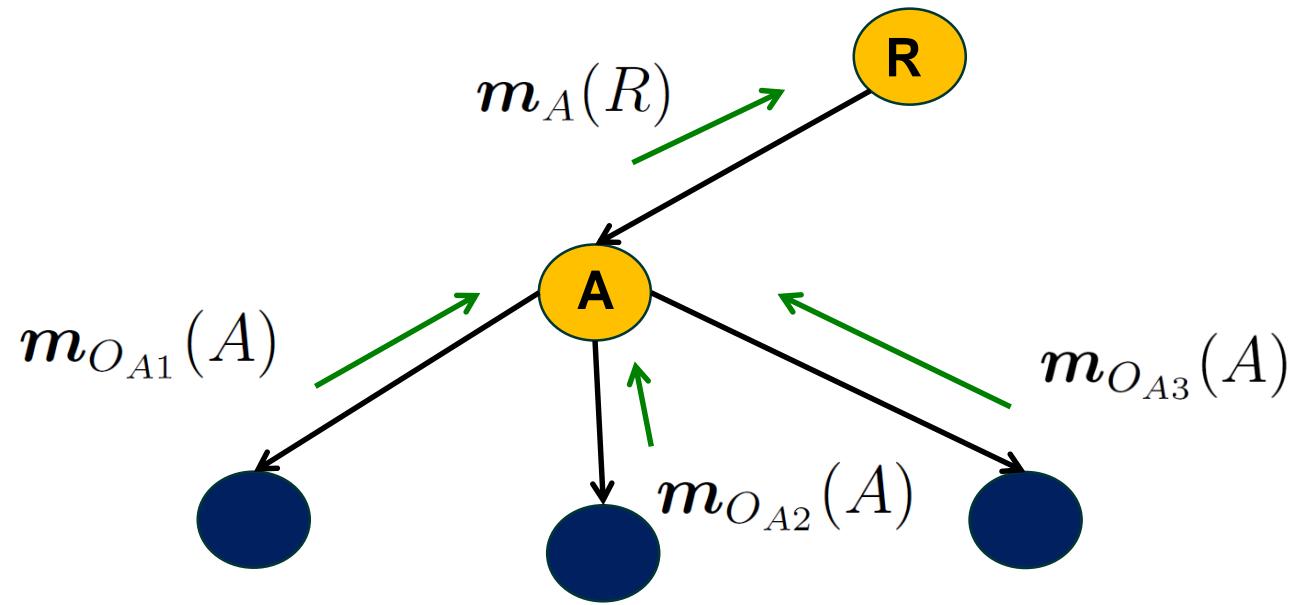


We would like to compute the following joint probability of all observed variables:

