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Nonparametric Graphical Models 
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How do we make a 

conditional probability 

table out of this? 

 How to learn parameters? 

 How to perform inference? 

Hilbert Space 

Embeddings!!!!! 



Review: Embedding Distribution of 

One Variable[Smola et al. 2007] 
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density 
The Hilbert Space Embedding of X 



Review: Cross Covariance 

Operator [Smola et al. 2007] 
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Embed Joint Distribution of X and 

Y  in the Tensor Product of two 

RKHS’s 

Embedding of  



Review: Auto Covariance 

Operator [Smola et al. 2007] 
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Only take expectation over these 

Embedding of  



Review: Conditional Embedding 

Operator [Song et al. 2009] 

 Conditional Embedding Operator: 

 

 

 Has Following Property: 

 

 

 

 Analogous to “Slicing” a Conditional Probability Table in the 

Discrete Case: 
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Slicing the Conditional 

Probability Matrix 
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“Slicing” the Conditional 

Embedding Operator 
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Why we Like Hilbert Space 

Embeddings 
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We will prove these now 

We can marginalize and use chain rule in Hilbert Space too!!! 

Sum Rule: 

Chain Rule: 

Sum Rule in RKHS: 

Chain Rule in RKHS: 



Sum Rules 

 The sum rule can be expressed in two ways: 

 

 First way: 

 

 

 

 Second way: 

 

 

 

 What is special about the second way? Intuitively, it can be 

expressed elegantly as matrix multiplication  

 

 

 

  

 

 

 

© Ankur Parikh, Eric Xing @ CMU, 2012-2013 

 

 

 

10 

Does not work in RKHS, 

since there is no “sum” 

operation for an operator 

Works in RKHS!!! 



 Sum Rule 

 

 

 Equivalent view using Matrix Algebra 

 

 

 

 

 

 

 

Sum Rule (Matrix Form) 
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Important Notation for this 

Lecture 

 We will use the calligraphic P to denote that the probability is 

being treated as a matrix/vector/tensor 

 

 Probabilities 

 

 

 Probability Vectors/Matrices/Tensors 
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 Chain Rule 

 

 

 Equivalent view using Matrix Algebra 

 

 

 

 

 

 Note how diagonal is used to keep Y from being marginalized 

out. 

 

 

 

 

Chain Rule (Matrix Form) 
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Means on diagonal 



Example 
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 What about? 

 

 

 

 

 

 

 

 Only if B and C are conditionally independent given A!!! 



 Let’s now derive the matrix sum rule differently. 

 

 Let 𝜹𝒊 denote an indicator vector, that is 1 in the 𝑖𝑡ℎ position. 

 

 

 

 

 

Different Proof of Matrix Sum 

Rule with Expectations 
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Random Variables? 
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Remember this is a probability vector. 

It is not a random variable. 

Similarly, this is a function in an RKHS. 

It is not a random variable. 

This is a random vector 

This is a random function 



Expectation Proof of Matrix Sum 

Rule Cont. 
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This is a 

conditional 

probability matrix, 

so it is not a 

random variable 

(despite the 

misleading 

notation), and thus 

the Expectation 

can be pulled out 

This is a random variable 



Proof of RKHS Sum Rule 
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 Now apply the same technique to the RKHS Case. 

 

 

 

 

 Move expectation outside 

Property of conditional embedding 

Property of Expectation 

Definition of Mean Map 



 The idea is to replace the CPTs with RKHS 

operators/functions. 

 

 Let’s do this for a simple example first. 

 

 

 

 

 

 We would like to compute  

Kernel Graphical Models [Song et al. 2010, 

Song et al. 2011] 
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Consider the Discrete Case 
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Inference as Matrix Multiplication 
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Oops....we accidentally integrated out A 



Put A on Diagonal Instead 
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Now it works 
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Introducing evidence 
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 Introduce evidence with delta vectors  

 

 

 

 



Now with Kernels 
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Sum-Product with Kernels 
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Sum-Product with Kernels 
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 Consider just evaluating one random variable X at a particular 

evidence value using the Gaussian RBF Kernel: 

 

 

 

 

 

 

 

 

 What does this looks like? 

