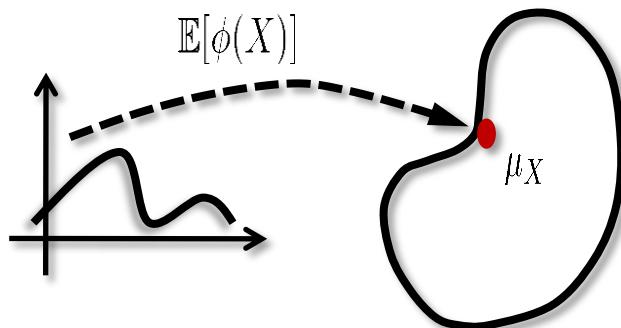
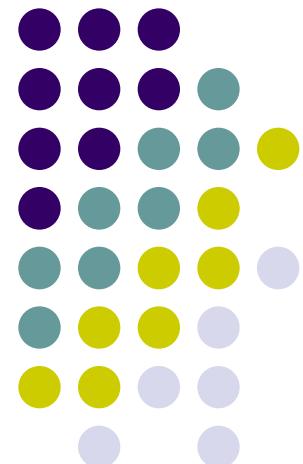


Probabilistic Graphical Models

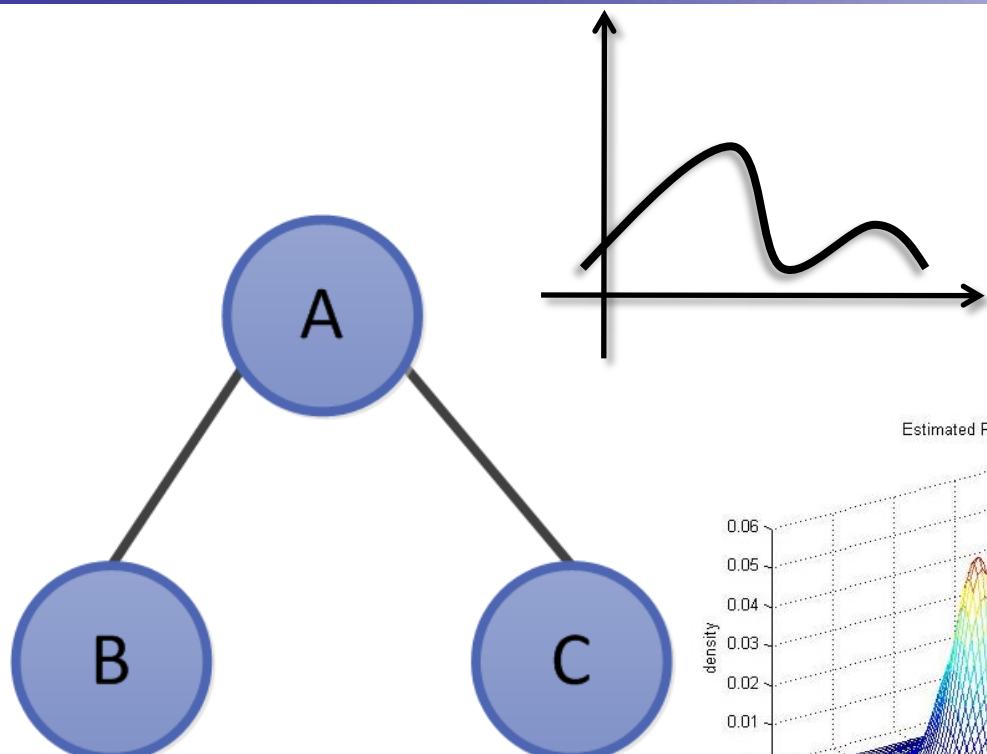
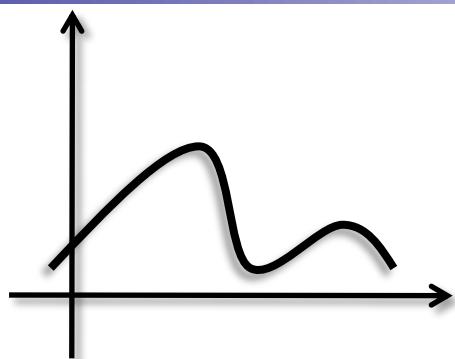
Kernel Graphical Models

Ankur Parikh

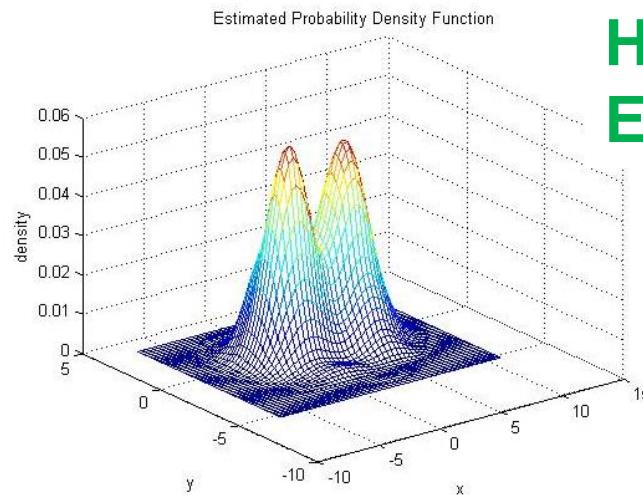
Lecture 20, April 1, 2013



Nonparametric Graphical Models



How do we make a conditional probability table out of this?

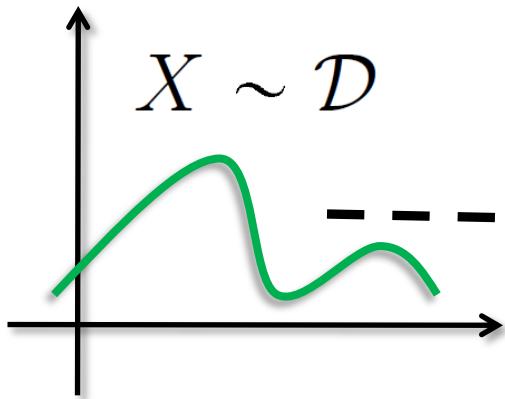
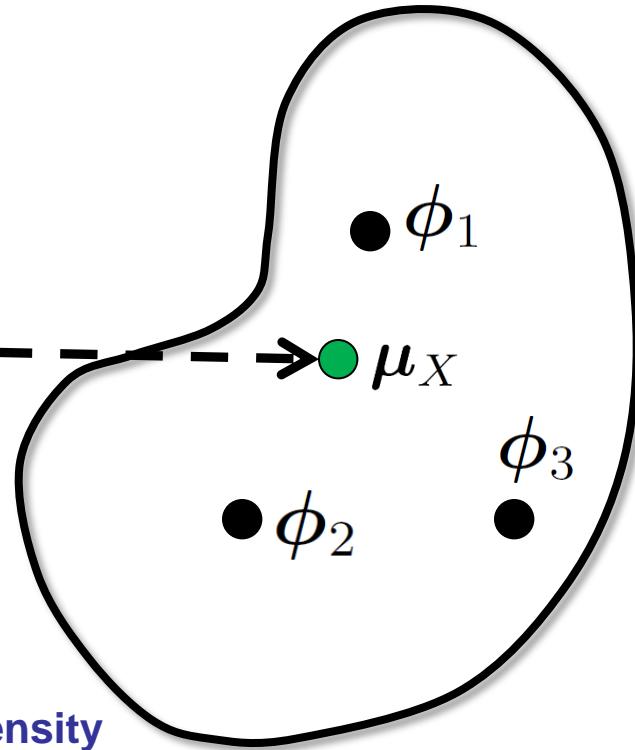


Hilbert Space
Embeddings!!!!

- How to learn parameters?
- How to perform inference?

Review: Embedding Distribution of One Variable

[Smola et al. 2007]

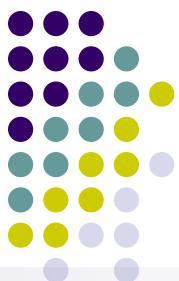


The Hilbert Space Embedding of X

$$\mu_X(\cdot) = \mathbb{E}_{X \sim \mathcal{D}}[\phi_X] = \int p_{\mathcal{D}}(X) \phi_X(\cdot) dX$$

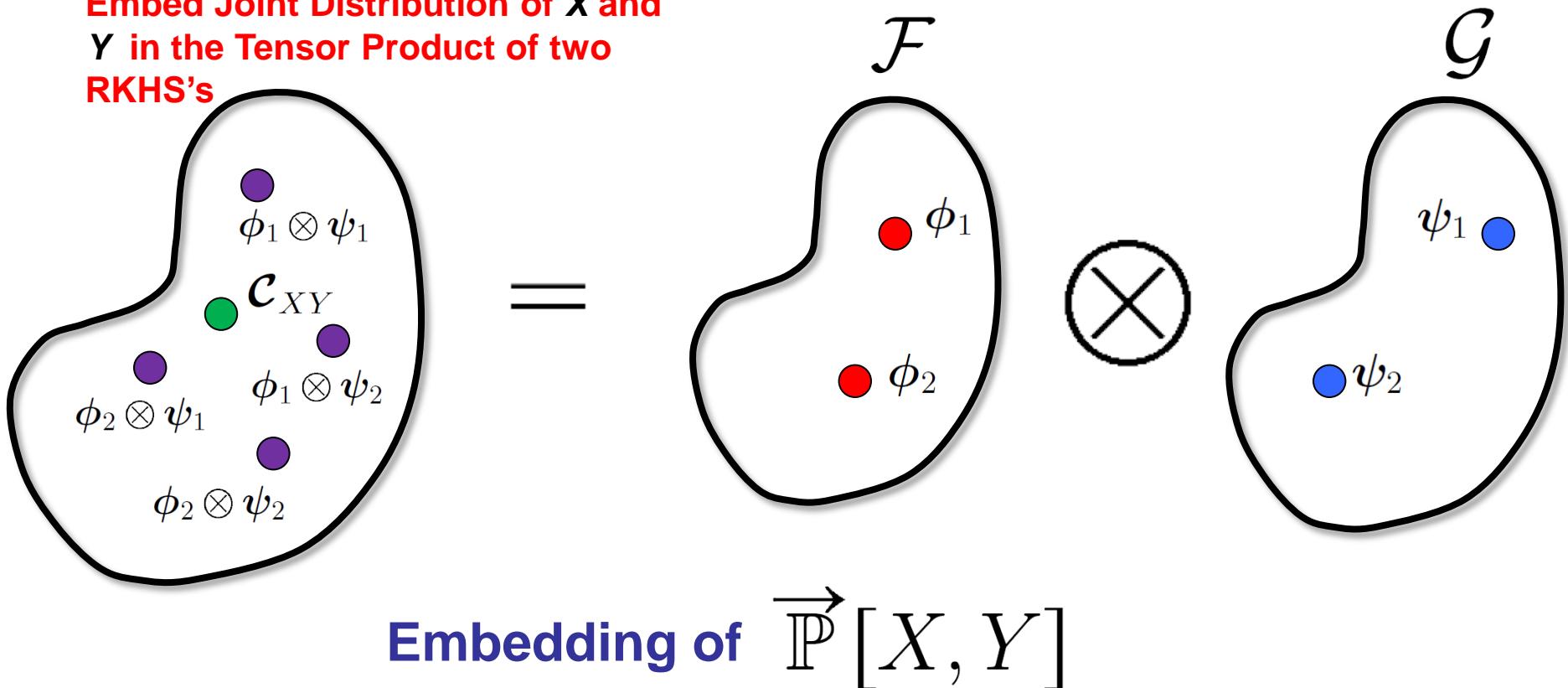
Review: Cross Covariance Operator

[Smola et al. 2007]



$$\mathcal{C}_{XY} = \mathbb{E}_{XY}[\phi_X \otimes \psi_Y]$$

Embed Joint Distribution of X and Y in the Tensor Product of two RKHS's

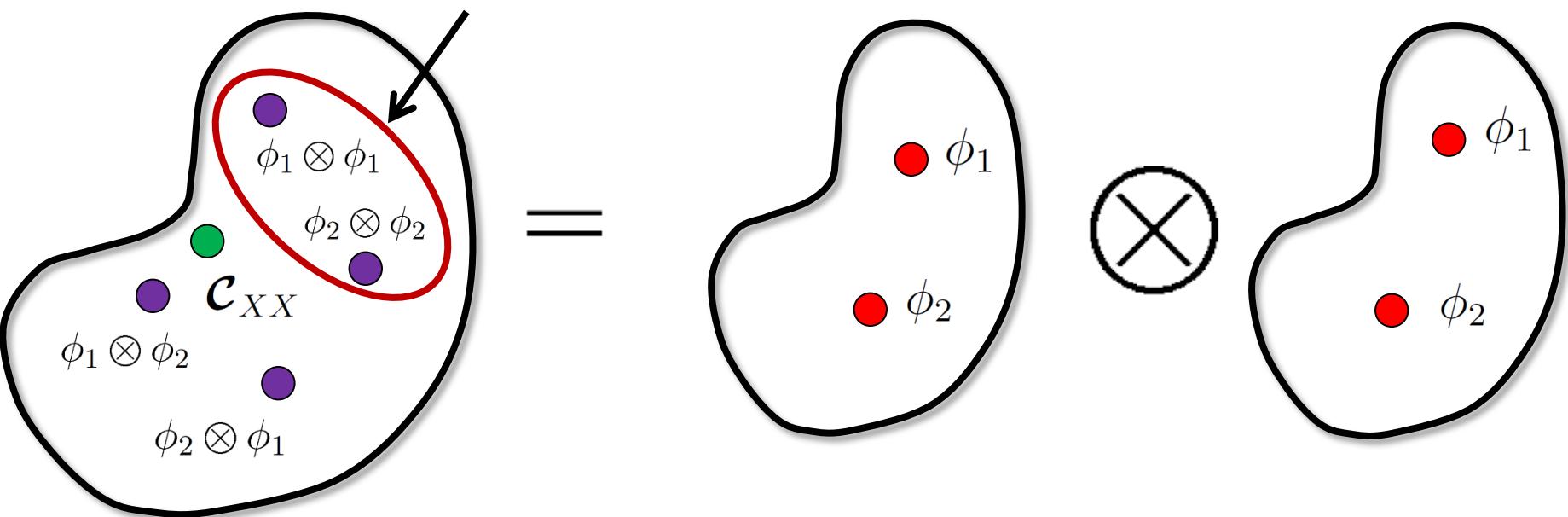


Review: Auto Covariance Operator [Smola et al. 2007]



$$\mathcal{C}_{XX} = \mathbb{E}_X[\phi_X \otimes \phi_X]$$

Only take expectation over these



Embedding of $\text{Diag}(\mathbb{P}[X])$

Review: Conditional Embedding Operator

[Song et al. 2009]