$$\mathbb{P}[O_{A1} = o_{A1}, O_{A2} = o_{A2}, O_{A3} = o_{A3}, \dots]$$

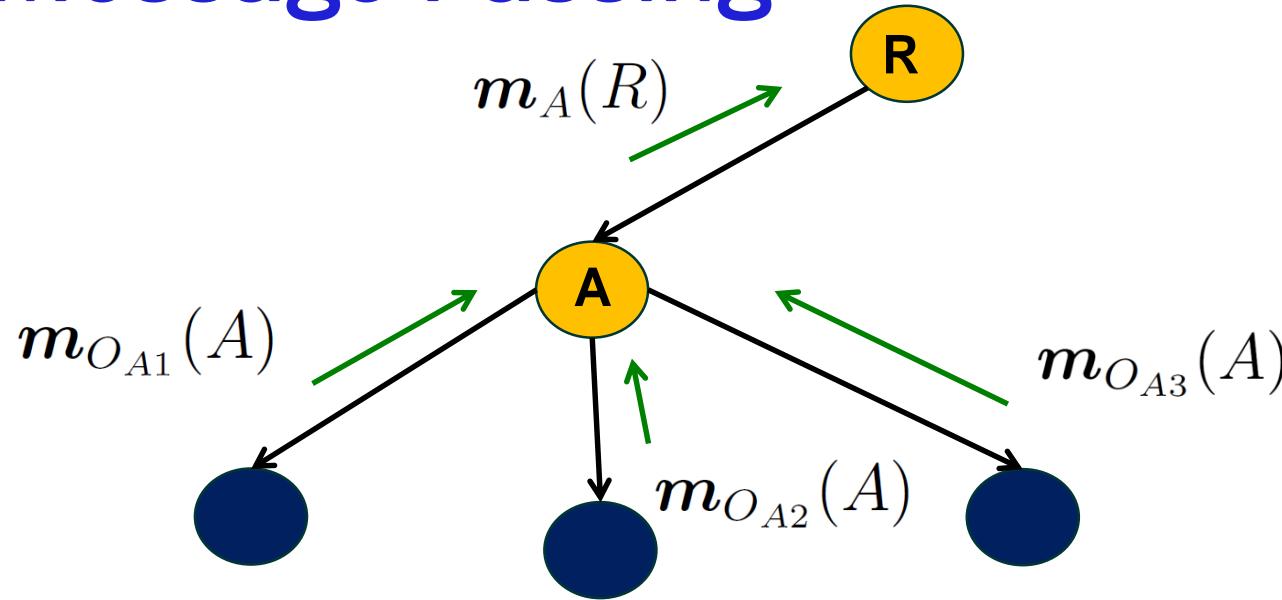
Compute this using message passing

Message Passing



$$m_A(R) = \sum_A \mathbb{P}[A|R] m_{O_{A1}}(A) m_{O_{A2}}(A) m_{O_{A3}}(A)$$

Message Passing



$$m_{o_{A1}}(A) = \mathbb{P}[O_{A1} = o_{A1} | A] =$$

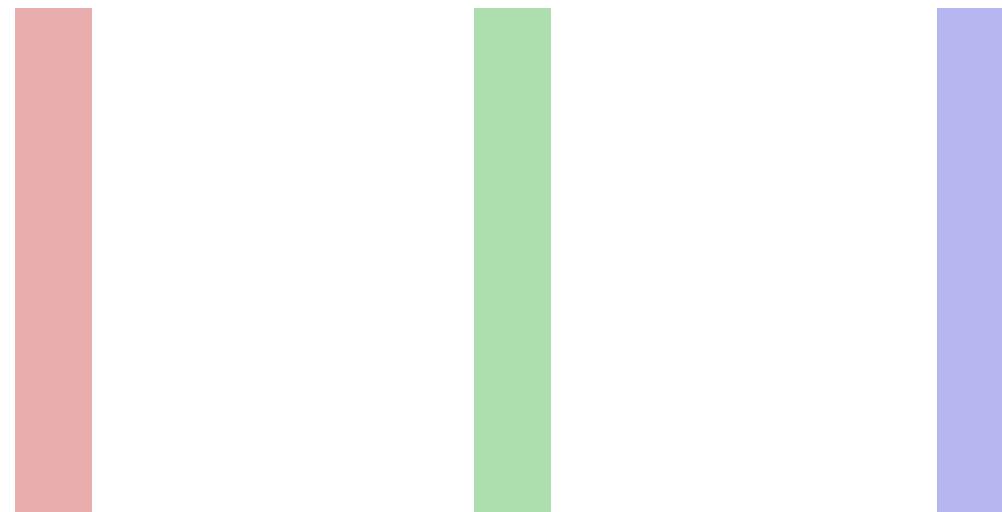
a vector

(remember we don't know
how to explicitly compute this
since it depends on A...)

Representing the Product

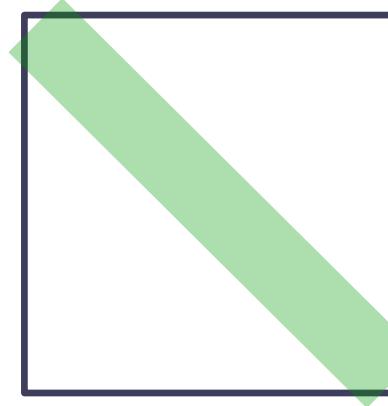
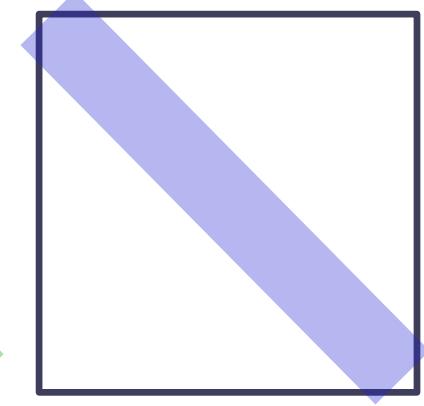
$$\mathbf{m}_A(R) = \sum_A \mathbb{P}[A|R] \mathbf{m}_{O_{A1}}(A) \mathbf{m}_{O_{A2}}(A) \mathbf{m}_{O_{A3}}(A)$$

$$\mathbf{m}_{o_{A1}, o_{A2}, o_{A3}}(A) = \mathbb{P}[O_{A1} = o_{A1}|A] \cdot \mathbb{P}[O_{A2} = o_{A2}|A] \cdot \mathbb{P}[O_{A3} = o_{A3}|A]$$



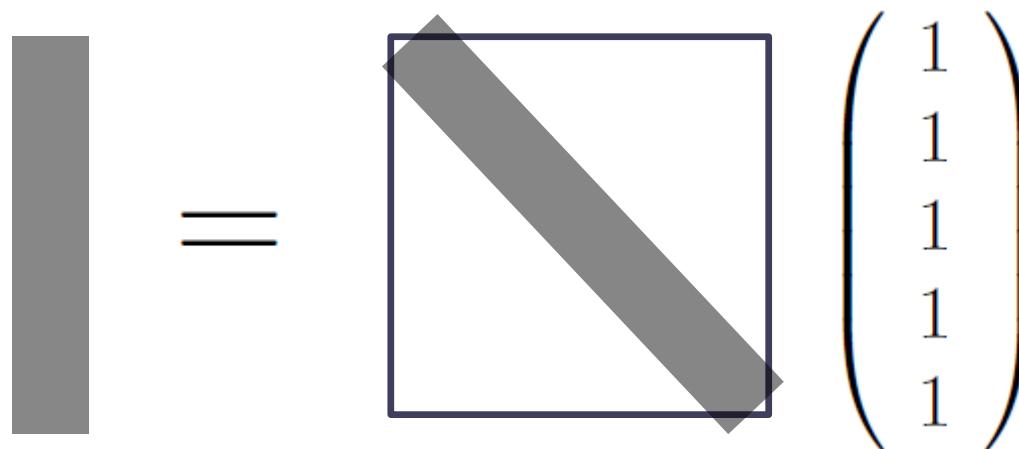
Instead let Message be Diagonal Matrix

$$\mathbb{P}[O_{A1} = o_{A1}|A] \cdot \mathbb{P}[O_{A2} = o_{A2}|A] \cdot \mathbb{P}[O_{A3} = o_{A3}|A]$$



$$M_A(R) = M_{A1}(A) \quad M_{A2}(A) \quad M_{A3}(A)$$

Equivalence with Original Message



A diagram illustrating a mathematical equivalence. On the left is a vertical gray bar. To its right is an equals sign (=). To the right of the equals sign is a square with a thick black border. Inside the square, a diagonal line runs from the top-left corner to the bottom-right corner, shaded in gray. To the right of the square is a vertical vector enclosed in parentheses, consisting of five '1's stacked vertically.

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

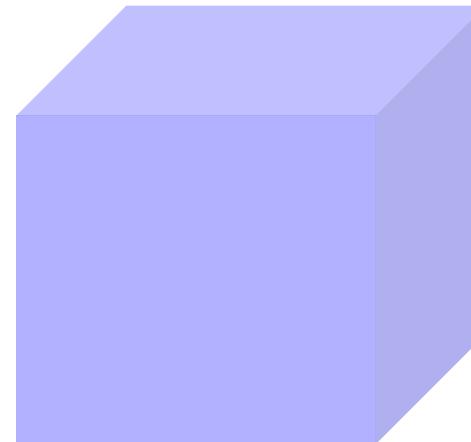
$$\mathbf{m}_A(R) = \mathbf{M}_{A1}(A) \mathbf{1}_A$$