What does it mean to evaluate 

the mean map at a point? 
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 Consider Kernel Density Estimate at point 𝑥 : 

 

 

 

 And its empirical estimate: 

 

 

 

 So evaluating the mean map at a point is like an unnormalized 

kernel density estimate. To find the “MAP” assignment, we can 

evaluate on a grid of points, and then pick the one with the highest 

value. 

 

 

 

 

 

Kernel Density Estimation! 
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 Kernel Density Estimation with Gaussian RBF Kernel  in 

Multiple Variables is: 

 

 

 

 

 Like evaluating a “Huge” Covariance Operator using 

Gaussian RBF Kernel (without normalization): 

 

 

 

 

 

 

 

 

 

 

Multiple Variables 
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What is the problem with this? 
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 The empirical estimate is very inaccurate because of curse of 

dimensionality 

 

 

 

 Empirically computing the “huge” covariance operator will 

have the same problem. 

 

 

 But then what is the point of Hilbert Space Embeddings? 



We can factorize the “Huge” 

Covariance Operator  

 Hilbert Space Embeddings allow us to factorize the huge 

covariance operator using the graphical model structure that 

kernel density estimation does not do. 
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Factorizes into smaller covariance/conditional 

embedding operators using the graphical model 

that are more efficient to estimate. 



Kernel Graphical Models: The 

Overall Picture 
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Naïve way to  represent joint 

distribution of discrete variables 

is to store and manipulate a 

“huge” probability table. 

Naïve way to represent joint 

distribution for many 

continuous variables is to 

use multivariate kernel 

density estimation. 

Discrete Graphical Models allow us 

to factorize the “huge” joint 

distribution table into smaller 

factors. 

Kernel Graphical Models allow us to 

factorize joint distributions of 

continuous variables into smaller 

factors. 



Consider an Even Simpler 

Graphical Model 
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We are going to show how to estimate these operators from data. 



The Kernel Matrix 
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… 
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Empirical Estimate Auto 

Covariance 
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Defined on next slide 



Conceptually, 
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Conceptually, 
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Conceptually, 
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Rigorously, 
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is an operator that maps vectors in         to functions in 

 

such that:  

Its adjoint (transpose)              can then be derived to be: 



Empirical Estimate Cross 

Covariance 
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Getting the Kernel Matrix 

 It can then be shown that, 

 

 

 

 This is finite and easy to compute!!  

 

 However, note that the estimates of the covariance operators 

are not finite since: 
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Intuition 1: Why the Kernel Trick 

works 
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This operator is 

infinite dimensional 

but it has at most 

rank N 

The kernel matrix is 

N by N, and thus 

the kernel trick is 

exploiting the low 

rank structure 



Empirical Estimate of Conditional 

Embedding Operator 
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Sort of…… 

We need to regularize so that this 

is invertible 

? 

regularizer 



Return of Matrix Inversion 

Lemma 

 Believe it or not, the matrix inversion lemma works for linear, 

bounded operators too. 

 

 

 Using it we get, 
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But Our estimates are still 

Infinite…. 
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Lets do inference and see what  happens. 



Running Inference 
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Incorporating the Evidence 
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Reparameterize the Model 
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A 

B 

C 

Evidence: 

Finite!!!!! 



Intuition 2: Why the Kernel Trick 

Works 
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Intuition 2: Why the Kernel Trick 

Works 
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… 
. 

   . 

       .   

. 

. 

. 
… 

. 

. 

. 

Evaluating a feature function at the N data points!!! 
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Intuition 2: Why the Kernel Trick 

Works 
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 Generally people interpret the kernel matrix to be a similarity 

matrix. 