- Conditional Embedding Operator:

$$\mathcal{C}_{X|Y} = \mathcal{C}_{XY} \mathcal{C}_{YY}^{-1}$$

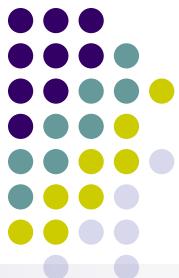
- Has Following Property:

$$\mathbb{E}_{X|y}[\phi_X|y] = \mathcal{C}_{X|Y} \phi_y$$

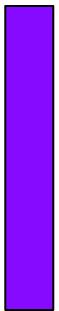
- Analogous to “Slicing” a Conditional Probability Table in the Discrete Case:

$$\overrightarrow{\mathbb{P}}[X|Y=1] = \overrightarrow{\mathbb{P}}[X|Y]\delta_1$$

Slicing the Conditional Probability Matrix



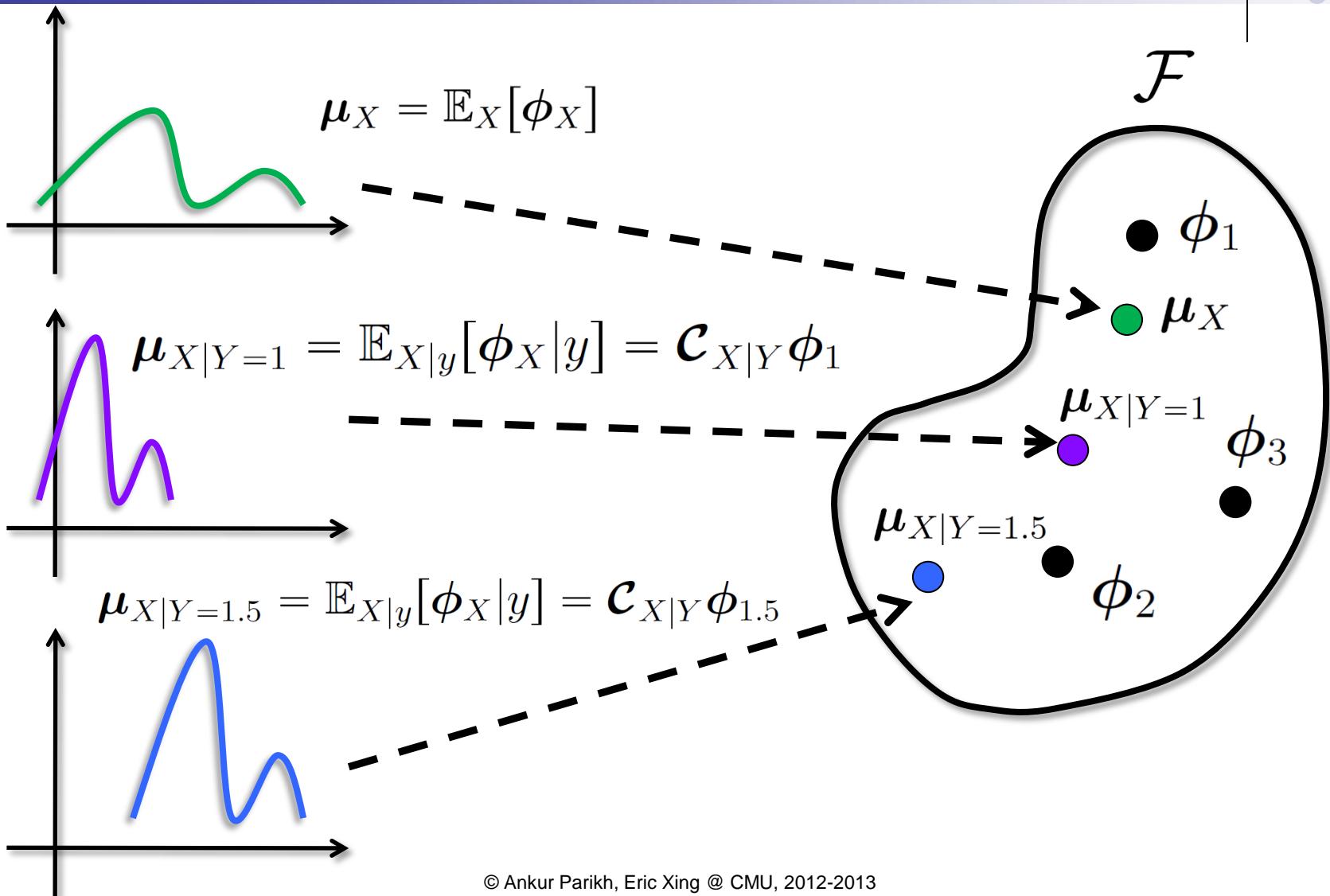
$$\mathcal{P}[X]$$



$$\mathcal{P}[X|Y = 1] = \mathcal{P}[X|Y]\delta_1$$

$$\mathcal{P}[X|Y = 2] = \mathcal{P}[X|Y]\delta_2$$

“Slicing” the Conditional Embedding Operator



Why we Like Hilbert Space Embeddings

We can marginalize and use chain rule in Hilbert Space too!!!

Sum Rule:

$$\mathbb{P}[X] = \int_Y \mathbb{P}[X, Y] = \int_Y \mathbb{P}[X|Y] \mathbb{P}[Y]$$

Chain Rule:

$$\mathbb{P}[X, Y] = \mathbb{P}[X|Y] \mathbb{P}[Y] = \mathbb{P}[Y|X] \mathbb{P}[Y]$$

Sum Rule in RKHS:

$$\mu_X = \mathcal{C}_{X|Y} \mu_Y$$

Chain Rule in RKHS:

$$\mathcal{C}_{YX} = \mathcal{C}_{Y|X} \mathcal{C}_{XX} = \mathcal{C}_{X|Y} \mathcal{C}_{YY}$$

We will prove these now



Sum Rules

- The sum rule can be expressed in two ways:
- First way:

$$\mathbb{P}[X] = \sum_Y \mathbb{P}[X, Y]$$

**Does not work in RKHS,
since there is no “sum”
operation for an operator**

- Second way:

$$\mathbb{P}[X] = \sum_Y \mathbb{P}[X|Y] \mathbb{P}[Y]$$

Works in RKHS!!!

- What is special about the second way? Intuitively, it can be expressed elegantly as matrix multiplication ☺



Sum Rule (Matrix Form)

- Sum Rule

$$\mathbb{P}[X] = \sum_Y \mathbb{P}[X|Y]\mathbb{P}[Y]$$

- Equivalent view using Matrix Algebra

$$\mathcal{P}[X] = \mathcal{P}[X|Y] \times \mathcal{P}[Y]$$

$$\begin{pmatrix} \mathbb{P}[X = 0] \\ \mathbb{P}[X = 1] \end{pmatrix} = \begin{pmatrix} \mathbb{P}[X = 0|Y = 0] & \mathbb{P}[X = 0|Y = 1] \\ \mathbb{P}[X = 1|Y = 0] & \mathbb{P}[X = 1|Y = 1] \end{pmatrix} \times \begin{pmatrix} \mathbb{P}[Y = 0] \\ \mathbb{P}[Y = 1] \end{pmatrix}$$

Important Notation for this Lecture

- We will use the calligraphic P to denote that the probability is being treated as a matrix/vector/tensor
- Probabilities

$$\mathbb{P}[X, Y] = \mathbb{P}[X|Y]\mathbb{P}[Y]$$

- Probability Vectors/Matrices/Tensors

$$\mathcal{P}[X] = \mathcal{P}[X|Y]\mathcal{P}[Y]$$



Chain Rule (Matrix Form)

- Chain Rule

$$\mathbb{P}[X, Y] = \mathbb{P}[X|Y]\mathbb{P}[Y] = \mathbb{P}[Y|X]\mathbb{P}[Y]$$

- Equivalent view using Matrix Algebra

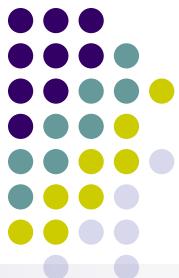
Means on diagonal

$$\mathcal{P}[X, Y] = \mathcal{P}[X|Y] \times \mathcal{P}[\emptyset Y]$$

$$\begin{pmatrix} \mathbb{P}[X = 0, Y = 0] & \mathbb{P}[X = 0, Y = 1] \\ \mathbb{P}[X = 1, Y = 0] & \mathbb{P}[X = 1, Y = 1] \end{pmatrix} =$$

$$\begin{pmatrix} \mathbb{P}[X = 0|Y = 0] & \mathbb{P}[X = 0|Y = 1] \\ \mathbb{P}[X = 1|Y = 0] & \mathbb{P}[X = 1|Y = 1] \end{pmatrix} \times \begin{pmatrix} \mathbb{P}[Y = 0] & 0 \\ 0 & \mathbb{P}[Y = 1] \end{pmatrix}$$

- Note how diagonal is used to keep Y from being marginalized out.



Example

- What about?

$$\mathcal{P}[B|A]\mathcal{P}[\emptyset|A]\mathcal{P}[C|A]^\top$$

$$\mathcal{P}[B, C]$$

- **Only if B and C are conditionally independent given A!!!**

Different Proof of Matrix Sum Rule with Expectations

- Let's now derive the matrix sum rule differently.
- Let δ_i denote an indicator vector, that is 1 in the i^{th} position.

$$\delta_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \delta_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\mathcal{P}[X] = \mathbb{E}_X[\delta_X] = \mathbb{P}[X = 0]\delta_0 + \mathbb{P}[X = 1]\delta_1$$

$$\begin{aligned} \mathcal{P}[X|Y = y] &= \mathbb{E}_{X|Y=y}[\delta_X] \\ &= \mathbb{P}[X = 0|Y = y]\delta_0 + \mathbb{P}[X = 1|Y = y]\delta_1 \end{aligned}$$

Random Variables?

$$\mathcal{P}[X] = \mathbb{E}_X[\delta_X]$$

Remember this is a probability vector.
It is not a random variable.

This is a random vector

$$\mu_X = \mathbb{E}_X[\phi_X]$$

Similarly, this is a function in an RKHS.
It is not a random variable.

This is a random function

Expectation Proof of Matrix Sum Rule Cont.

$$\mathcal{P}[X|Y]\mathcal{P}[Y] = \mathcal{P}[X|Y]\mathbb{E}_Y[\delta_Y]$$

$$= \mathbb{E}_Y[\mathcal{P}[X|Y]\delta_Y]$$

$$= \mathbb{E}_Y[\mathbb{E}_{X|Y}[\delta_X]]$$

$$= \mathbb{E}_{XY}[\delta_X]$$

$$= \mathcal{P}[X]$$

This is a conditional probability matrix, so it is not a random variable (despite the misleading notation), and thus the Expectation can be pulled out

This is a random variable

Proof of RKHS Sum Rule

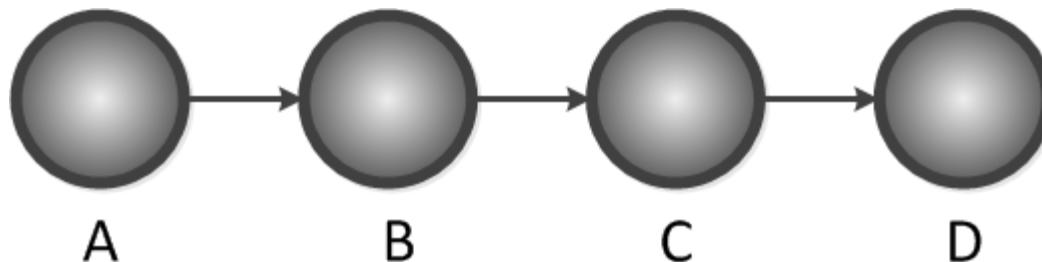
- Now apply the same technique to the RKHS Case.

$$\begin{aligned} & \mathcal{C}_{X|Y} \mu_Y \\ = & \mathcal{C}_{X|Y} \mathbb{E}_Y [\psi_Y] \\ = & \mathbb{E}_Y [\mathcal{C}_{X|Y} \psi_Y] \quad \text{Move expectation outside} \\ = & \mathbb{E}_Y [\mathbb{E}_{X|Y} [\phi_X | Y]] \quad \text{Property of conditional embedding} \\ = & \mathbb{E}_{XY} [\phi_X] \quad \text{Property of Expectation} \\ = & \mu_X \quad \text{Definition of Mean Map} \end{aligned}$$