Representing the Sum

- Represent conditional probability table with a cube

Representation of $\Pr[R | A]$
as a cube

$$M_A(R) =$$



$$\bar{\times}_1$$

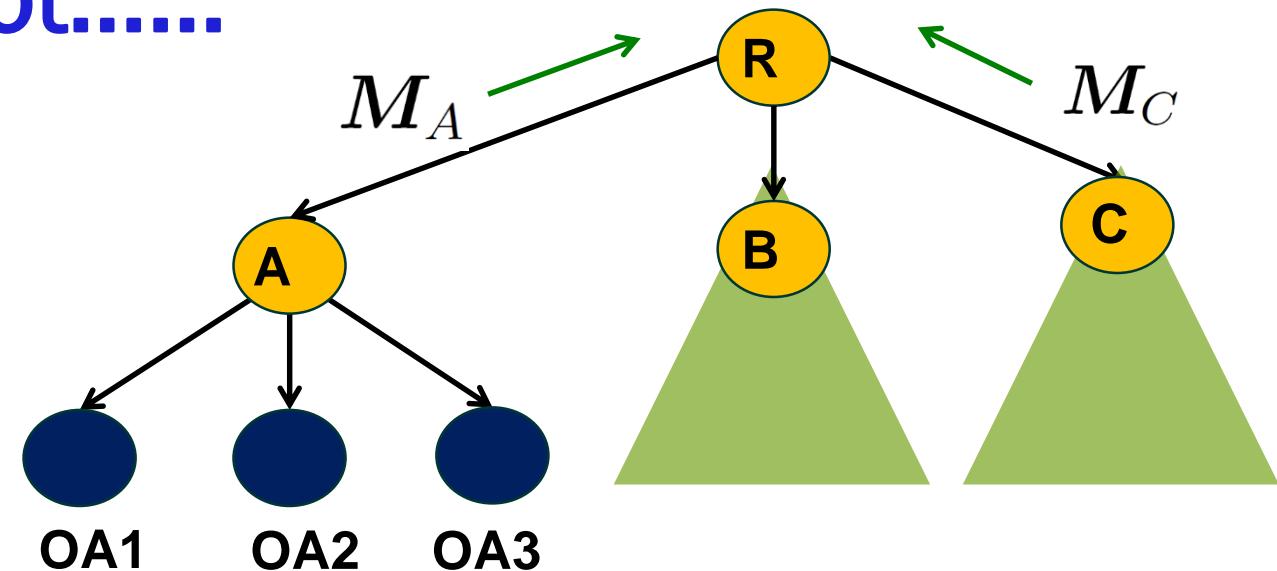
$$\mathcal{T}_{A|R}$$

$$M_{o_{A1}}(A)M_{o_{A2}}(A)M_{o_{A3}}(A)1_A$$

$$m_A(R) = \sum_A \mathbb{P}[A|R] m_{o_{A1}}(A) m_{o_{A2}}(A) m_{o_{A3}}(A)$$

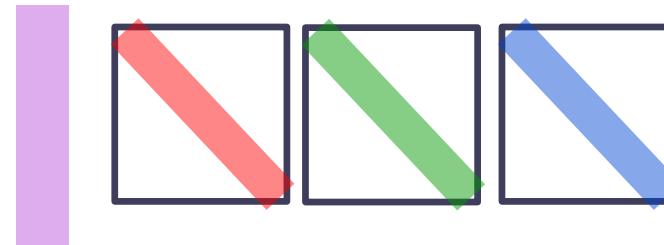
At the root.....

$$r = \mathbb{P}[X_r]$$



$$\mathbb{P}[O_{A1} = o_{A1}, O_{A2} = o_{A2}, O_{A3} = o_{A3}, \dots] =$$

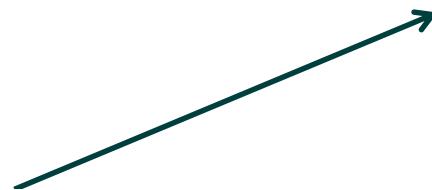
$$r^\top M_A M_B M_C 1_r$$



Computation of Joint Probability

$$\mathbb{P}[O_{A1} = o_{A1}, O_{A2} = o_{A2}, O_{A3} = o_{A3}, \dots] =$$

$$\mathbf{r}^\top \mathbf{M}_A \mathbf{M}_B \mathbf{M}_C \mathbf{1}_r$$



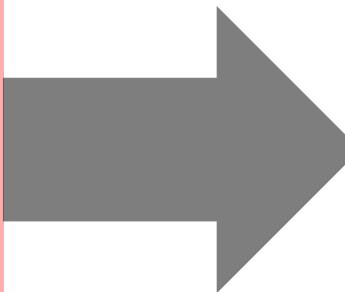
$$\mathbf{M}_A = \mathcal{T}_{A|R} \bar{\times}_1 \mathbf{M}_{o_{A1}} \mathbf{M}_{o_{A2}} \mathbf{M}_{o_{A3}} \mathbf{1}_A$$

Sequence of matrix multiplications

Algorithm Overview

Latent Tree Representation

Compute joint probability as sequence of matrix multiplications



Transformed Representation

Insert transform matrices so that we can estimate transformed quantities instead of actual quantities

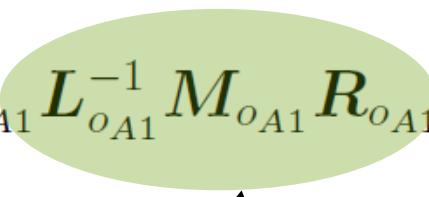
Transformed Representation

$$\mathbb{P}[O = o] = \mathbf{r}^\top M_A M_B M_C \mathbf{1}_r = \mathbf{r}^\top M_A R L^{-1} M_B M_C \mathbf{1}_r$$

Transform matrices $R L^{-1} = I$

$$M_A = \mathcal{T}_{A|R} \times_1 L_{o_{A1}} L_{o_{A1}}^{-1} M_{o_{A1}} R_{o_{A1}} L_{o_{A2}}^{-1} M_{o_{A2}} R_{o_{A2}} L_{o_{A3}}^{-1} M_{o_{A3}} R_{o_{A3}} \mathbf{1}_A$$

$\tilde{M}_{o_{A1}}$



Transformed Representation

Original Quantity:

$$M_{oA1}$$

Transformed
Quantity:

$$\tilde{M}_{oA1} = L_{oA1}^{-1} M_{oA1} R_{oA1}$$

Estimate this
instead!

Original Quantity:

$$r^\top$$

Transformed
Quantity:

$$\tilde{r}^\top = r^\top L_A$$

Estimate this
instead!