 

 However, we can also view each row of the kernel matrix as 

evaluating a function at the N data points. 

 

 Although the function may be continuous and not easily 

represented analytically, we only really care about what its 

value is on the N data points. 

 

 Thus, when we only have a finite amount of data, the 

computation should be inherently finite. 



Protein Sidechains 

  

 

 

 

© Ankur Parikh, Eric Xing @ CMU, 2012-2013 

 

 

 

53 

http://t3.gstatic.com/images?q=tbn:ANd9GcS_nfJy1o9yrDt3

7YlpK7i5s0f7QFqhPrG7-1CLm2AfWNt5wCE50pIKNZd0 

Goal is to predict the 3D 

configuration of each 

sidechain 



 3D configuration of the sidechain is determined by two angles 

(spherical coordinates). 

 

 

 

 

Protein Sidechains 
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http://www.math24.net/images/triple-int23.jpg 



The Graphical Model 

 Construct a Markov Random Field. 

 

 Each side-chain angle pair is a node. There is an edge 

between side-chains that are nearby in the protein. 
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Edge potentials are 

already determined by 

physics equations. 



 

 Goal is to find the MAP assignment of all the sidechain angle 

pairs. 

 

 Note that this is not Gaussian. But it is easy to define a kernel 

between angle pairs: 

 

 

 

 

 Can then run Kernel Belief Propagation  

 

 

 

 

 

 

 

 

 

 

The Graphical Model 
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Supplemental: Kernel Belief 

Propagation on Trees 
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Kernel Tree Graphical Models [Song et 

al. 2010] 

 The goal is to somehow replace the CPTs with RKHS 

operators/functions. 

 

 

 

 

 

 

 

 

 But we need to do this in a certain way so that we can 

still do inference. 
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? 

? 



 

 We need to “matricize” message passing to apply the RKHS 

trick (but matrices are not enough, we need tensors  ) 

 

 

 

 

 

Message Passing/Belief 

Propagation 
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 Show how to represent discrete graphical models using higher 

order tensors 

 

 Derive Tensor Message Passing 

 

 Show how Tensor Message Passing can also be derived using 

Expectations 

 

 Derive Kernel Message Passing [Song et al. 2010] using the 

intuition from Tensor Message Passing / Expectations 

 

 (For simplicity, we will assume a binary tree – all internal nodes 

have 2 children). 

 

 

 

 

 

 

Outline 
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 Multidimensional arrays 

 A Tensor of order N has N modes (N indices): 

 

 Each mode is associated with a dimension. In the example,  

 Dimension of mode 1 is 4 

 Dimension of mode 2 is 3 

 Dimension of mode 3 is 4 

 

 

 

 

 

 

 

 

 

 

 

Tensors 
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Diagonal Tensors 
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Partially Diagonal Tensors 
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 Multiplying a 3rd order tensor by a vector produces a matrix 

 

 

 

 

 

 

 

Tensor Vector Multiplication 
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Tensor Vector Multiplication 

Cont. 
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 Multiplying a 3rd order tensor by two vectors produces a 

vector 

 

 

 

 

 

 

 



Conditional Probability Table At 

Leaf is a Matrix 
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CPT At Internal Node (Non-Root) 

is 3rd Order Tensor 
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 Note that we have  

 

 

 

 

 

 

 



CPT At Root 
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 CPT at root is a matrix. 

 

 

 

 

 

 

 



The Outgoing Message as a 

Vector (at Leaf) 
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“bar” denotes 

evidence 



The Outgoing Message At 

Internal Node 
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At the Root 
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Kernel Graphical Models [Song et al. 2010, 

Song et al. 2011] 

 The Tensor CPTs at each node are replaced with  RKHS 

functions/operators 
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Leaf: 

Internal (non-root):  

Root: 



Conditional Embedding Operator 

for Internal Nodes 
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Embedding of  

What is ? 



Embedding of Cross Covariance 

Operator in Different RKHS 
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Embedding of  