Kernel Graphical Models [Song et al. 2010,

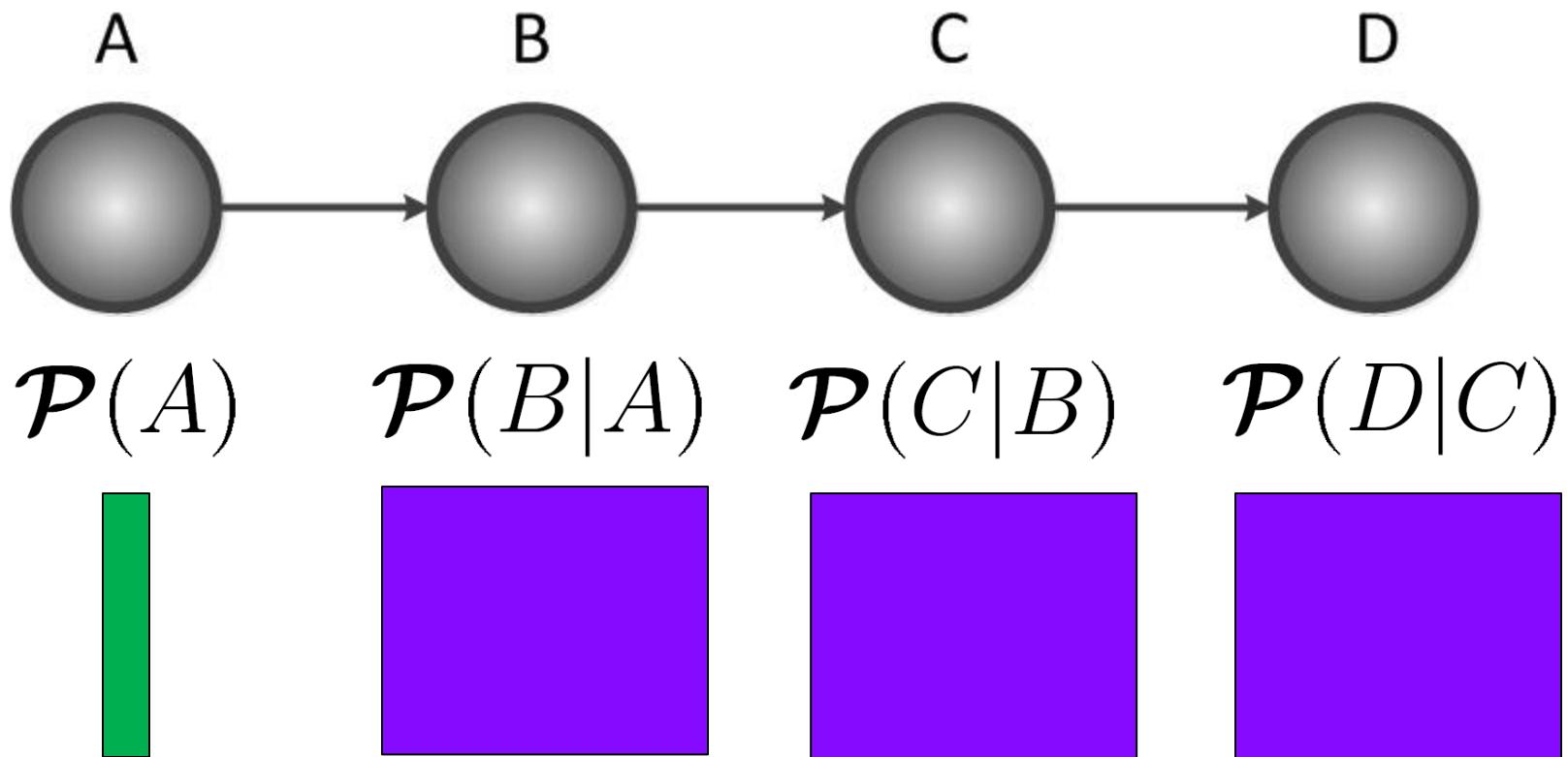
Song et al. 2011]

- The idea is to replace the CPTs with RKHS operators/functions.
- Let's do this for a simple example first.

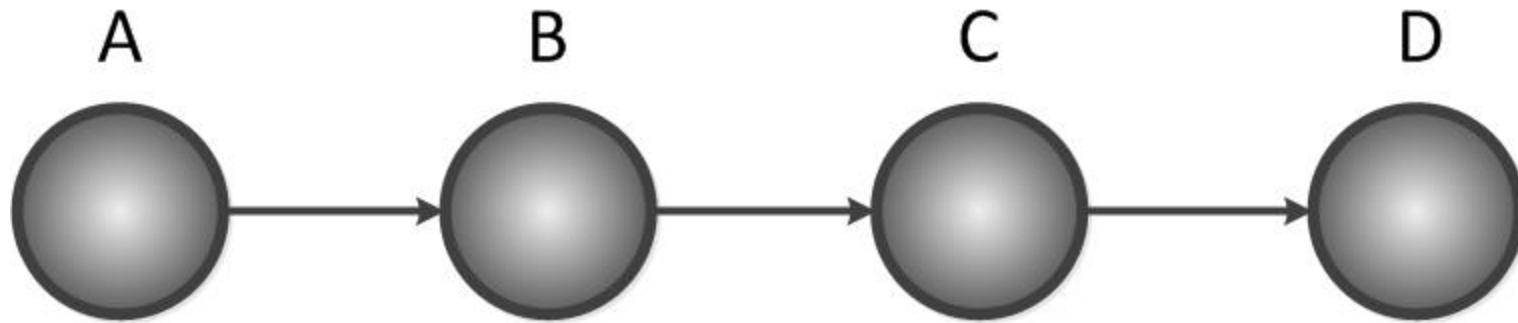


- **We would like to compute** $\mathbb{P}[A = a, D = d]$

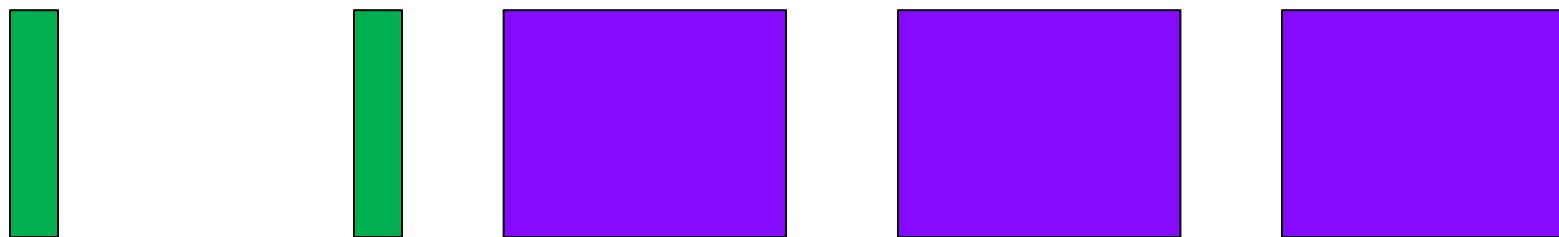
Consider the Discrete Case



Inference as Matrix Multiplication



$$\mathcal{P}(D) = \mathcal{P}(A)\mathcal{P}(B|A)^\top \mathcal{P}(C|B)^\top \mathcal{P}(D|C)^\top$$

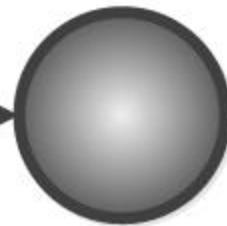


Oops....we accidentally integrated out A

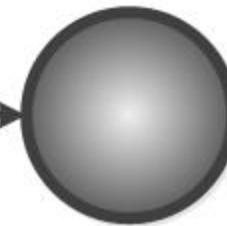
Put A on Diagonal Instead

A

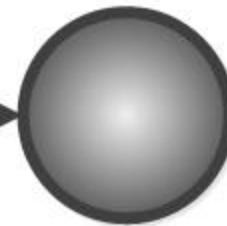
B



C



D

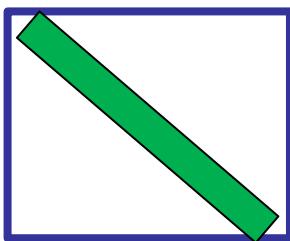
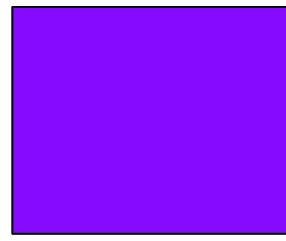
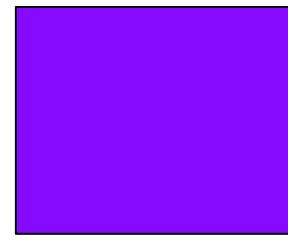
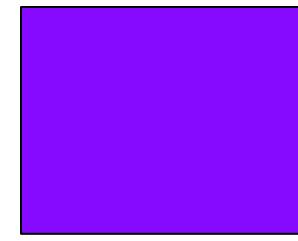


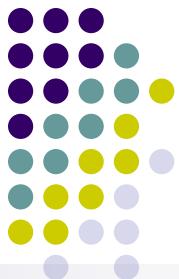
$$\mathcal{P}(\emptyset|A)$$

$$\mathcal{P}(B|A)$$

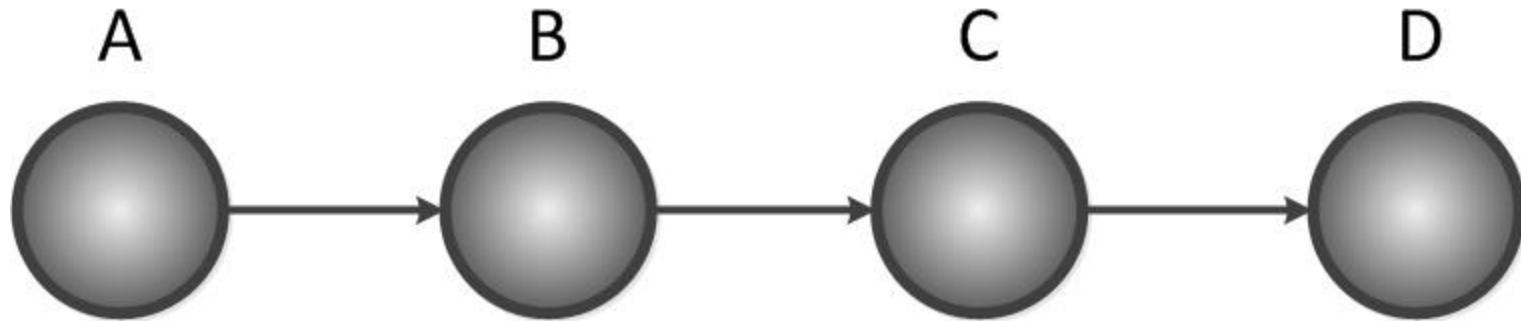
$$\mathcal{P}(C|B)$$

$$\mathcal{P}(D|C)$$

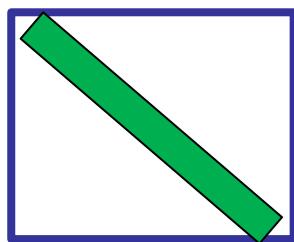
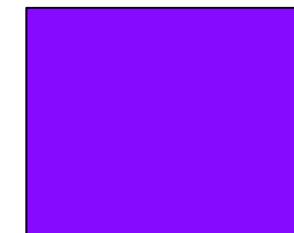
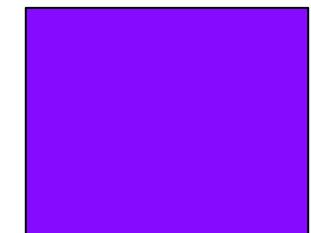




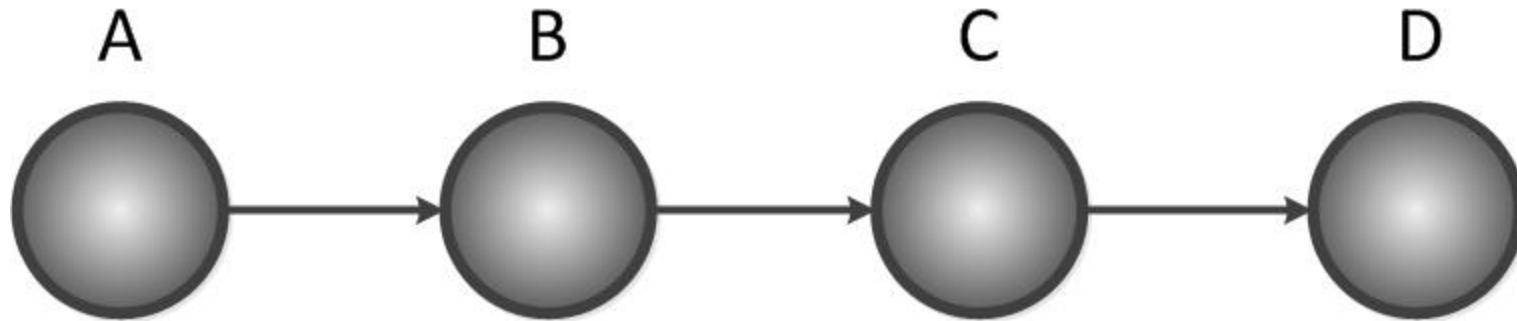
Now it works



$$\mathcal{P}(A, D) = \mathcal{P}(\emptyset | A) \mathcal{P}(B | A)^\top \mathcal{P}(C | B)^\top \mathcal{P}(D | C)^\top$$

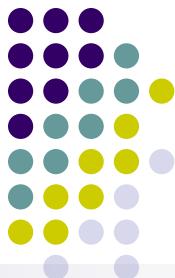


Introducing evidence

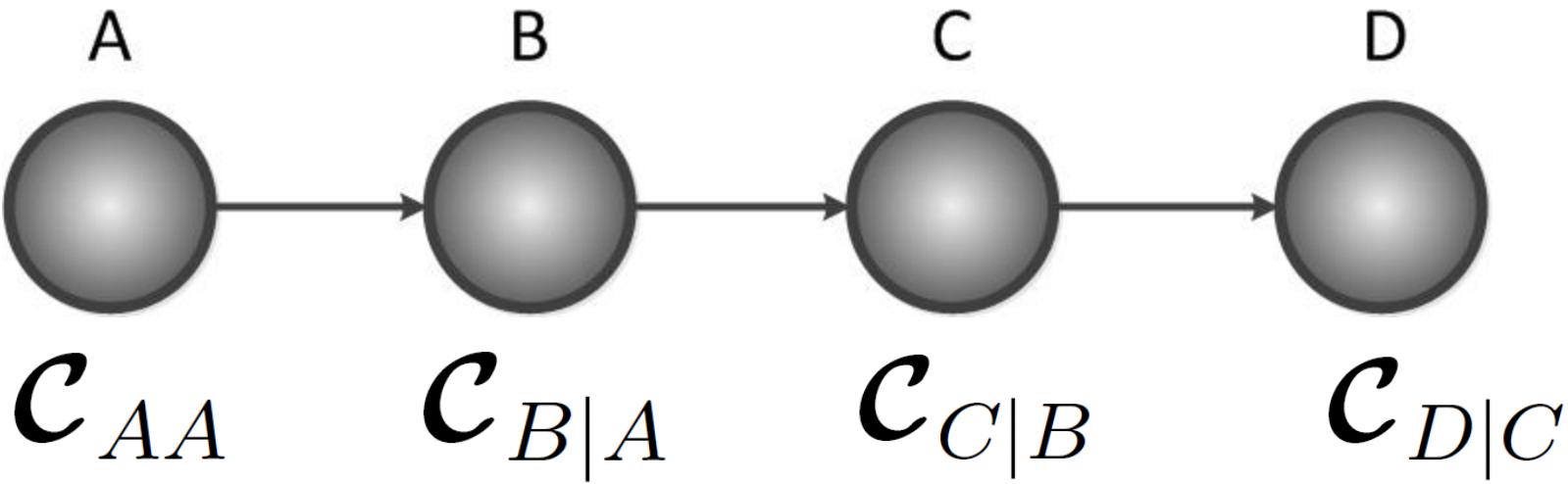
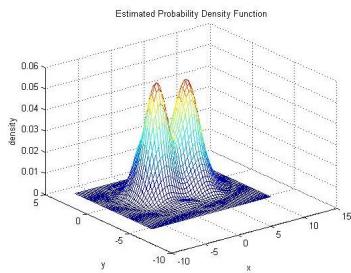
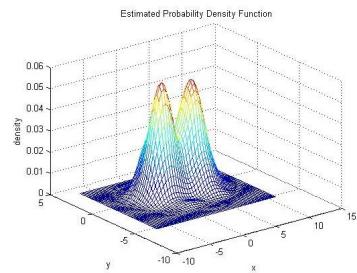
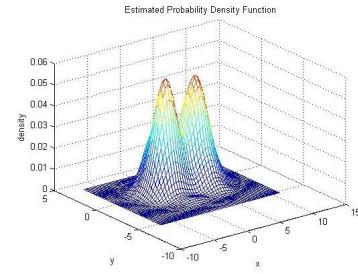
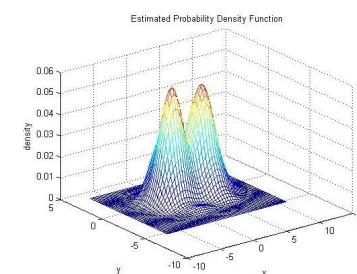