And similarly for the cube and one vector.....

Algorithm Outline

Latent Tree Representation

Compute joint probability as sequence of matrix multiplications

Transformed Representation

Insert transform matrices so that we can estimate transformed quantities instead of actual quantities

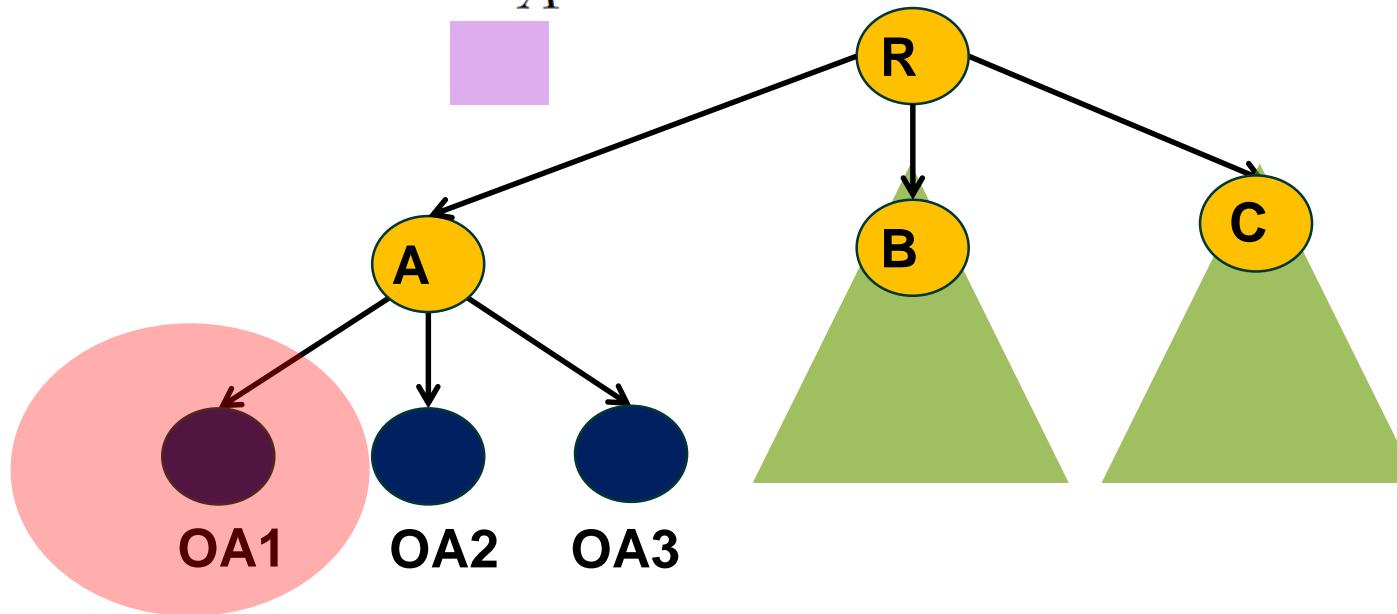
Observable Representation

Prove that these transformed quantities are functions of observed variables.

Observable Representation

Consider the root:

— $\tilde{r}^\top = r^\top L_A$



Consider the following
choice for L :

$$Z(k, l) = \mathbb{P}[O_{A1} = k | R = l]$$

Observable Representation

$$\mathbf{r}^\top =$$

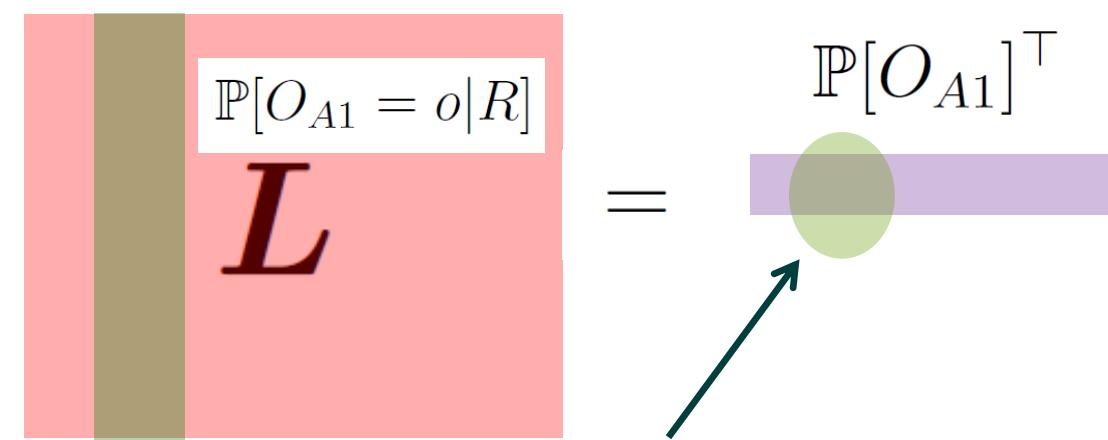
$$\mathbf{r}^\top = \mathbb{P}[R]^\top$$

Not a function of observed variables

$$\tilde{\mathbf{r}}^\top =$$

$$\mathbf{r}^\top = \mathbb{P}[R]^\top$$

function of observed variables



$$\tilde{\mathbf{r}}[o] = \sum_R \mathbb{P}[O_{A1} = o | R] \mathbb{P}[R] = \mathbb{P}[O_{A1} = o]$$

R integrated out by the matrix multiplication!

Observable Representation

- If $\mathbf{L} = \mathbf{Z}^T$ then \mathbf{L}^{-1} does not exist since \mathbf{Z} is not square!

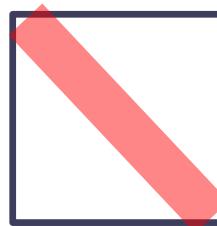
$$Z(k, l) = \mathbb{P}[O_{A1} = k | R = l]$$

- **Solution:** Project \mathbf{Z} down to the subspace of hidden variables with a matrix \mathbf{U}

$$\mathbf{L} = \mathbf{Z}^T \mathbf{U} \quad \mathbf{L}^{-1} = (\mathbf{Z}^T \mathbf{U})^{-1}$$

$$\tilde{\mathbf{r}}^T = \mathbf{r}^T \mathbf{L}_A \quad \longrightarrow \quad \mathbf{r}^T = \mathbb{P}[O_{A1}]^T \mathbf{U}_{O_{A1}}$$

Observable Representation (Message)

$$M_A =$$


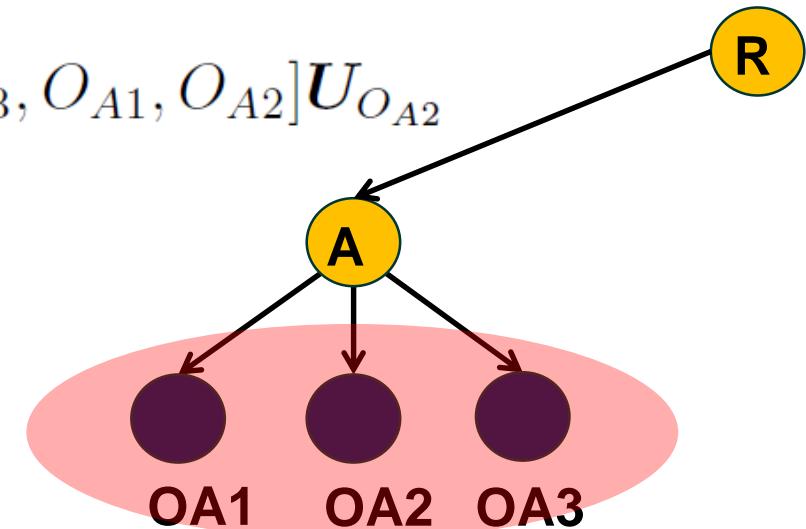
Not a function of observed variables

$$\tilde{M}_{oA1} = L_{oA1}^{-1} \quad \del{M_A} \quad R_{oA1}$$

function of observed variables

$$\tilde{M}_{oA1} = f(O_{A1}, O_{A2}, O_{A3})$$

$$= (\mathbb{P}[O_{A3}, O_{A1}] \mathbf{U}_{O_{A1}})^\dagger \mathbb{P}[O_{A3}, O_{A1}, O_{A2}] \mathbf{U}_{O_{A2}}$$



Algorithm Overview

Latent Tree Representation

Compute joint probability as sequence of matrix multiplications

Transformed Representation

Add transform matrices to estimate transformed quantities instead of actual quantities

Observable Representation

Prove that these transformed quantities are functions of observed variables.

Sample Complexity

- When empirical estimate of transformed quantities equals true transformed quantities, joint probability estimate is equal to the true joint probability.
- Aggregate the errors across the quantities to get a bound.

With high probability,

$$\sum_{x_1, \dots, x_O} \left| \hat{\mathbb{P}}[x_1, \dots, x_O] - \mathbb{P}[x_1, \dots, x_O] \right| \leq O \left(\sqrt{\frac{(d_{max} S_H)^{2\ell+1} S_O}{N}} \right)$$