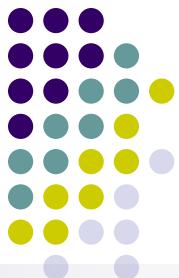
- Introduce evidence with delta vectors

$$\mathcal{P}(A = a, D = d) = \delta_a^\top \mathcal{P}(A, D) \delta_d$$

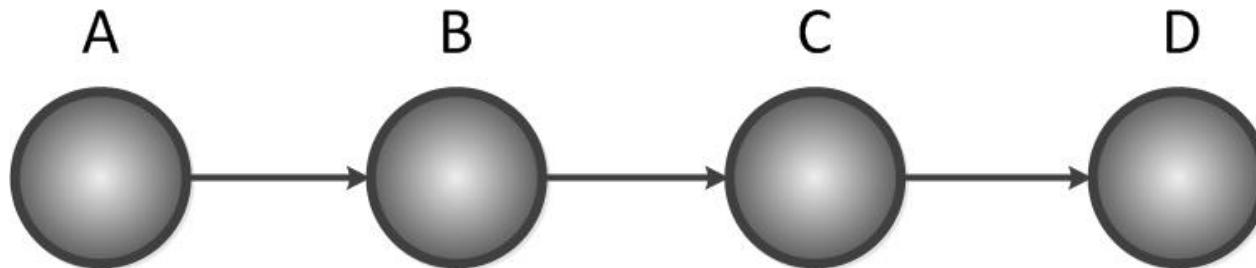


Now with Kernels





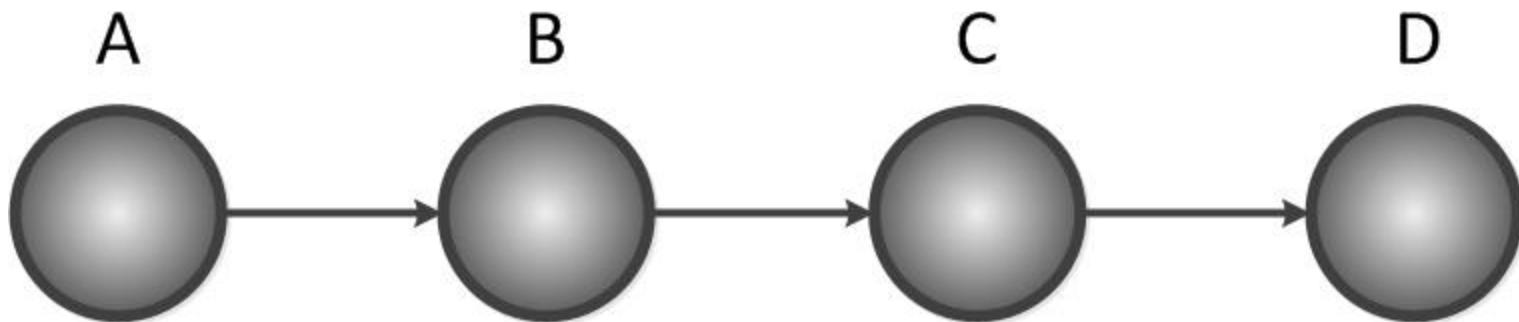
Sum-Product with Kernels



$$\mathcal{C}_{AB} = \mathcal{C}_{AA} \mathcal{C}_{B|A}^\top$$

$$\mathcal{C}_{AD} = \mathcal{C}_{AA} \mathcal{C}_{B|A}^\top \mathcal{C}_{B|C}^\top \mathcal{C}_{C|D}^\top$$

Sum-Product with Kernels



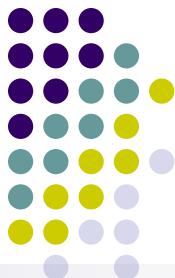
some number = $\phi_a^\top \mathcal{C}_{A,D} \phi_d$

What does it mean to evaluate the mean map at a point?

- Consider just evaluating one random variable X at a particular evidence value using the Gaussian RBF Kernel:

$$\begin{aligned}\langle \mu_X, \phi_{\bar{x}} \rangle &= \mathbb{E}_X [\langle \phi_X, \phi_{\bar{x}} \rangle] \\ &= \mathbb{E}_X [K(X, \bar{x})] \\ &= \mathbb{E}_X \left[\exp \left(\frac{-\|X - \bar{x}\|_2^2}{\sigma^2} \right) \right]\end{aligned}$$

- What does this looks like?



Kernel Density Estimation!

- Consider Kernel Density Estimate at point \bar{x} :

$$\mathbb{P}_{kde}[X = \bar{x}] \propto \mathbb{E} \left[\exp \left(\frac{-\|X - \bar{x}\|_2^2}{\sigma^2} \right) \right]$$

- And its empirical estimate:

$$\hat{\mathbb{P}}_{kde}[X = \bar{x}] \propto \frac{1}{N} \sum_{n=1}^N \exp \left(-\frac{\|X - \bar{x}\|_2^2}{\sigma^2} \right)$$

- So evaluating the mean map at a point is like an unnormalized kernel density estimate. To find the “MAP” assignment, we can evaluate on a grid of points, and then pick the one with the highest value.

Multiple Variables

- Kernel Density Estimation with Gaussian RBF Kernel in Multiple Variables is:

$$\mathbb{P}_{kde}[X_{1:\mathcal{O}} = \bar{x}_{1:\mathcal{O}}] \propto \mathbb{E} \left[\prod_{o=1}^{\mathcal{O}} \exp \left(-\frac{\|X_{\mathcal{O}} - \bar{x}_o\|_2^2}{\sigma^2} \right) \right]$$

- Like evaluating a “Huge” Covariance Operator using Gaussian RBF Kernel (without normalization):

$$\langle \mathcal{C}_{X_1, \dots, X_{\mathcal{O}}}, \phi_{\bar{x}_1} \otimes \phi_{\bar{x}_2} \dots \otimes \phi_{\bar{x}_{\mathcal{O}}} \rangle$$



What is the problem with this?

- The empirical estimate is very inaccurate because of curse of dimensionality

$$\hat{\mathbb{P}}_{kde}[\mathbf{X}_{1:\mathcal{O}} = \bar{x}_{1:\mathcal{O}}] \propto \frac{1}{N} \sum_{n=1}^N \prod_{o=1}^{\mathcal{O}} \exp \left(-\frac{\|X_O^{(n)} - \bar{x}_o\|_2^2}{\sigma^2} \right)$$

- Empirically computing the “huge” covariance operator will have the same problem.
- But then what is the point of Hilbert Space Embeddings?

We can factorize the “Huge” Covariance Operator

- Hilbert Space Embeddings allow us to factorize the huge covariance operator using the graphical model structure that kernel density estimation does not do.

$$\langle \mathcal{C}_{X_1, \dots, X_O}, \phi_{\bar{x}_1} \otimes \phi_{\bar{x}_2} \dots \otimes \phi_{\bar{x}_O} \rangle$$

Factorizes into smaller covariance/conditional embedding operators using the graphical model that are more efficient to estimate.

$$\mathcal{C}_{AA}$$

$$\mathcal{C}_{B|A}$$

$$\mathcal{C}_{C|B}$$

$$\mathcal{C}_{D|C}$$

Kernel Graphical Models: The Overall Picture

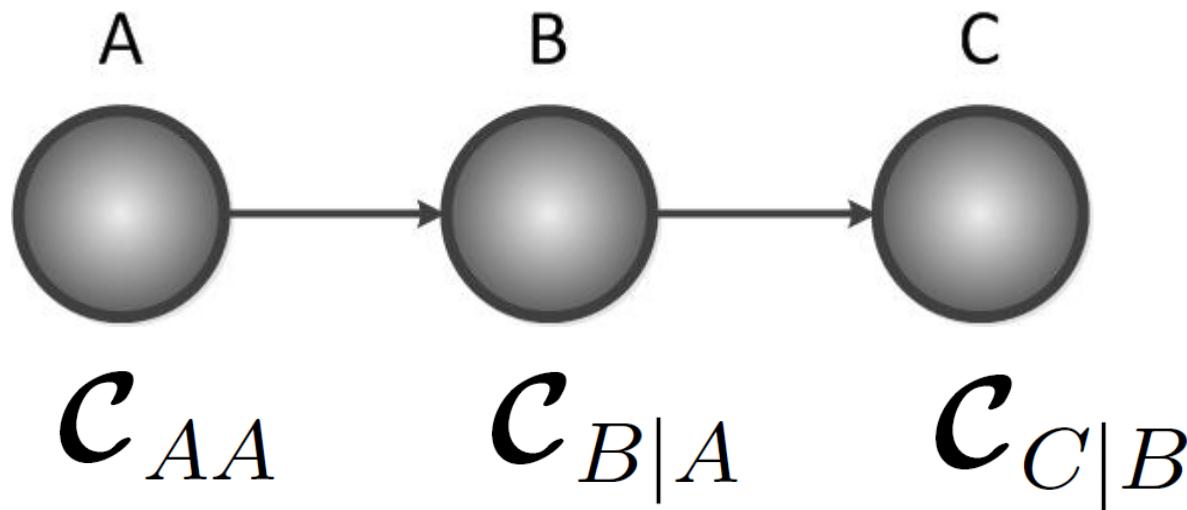
Naïve way to represent joint distribution of discrete variables is to store and manipulate a “huge” probability table.

Naïve way to represent joint distribution for many continuous variables is to use multivariate kernel density estimation.

Discrete Graphical Models allow us to factorize the “huge” joint distribution table into smaller factors.

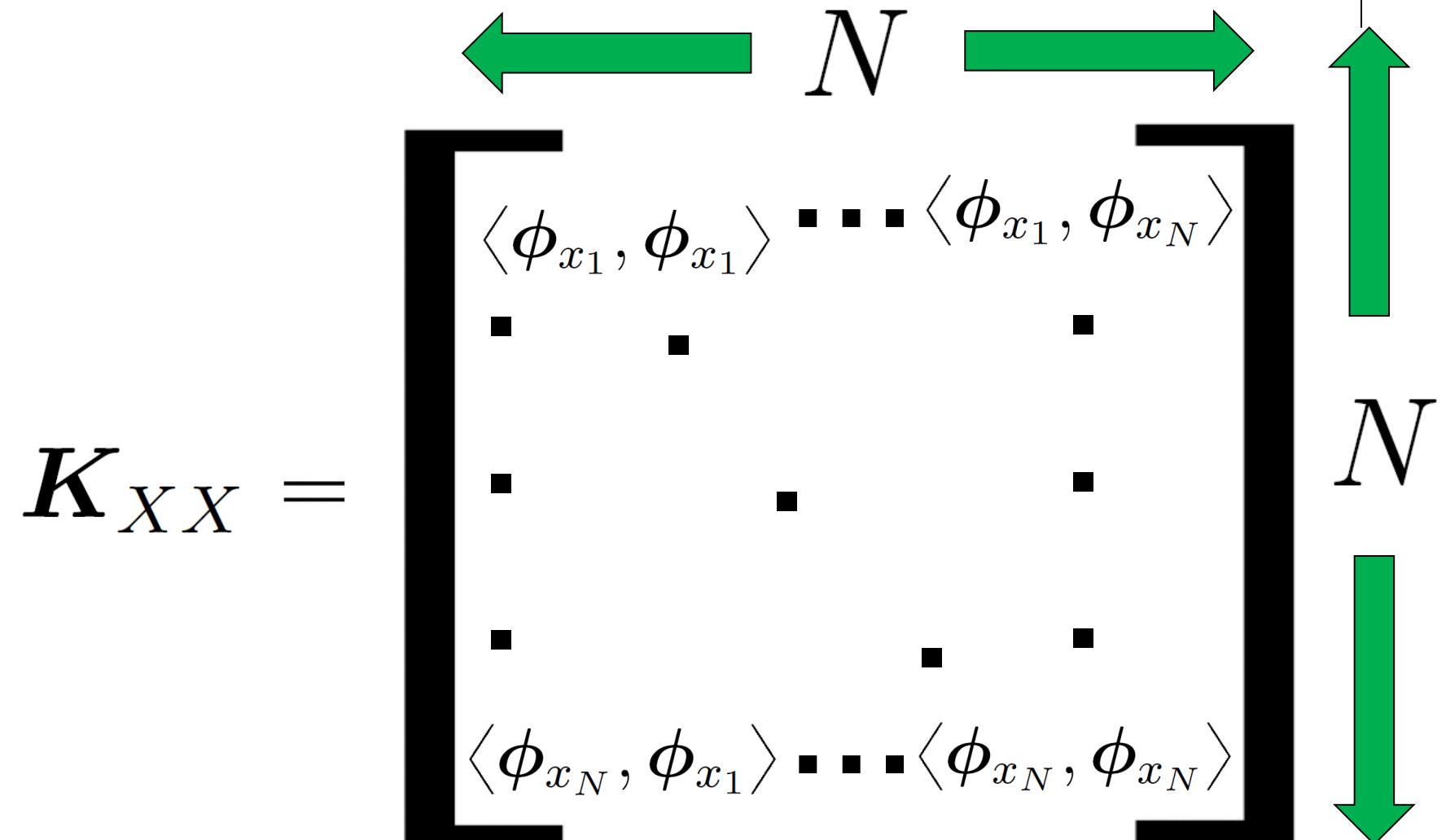
Kernel Graphical Models allow us to factorize joint distributions of continuous variables into smaller factors.

Consider an Even Simpler Graphical Model



We are going to show how to estimate these operators from data.

The Kernel Matrix

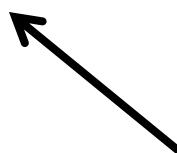


Empirical Estimate Auto Covariance

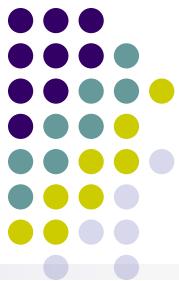
$$\mathcal{C}_{XX} = \mathbb{E}_X[\phi_X \otimes \phi_X]$$

$$\hat{\mathcal{C}}_{XX} = \frac{1}{N} \sum_{n=1}^N \phi_{x_n} \otimes \phi_{x_n}$$

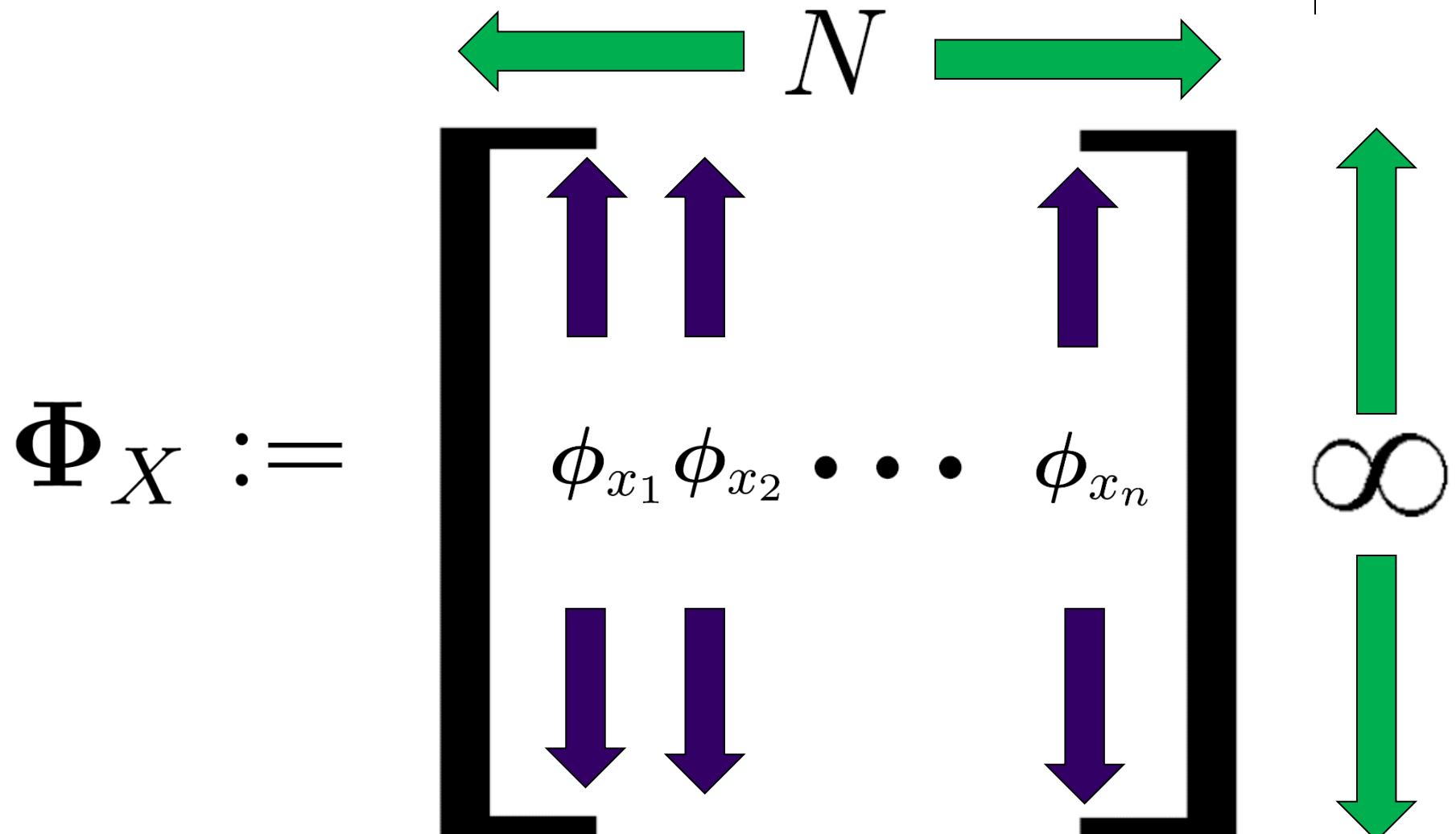
$$\hat{\mathcal{C}}_{XX} = \frac{1}{N} \Phi_X \Phi_X^\top$$

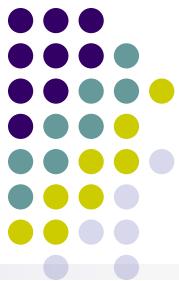


Defined on next slide



Conceptually,





Conceptually,

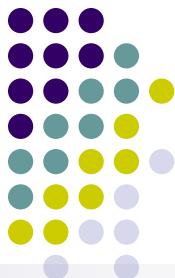
$$\sum_{n=1}^N v_i \phi_{x_n} = \Phi_X \begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_N \end{pmatrix}$$

The diagram illustrates the concept of a feature vector Φ_X as a linear combination of basis functions ϕ_{x_n} . On the left, the sum $\sum_{n=1}^N v_i \phi_{x_n}$ is shown. The right side shows the matrix Φ_X (represented by a large bracket) multiplied by a column vector of coefficients $\begin{pmatrix} v_1 \\ v_2 \\ \dots \\ v_N \end{pmatrix}$. The matrix Φ_X has columns corresponding to the basis functions $\phi_{x_1}, \phi_{x_2}, \dots, \phi_{x_n}$. Arrows indicate the mapping from the input features x_1, x_2, \dots, x_n to the columns of the matrix. The matrix itself is represented by a black bracket with arrows pointing from the input features to the columns.



Conceptually,





Rigorously,

Φ_X is an operator that maps vectors in \mathbb{R}^N to functions in \mathcal{F}

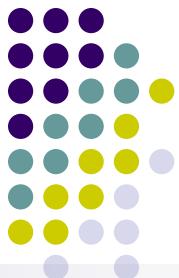
such that:

$$\sum_{n=1}^N \mathbf{v}_i \phi_{x_n} = \Phi_X \mathbf{v}$$

Its adjoint (transpose) Φ_X^\top can then be derived to be:

$$\begin{pmatrix} \langle \phi_{x_1}, \mathbf{f} \rangle \\ \langle \phi_{x_2}^\top, \mathbf{f} \rangle \\ \vdots \\ \langle \phi_{x_n}^\top, \mathbf{f} \rangle \end{pmatrix} = \Phi_X^\top \mathbf{f}$$

Empirical Estimate Cross Covariance



$$\mathcal{C}_{YX} = \mathbb{E}[\phi_Y \otimes \phi_X]$$

$$\hat{\mathcal{C}}_{YX} = \frac{1}{N} \sum_{n=1}^N \phi_{y_n} \otimes \phi_{x_n}$$

$$\hat{\mathcal{C}}_{YX} = \frac{1}{N} \Phi_Y \Phi_X^\top$$



Getting the Kernel Matrix

- It can then be shown that,

$$\Phi_X^\top \Phi_X = K_{XX} \quad K_{XX}(i, j) := \langle \phi_{x_i}, \phi_{x_j} \rangle$$

- This is finite and easy to compute!! 😊
- However, note that the estimates of the covariance operators are **not** finite since:

$$\hat{\mathcal{C}}_{XX} = \frac{1}{N} \Phi_X \Phi_X^\top$$

Intuition 1: Why the Kernel Trick works

$$\hat{\mathcal{C}}_{XX} = \frac{1}{N} \sum_{n=1}^N \phi_{x_n} \otimes \phi_{x_n}$$
$$\hat{\mathcal{C}}_{XX} = \frac{1}{N} \Phi_X \Phi_X^\top$$

This operator is infinite dimensional but it has at most rank N

$$\Phi_X^\top \Phi_X = K_{XX}$$

The kernel matrix is N by N , and thus the kernel trick is exploiting the low rank structure

Empirical Estimate of Conditional Embedding Operator

$$\hat{\mathcal{C}}_{Y|X} = \hat{\mathcal{C}}_{YX} \hat{\mathcal{C}}_{XX}^{-1} ?$$

Sort of.....

We need to regularize so that this is invertible

$$\hat{\mathcal{C}}_{Y|X} = \hat{\mathcal{C}}_{YX} \hat{\mathcal{C}}_{XX}^{-1} = \left(\Phi_Y \Phi_X^\top \left(\frac{1}{N} \Phi_X \Phi_X^\top + \lambda I \right)^{-1} \right)$$

regularizer

Return of Matrix Inversion Lemma

- Believe it or not, the matrix inversion lemma works for linear, bounded operators too.

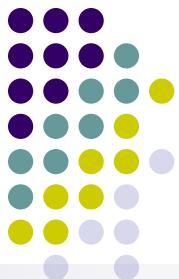
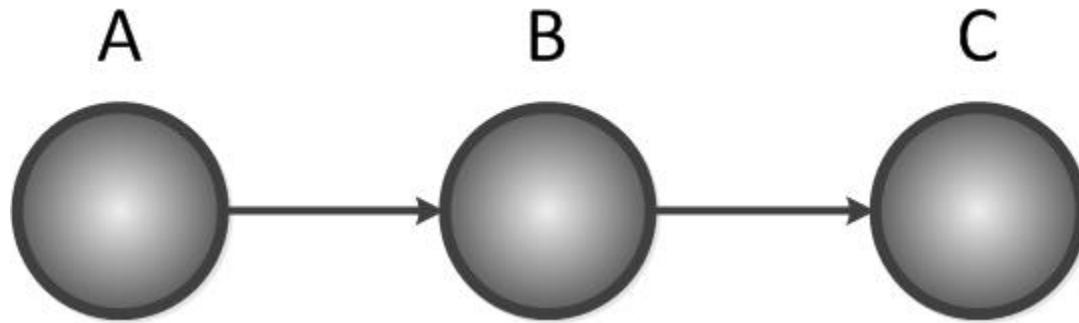
$$(\mathbf{E} - \mathbf{F}\mathbf{H}^{-1}\mathbf{G})^{-1} = \mathbf{E}^{-1} + \mathbf{E}^{-1}\mathbf{F}(\mathbf{H} - \mathbf{G}\mathbf{E}^{-1}\mathbf{F})^{-1}\mathbf{G}\mathbf{E}^{-1}$$

- Using it we get,

$$\hat{\mathcal{C}}_{Y|X} = \Phi_Y (\Phi_X^\top \Phi_X + \lambda N \mathbf{I})^{-1} \Phi_X^\top$$

$$\hat{\mathcal{C}}_{Y|X} = \Phi_Y (\mathbf{K}_{XX} + \lambda N \mathbf{I})^{-1} \Phi_X^\top$$

But Our estimates are still Infinite....



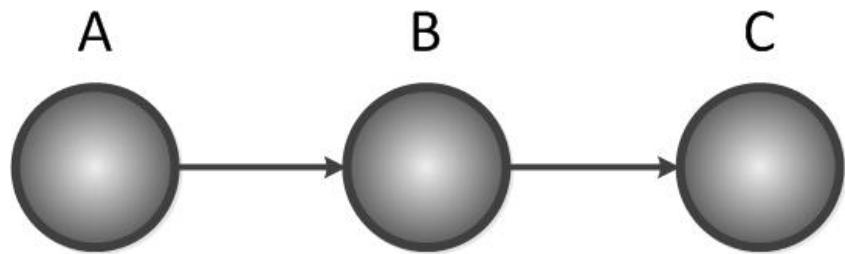
$$\hat{\mathcal{C}}_{AA} = \frac{1}{N} \Phi_A \Phi_A^\top$$

$$\hat{\mathcal{C}}_{B|A} = \Phi_B (\mathbf{K}_{AA} + \lambda N \mathbf{I})^{-1} \Phi_A^\top$$

$$\hat{\mathcal{C}}_{C|B} = \Phi_C (\mathbf{K}_{BB} + \lambda N \mathbf{I})^{-1} \Phi_B^\top$$

Lets do inference and see what happens.

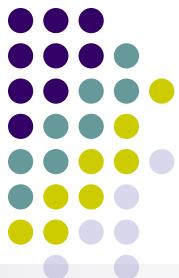
Running Inference



$$\hat{\mathcal{C}}_{AC} = \hat{\mathcal{C}}_{AA} \hat{\mathcal{C}}_{B|A}^\top \hat{\mathcal{C}}_{C|B}^\top$$

$$\hat{\mathcal{C}}_{AC} = \frac{1}{N} \Phi_A \boxed{\Phi_A^\top \Phi_A} (\mathbf{K}_{AA} + \lambda N \mathbf{I})^{-1} \boxed{\Phi_B^\top \Phi_B} (\mathbf{K}_{BB} + \lambda N \mathbf{I})^{-1} \Phi_C^\top$$

Diagram illustrating the components of the covariance matrix $\hat{\mathcal{C}}_{AC}$ in the context of a sequence of nodes A, B, and C. The term $\Phi_A^\top \Phi_A$ is highlighted with a purple box and an arrow from \mathbf{K}_{AA} . The term $\Phi_B^\top \Phi_B$ is highlighted with a purple box and an arrow from \mathbf{K}_{BB} .