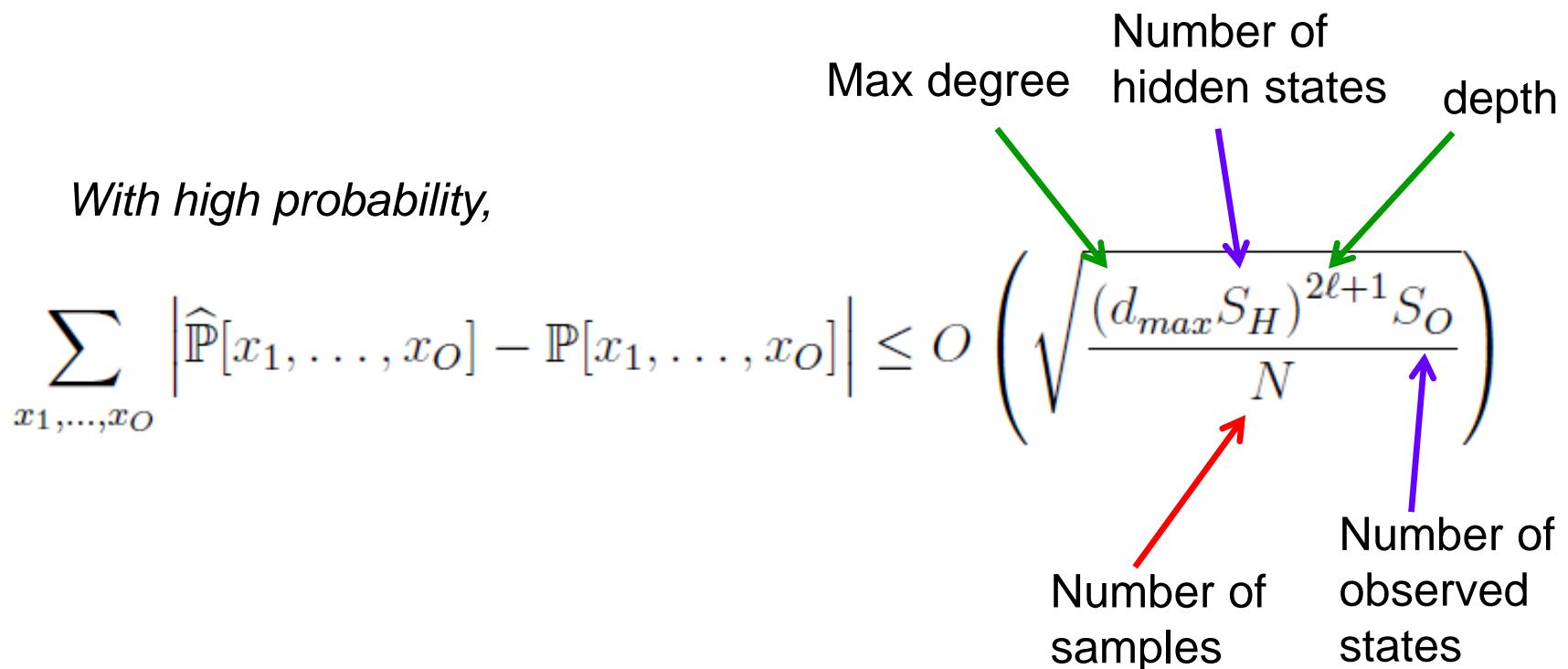
Number of hidden states

Max degree

depth

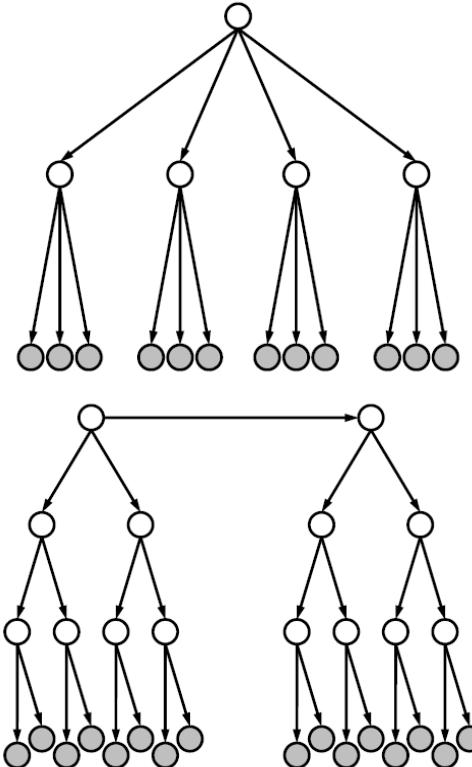
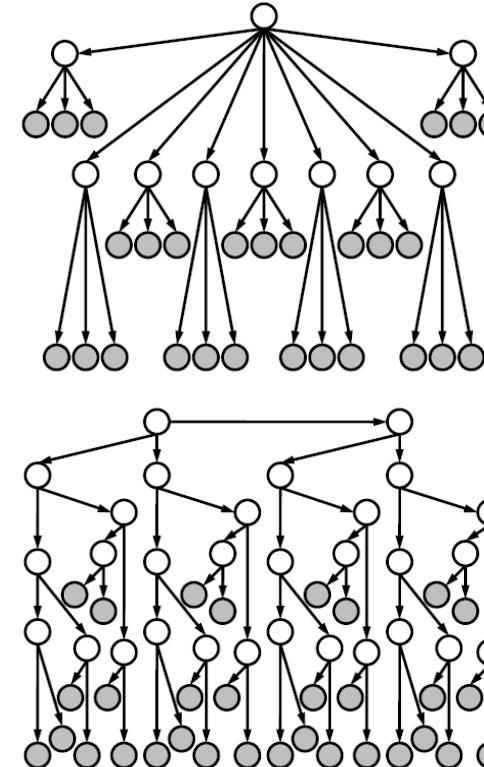
Number of samples

Number of observed states



Simulations

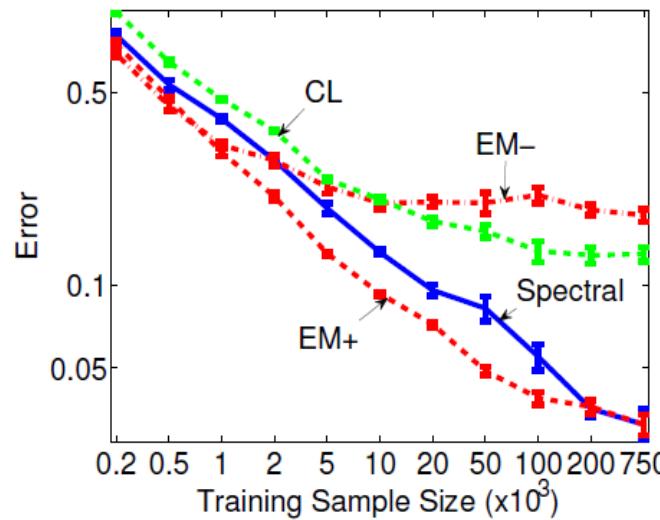
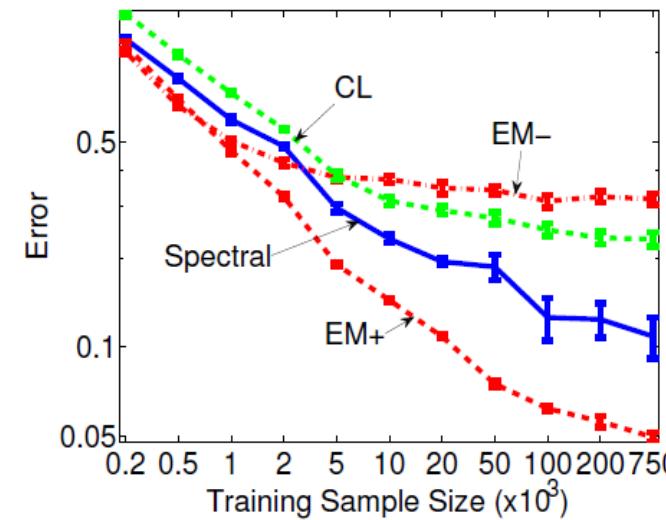
- 4 types of trees:



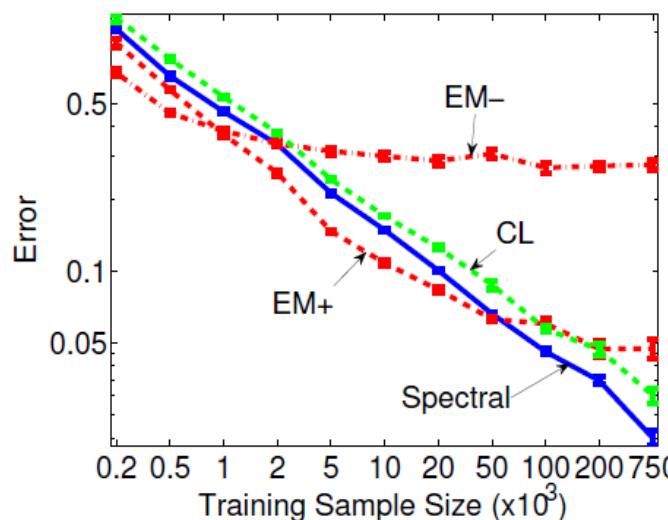
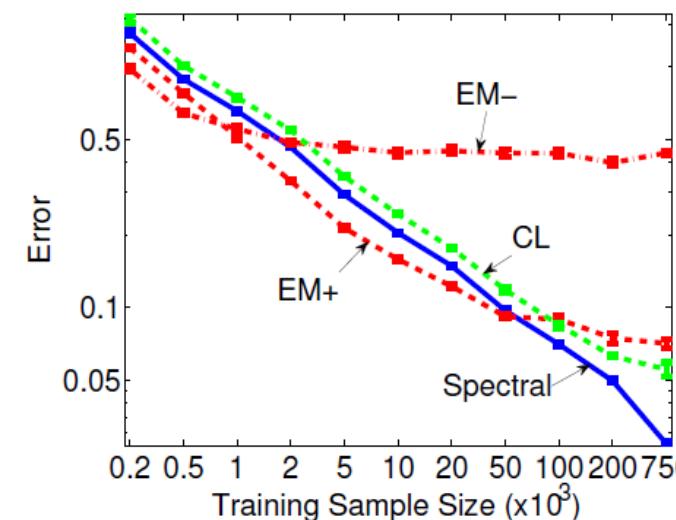
Compare with:

- **EM (high precision), EM (low precision) on latent tree**
- **Chow liu tree** on best fully observable tree – **more restricted model**.

Simulations-Error

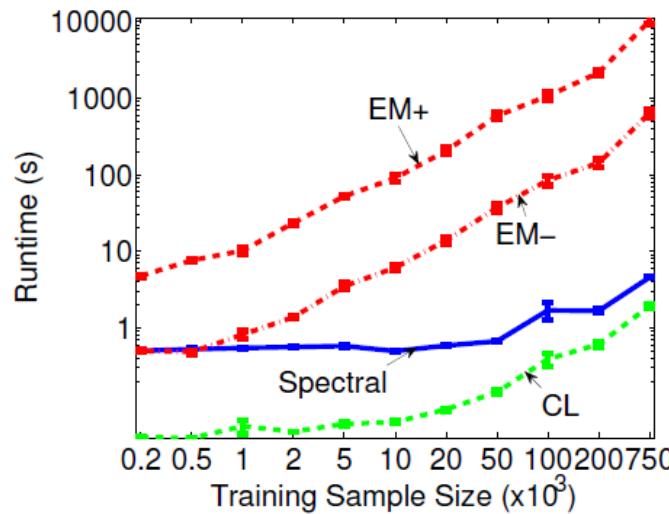
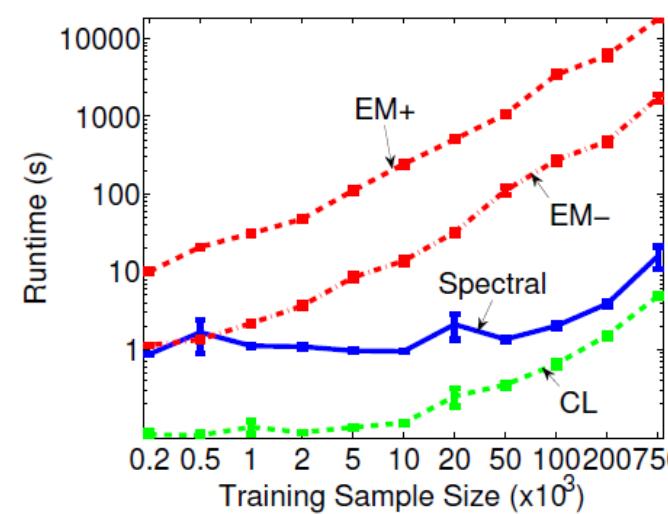


Spectral
EM
Chow Liu

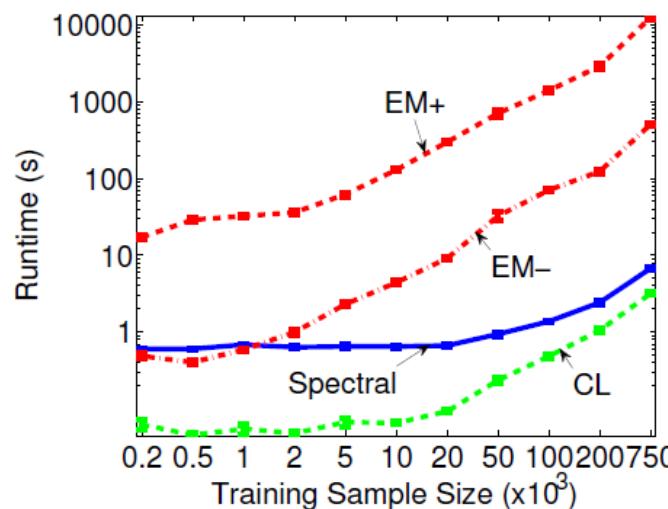
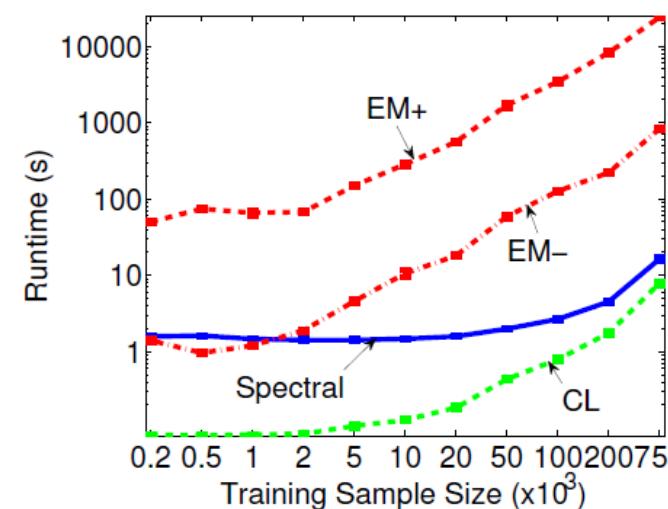