Incorporating the Evidence

$$\phi_a^\top \hat{\mathcal{C}}_{AC} \phi_c =$$

$$\frac{1}{N} \boxed{\phi_a^\top \Phi_A} \mathbf{K}_{AA} (\mathbf{K}_{AA} + \lambda N \mathbf{I})^{-1} \times$$

$$\mathbf{K}_{BB} (\mathbf{K}_{BB} + \lambda N \mathbf{I})^{-1} \boxed{\Phi_C^\top \phi_c}$$

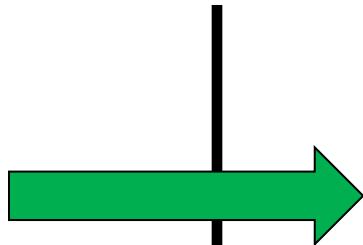
$$\mathbf{K}_{AA}(1:N, a)$$

$$\mathbf{K}_{CC}(1:N, c)$$

Reparameterize the Model

A

$$\hat{\mathcal{C}}_{AA}$$



Finite!!!!

$$\hat{\mathcal{D}}_A = \frac{1}{N} \mathbf{K}_{AA}$$

B

$$\hat{\mathcal{C}}_{B|A}$$

$$\hat{\mathcal{D}}_B = (\mathbf{K}_{AA} + \lambda N \mathbf{I})^{-1} \mathbf{K}_{BB}$$

C

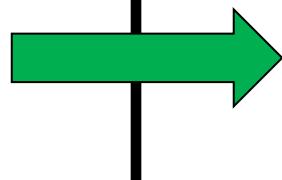
$$\hat{\mathcal{C}}_{C|B}$$

$$\hat{\mathcal{D}}_C = (\mathbf{K}_{BB} + \lambda N \mathbf{I})^{-1}$$

Evidence:

$$\phi_a$$

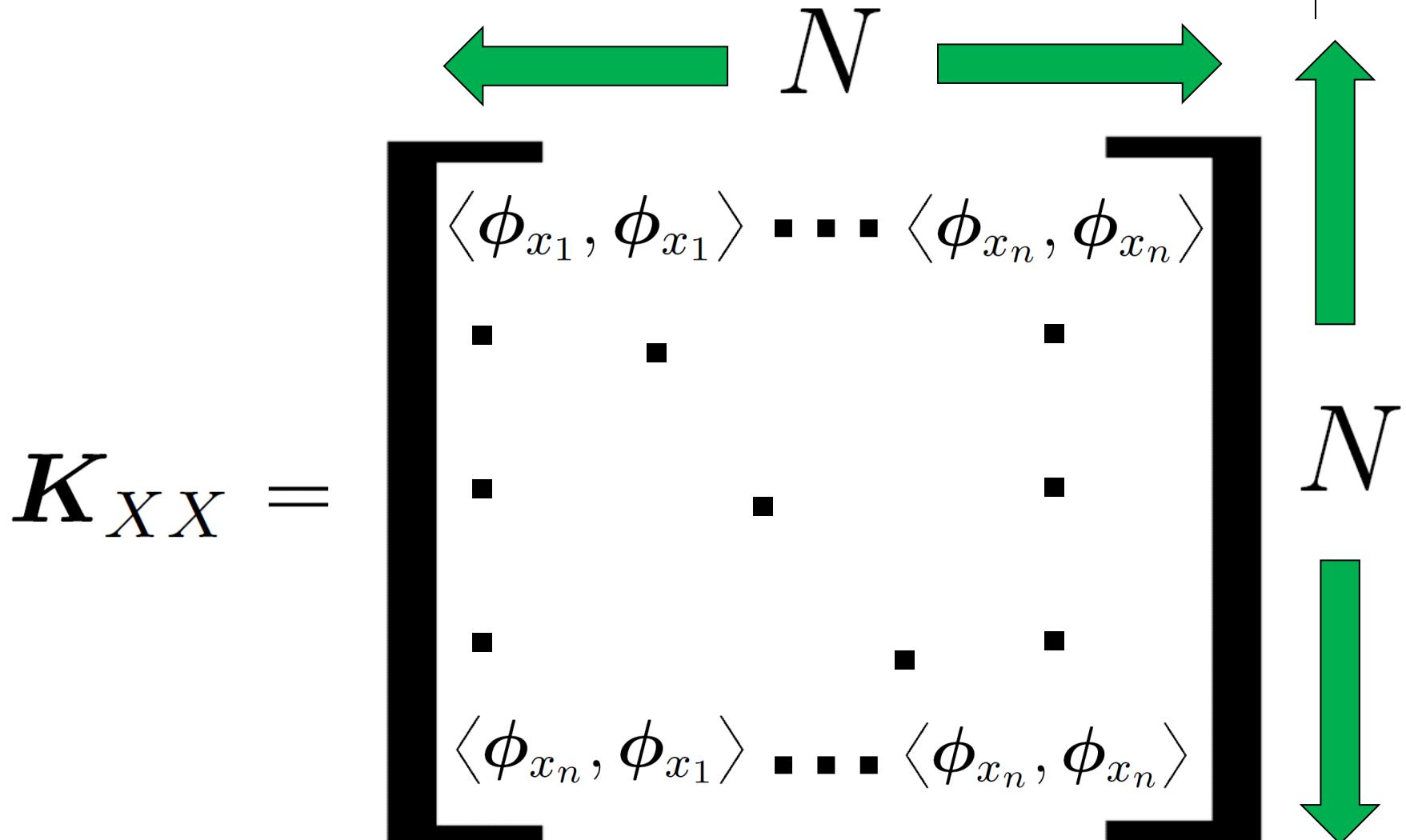
$$\phi_c$$



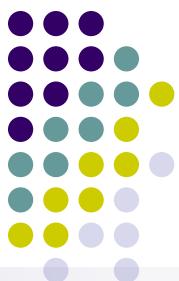
$$\mathbf{K}_{AA}(1 : N, a)$$

$$\mathbf{K}_{CC}(1 : N, c)$$

Intuition 2: Why the Kernel Trick Works



Intuition 2: Why the Kernel Trick Works



Evaluating a feature function at the N data points!!!

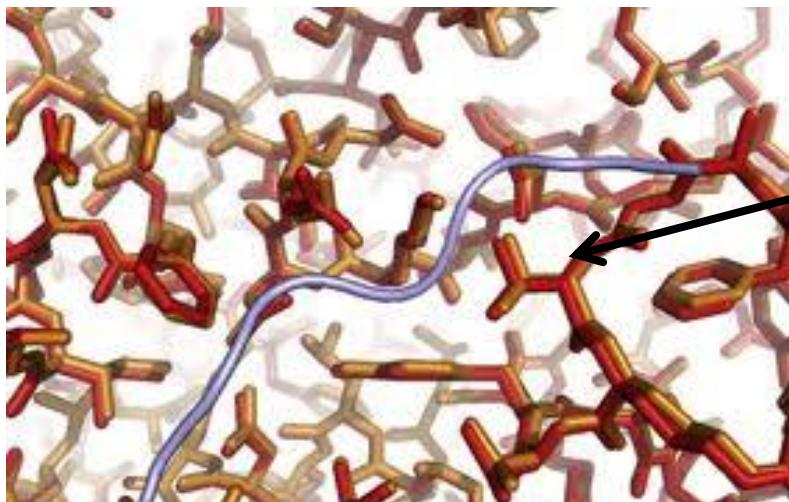
$$K_{XX} = \begin{bmatrix} \phi_{x_1}(x_1) & \cdots & \phi_{x_1}(x_N) \\ \vdots & & \vdots \\ \phi_{x_N}(x_1) & \cdots & \phi_{x_N}(x_N) \end{bmatrix}$$

A large red oval highlights the first column of the matrix, labeled $\phi_{x_1}(x_1), \dots, \phi_{x_N}(x_1)$. A black arrow points from the text "Evaluating a feature function at the N data points!!!" to this highlighted area.

Intuition 2: Why the Kernel Trick Works

- Generally people interpret the kernel matrix to be a similarity matrix.
- However, we can also view each row of the kernel matrix as evaluating a function at the N data points.
- Although the function may be continuous and not easily represented analytically, we only really care about what its value is on the N data points.
- Thus, when we only have a finite amount of data, the computation should be inherently finite.

Protein Sidechains

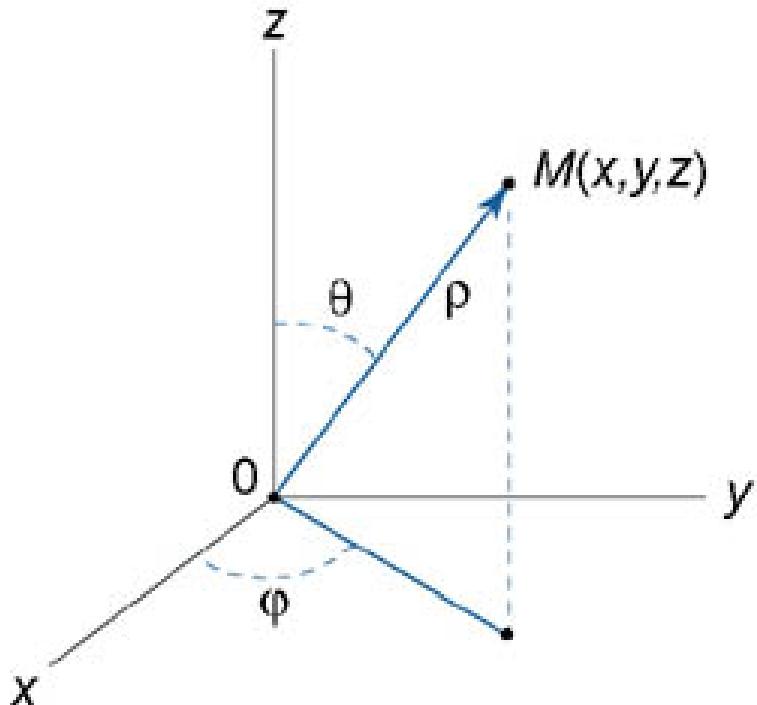


Goal is to predict the 3D configuration of each sidechain

http://t3.gstatic.com/images?q=tbn:ANd9GcS_nfJy1o9yrDt37YIpK7i5s0f7QFqhPrG7-1CLm2AfWNt5wCE50pIKNZd0

Protein Sidechains

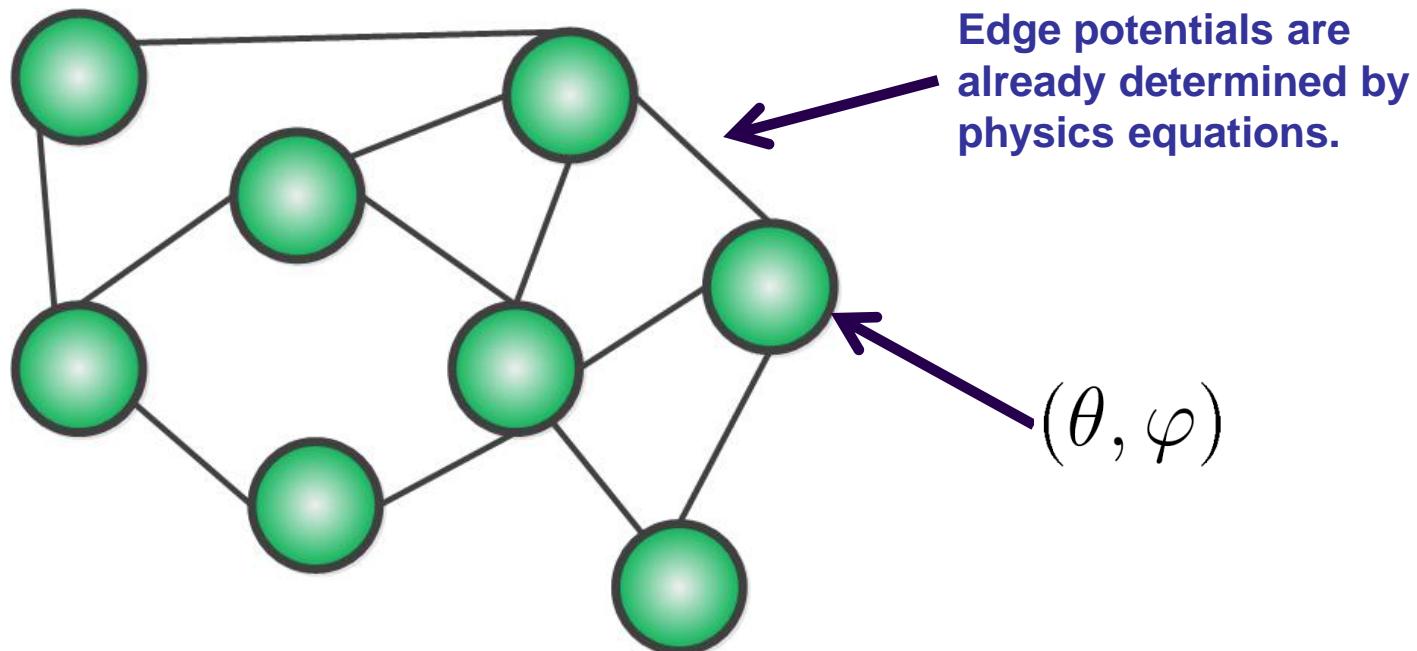
- 3D configuration of the sidechain is determined by two angles (spherical coordinates).



<http://www.math24.net/images/triple-int23.jpg>

The Graphical Model

- Construct a Markov Random Field.
- Each side-chain angle pair is a node. There is an edge between side-chains that are nearby in the protein.



The Graphical Model

- Goal is to find the MAP assignment of all the sidechain angle pairs.
- Note that this is not Gaussian. But it is easy to define a kernel between angle pairs:

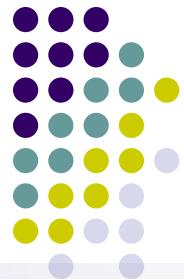
$$K(\mathbf{p}_i, \mathbf{p}_j) = \exp(\mathbf{p}_i^\top \mathbf{p}_j)$$

- Can then run Kernel Belief Propagation ☺



References

- Smola, A. J., Gretton, A., Song, L., and Schölkopf, B., **A Hilbert Space Embedding for Distributions**, Algorithmic Learning Theory, E. Takimoto (Eds.), Lecture Notes on Computer Science, Springer, 2007.
- L. Song. **Learning via Hilbert space embedding of distributions**. PhD Thesis 2008.
- Song, L., Huang, J., Smola, A., and Fukumizu, K., **Hilbert space embeddings of conditional distributions**, International Conference on Machine Learning, 2009.
- Song, L., Gretton, A., and Guestrin, C., **Nonparametric Tree Graphical Models via Kernel Embeddings**, Artificial Intelligence and Statistics (AISTATS), 2010.
- Song, L., Gretton, A., Bickson, D., Low, Y., and Guestrin, C., **Kernel Belief Propagation**, International Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

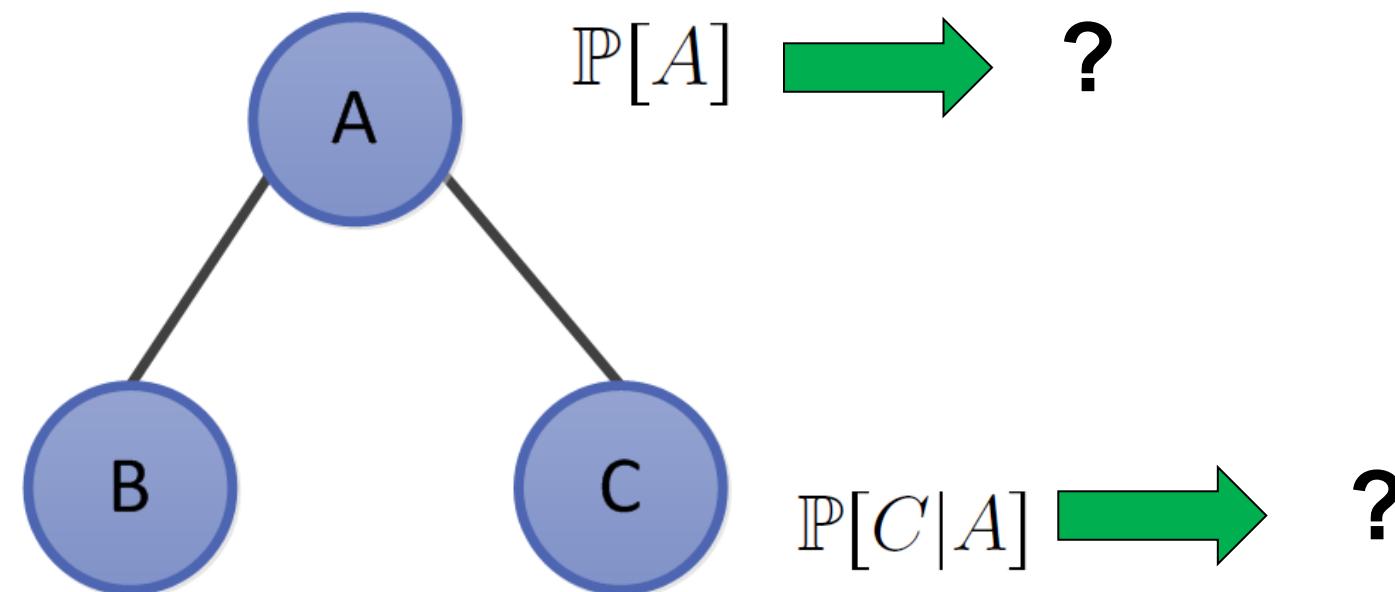


Supplemental: Kernel Belief Propagation on Trees

Kernel Tree Graphical Models

[Song et al. 2010]

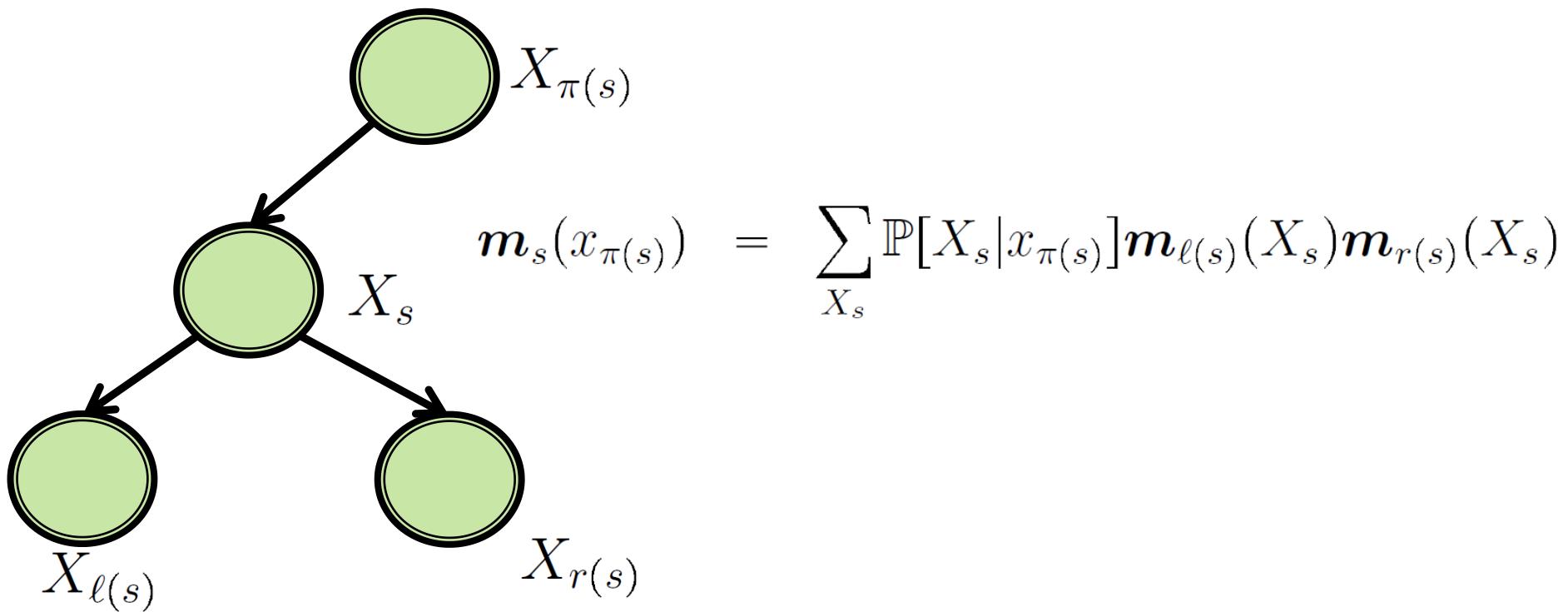
- The goal is to somehow replace the CPTs with RKHS operators/functions.

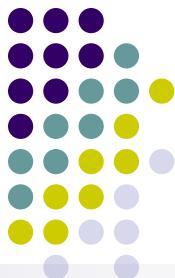


- But we need to do this in a certain way so that we can still do inference.**

Message Passing/Belief Propagation

- We need to “matricize” message passing to apply the RKHS trick (but matrices are not enough, we need tensors ☺)

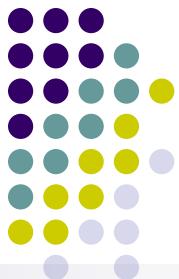




Outline

- Show how to represent discrete graphical models using higher order tensors
- Derive *Tensor Message Passing*
- Show how *Tensor Message Passing* can also be derived using Expectations
- Derive ***Kernel Message Passing*** [Song et al. 2010] using the intuition from *Tensor Message Passing* / Expectations
- (For simplicity, we will assume a binary tree – all internal nodes have 2 children).

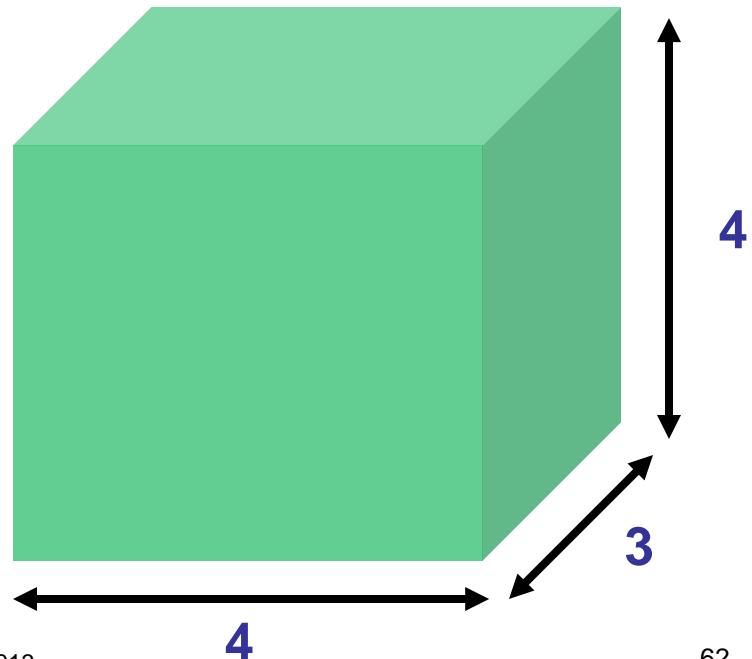
Tensors



- Multidimensional arrays
- A Tensor of order N has N modes (N indices):

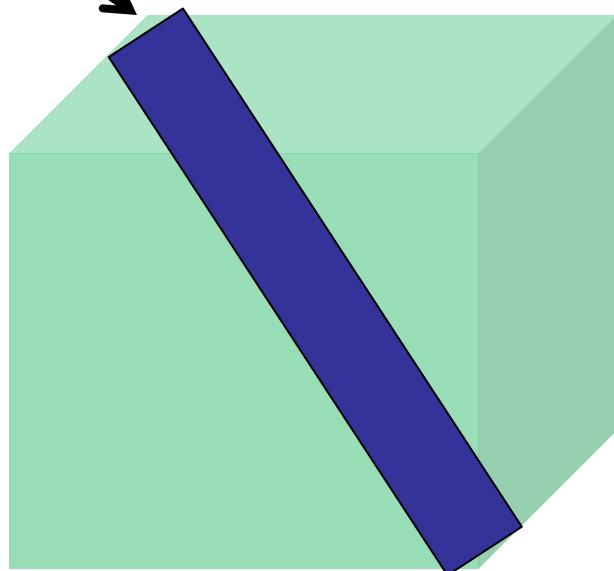
$$\mathcal{T}(i_1, \dots, i_N)$$

- Each mode is associated with a dimension. In the example,
 - Dimension of mode 1 is 4
 - Dimension of mode 2 is 3
 - Dimension of mode 3 is 4

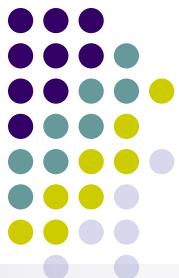


Diagonal Tensors

$$\overrightarrow{\mathbb{P}}[X]$$

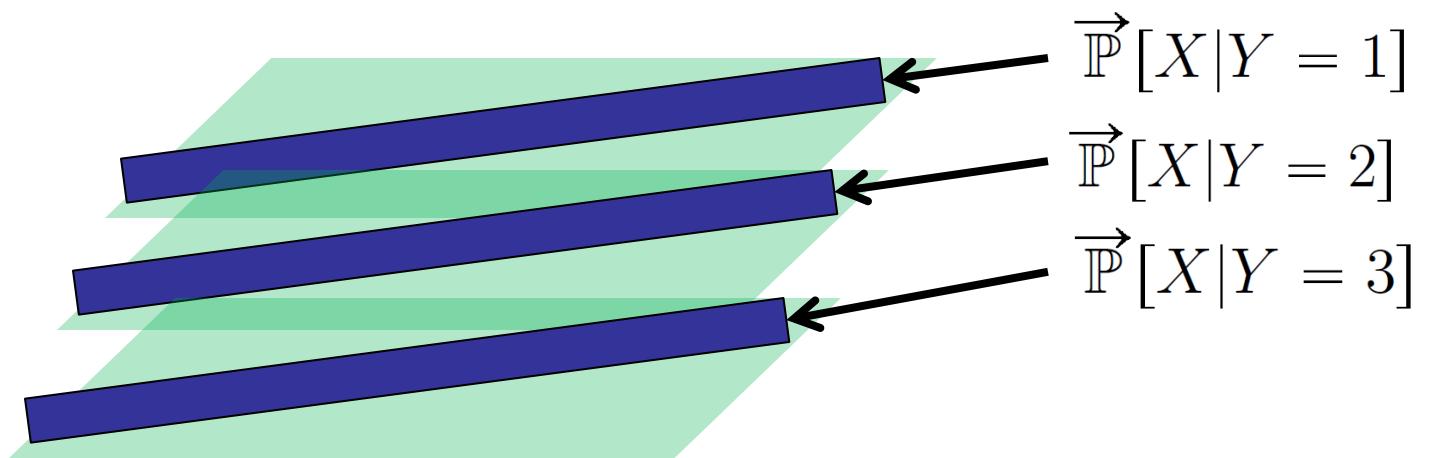


$$\mathcal{T}(i, j, k) = \begin{cases} \mathbb{P}[X = i] & \text{if } i = j = k \\ 0 & \text{otherwise} \end{cases}$$



Partially Diagonal Tensors

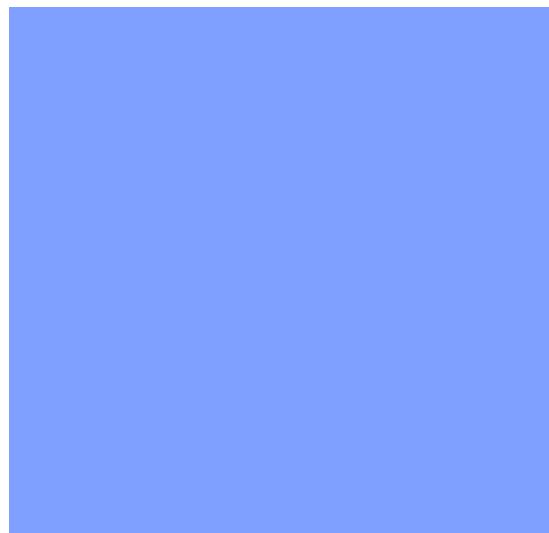
$$\mathcal{T}(i, j, k) = \begin{cases} \mathbb{P}[X = i | Y = k] & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$