Spectral
EM
Chow Liu

Simulations-Speed



Spectral
EM
Chow Liu

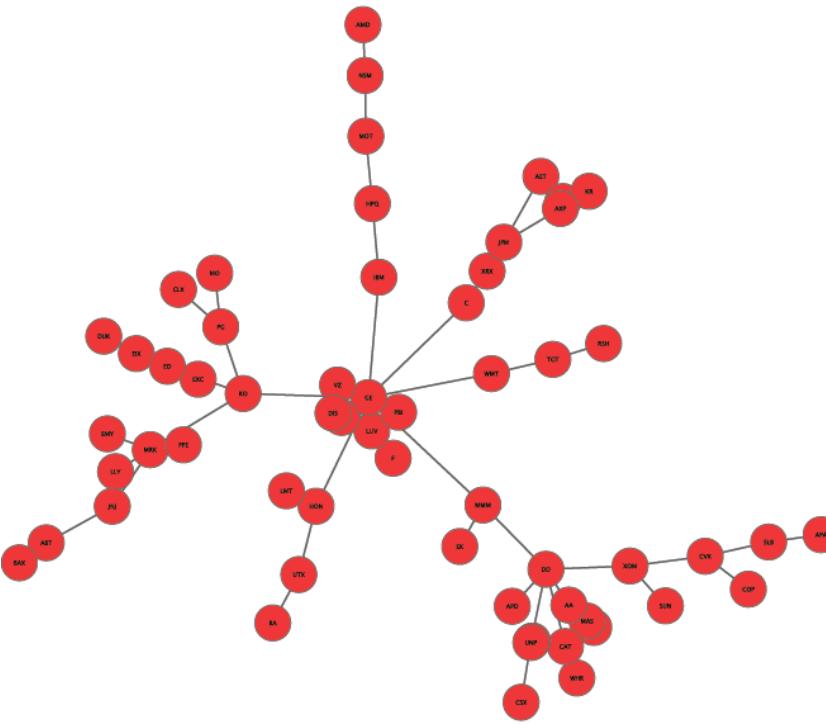


Spectral
EM
Chow Liu

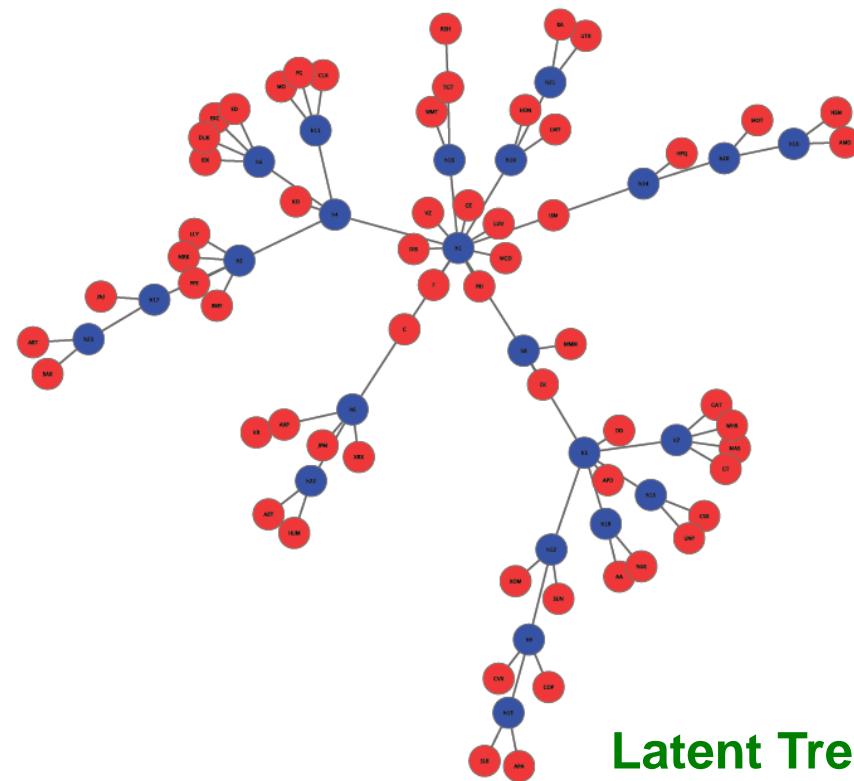
Stock Data Experiment

Acquired closing prices for 59 stocks from 1984 to 2011. Goal is to condition on a few stocks and see how well they predict another stock.

Latent tree structure learned using algorithm of Choi et al. 2010

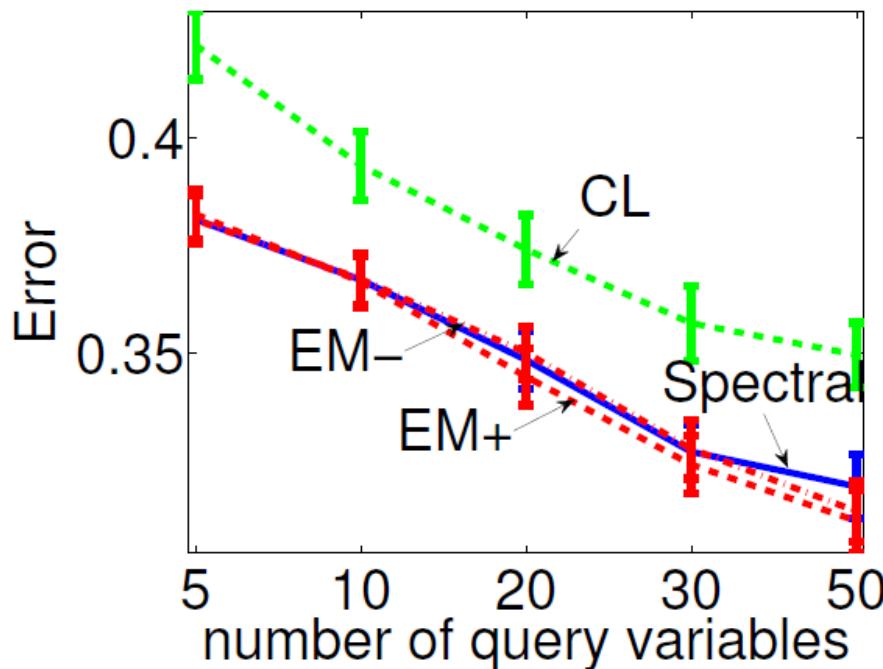


Chow Liu Tree



Latent Tree

Stock Data Results



All the approaches that use the estimated latent tree perform better than message passing on the fully observable estimated Chow Liu tree.

Spectral

EM

Chow Liu

Conclusion

- Latent trees are a **powerful** as well as **tractable** way to model relationships among variables
- Our spectral algorithm presents a fast, consistent, and local-minima-free approach for parameter learning/inference in latent trees.
- Future directions include spectral algorithms for loopy graphs and kernelized spectral algorithms.