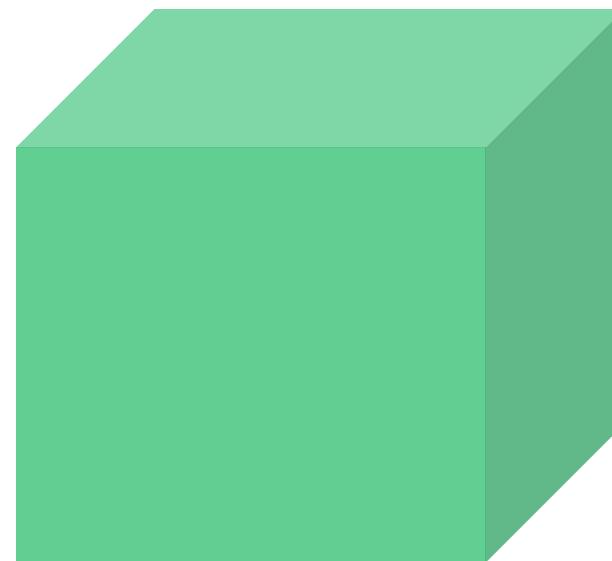
Tensor Vector Multiplication

- Multiplying a 3rd order tensor by a vector produces a matrix

M



\mathcal{T}



$\bar{\times}_1$

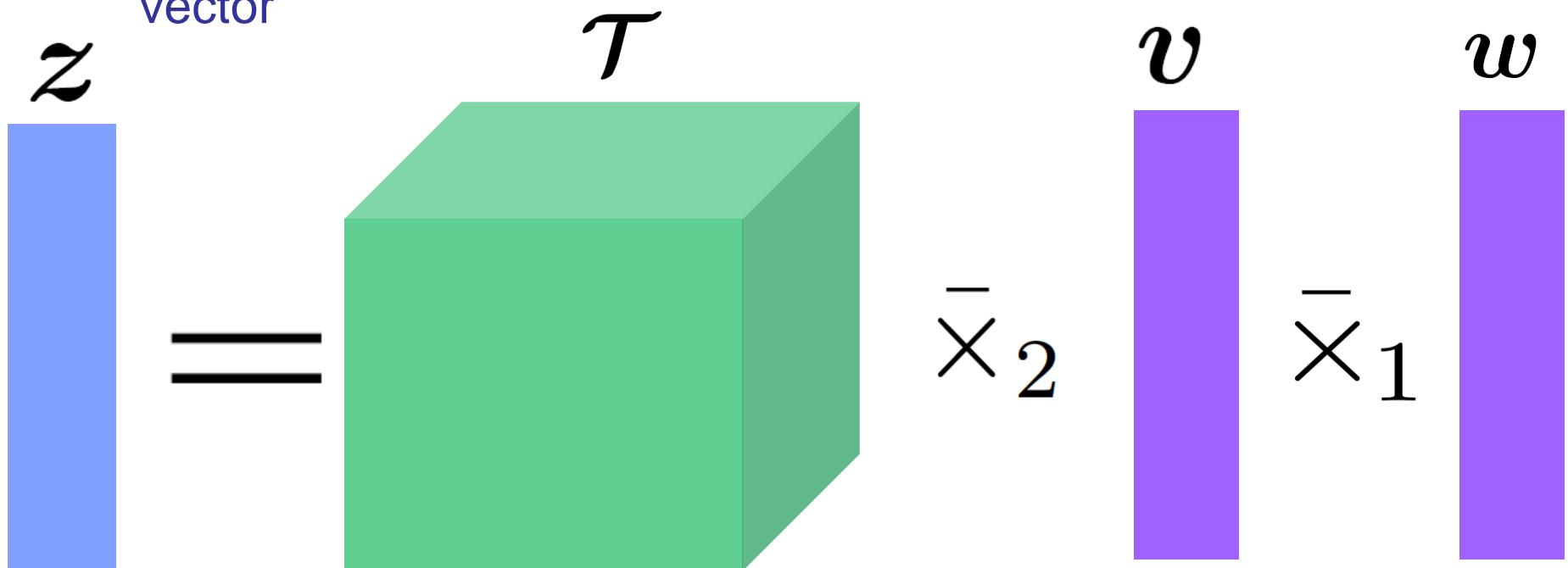
v

$$M(j, k) = \sum_i \mathcal{T}(i, j, k) v(i)$$

Tensor Vector Multiplication

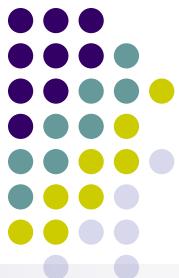
Cont.

- Multiplying a 3rd order tensor by two vectors produces a vector

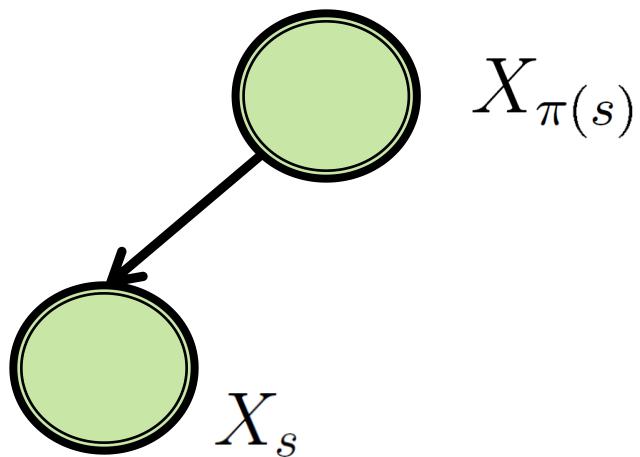
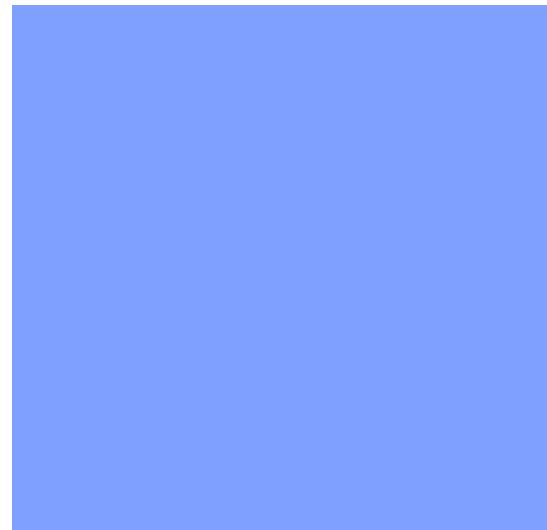


$$z(k) = \sum_i \left(\sum_j \mathcal{T}(i, j, k) \mathbf{v}(i) \right) \mathbf{w}(j) = \sum_{i,j} \mathcal{T}(i, j, k) \mathbf{v}(i) \mathbf{w}(j)$$

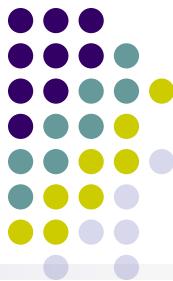
Conditional Probability Table At Leaf is a Matrix



$$\overrightarrow{\mathbb{P}}[X_s | X_{\pi(s)}]$$

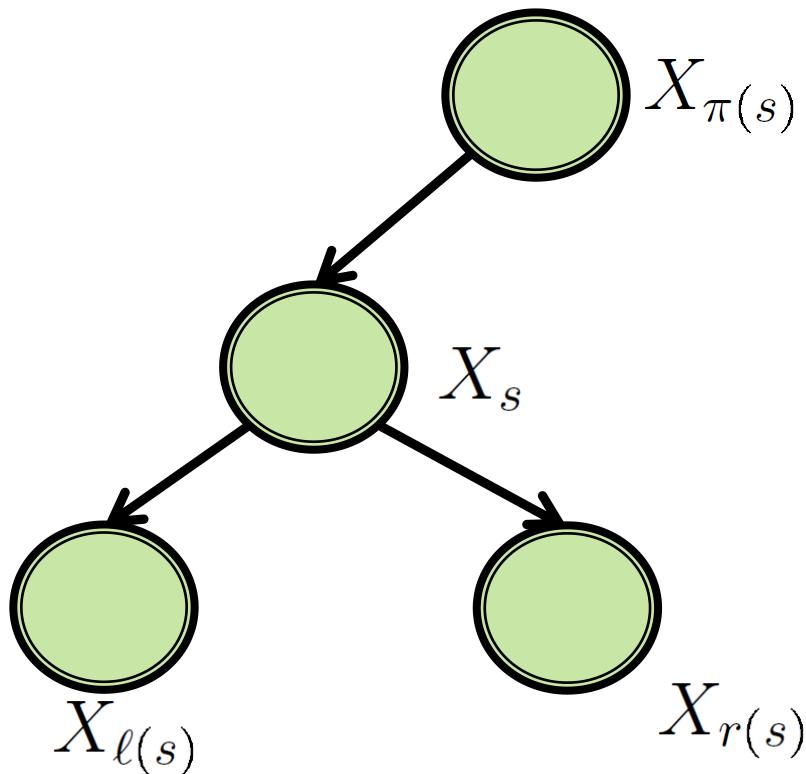
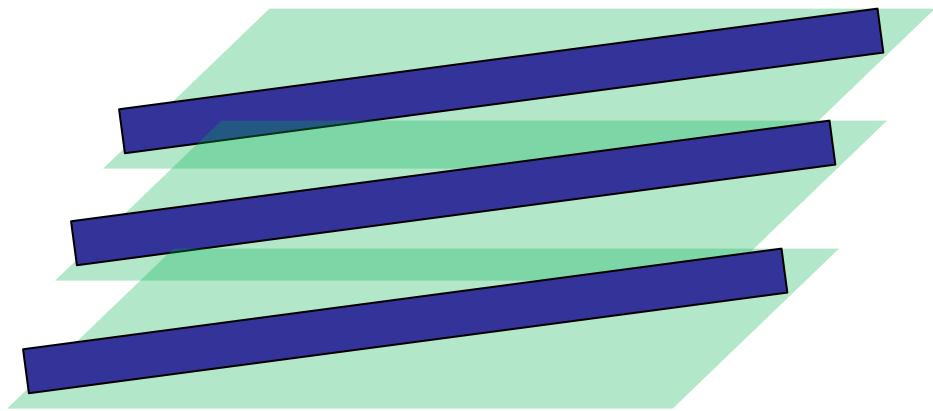


CPT At Internal Node (Non-Root) is 3rd Order Tensor



- Note that we have

$$\vec{\mathbb{P}}[\bigotimes X_s | X_{\pi(s)}] = \begin{cases} \mathbb{P}[X_s = i | X_{\pi(s)} = k] & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

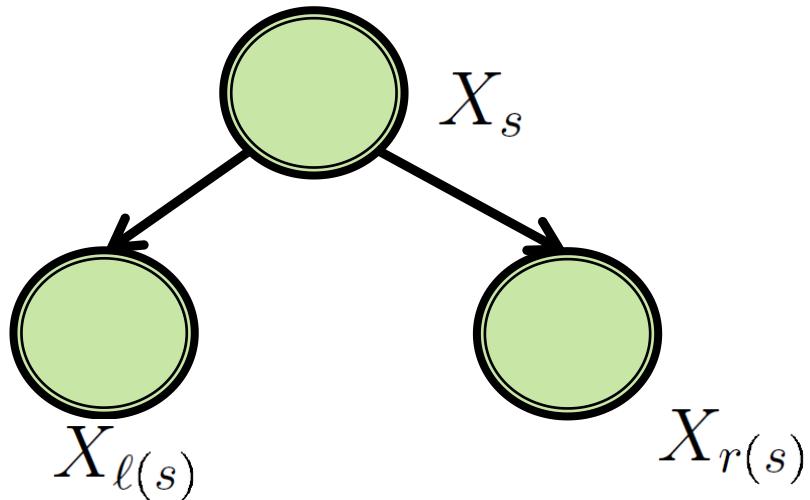
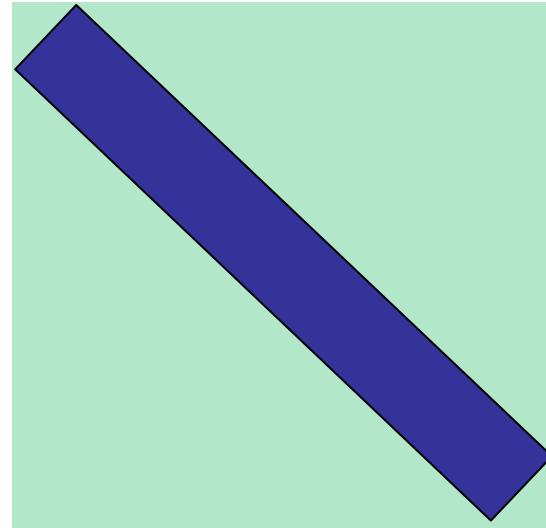




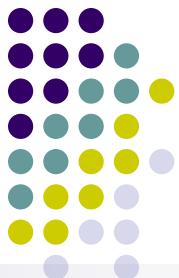
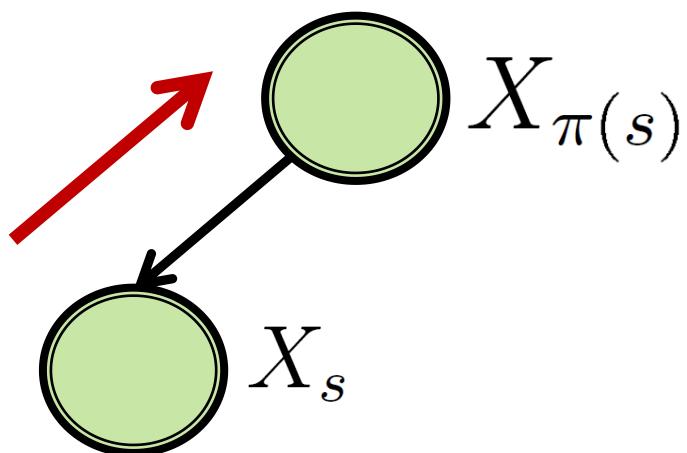
CPT At Root

- CPT at root is a matrix.

$$\vec{\mathbb{P}}[\emptyset X_s] = \begin{cases} \mathbb{P}[X_s = i] & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$



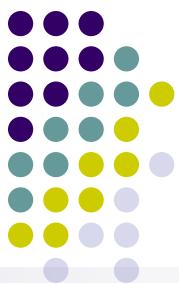
The Outgoing Message as a Vector (at Leaf)



$$m_s = \delta_{\bar{x}_s}^\top \vec{\mathbb{P}}[X_s | X_{\pi(s)}]$$

“bar” denotes evidence

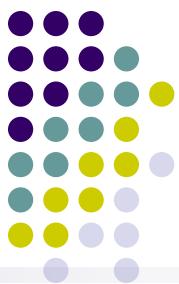
The Outgoing Message At Internal Node



$$\mathbf{m}_s = \vec{\mathbb{P}}[\emptyset X_s | X_{\pi(s)}] = \mathbf{m}_{r(s)} \bar{\times}_2 \mathbf{m}_{\ell(s)} = \mathbf{m}_{r(s)} \bar{\times}_1 \mathbf{m}_{\ell(s)}$$

The diagram illustrates the decomposition of an outgoing message \mathbf{m}_s at an internal node s . It is shown as a blue bar on the left followed by an equals sign, then a green 3D cube representing the conditional probability $\vec{\mathbb{P}}[\emptyset X_s | X_{\pi(s)}]$, then another equals sign, and finally a purple bar on the right. The green cube is positioned between two purple bars, with the text $\bar{\times}_2$ written below it, indicating a two-stage message passing operation. The purple bars are labeled $\mathbf{m}_{r(s)}$ and $\mathbf{m}_{\ell(s)}$ respectively, representing the messages from the parent node $r(s)$ and the children nodes $\ell(s)$.

$$\mathbf{m}_s(X_{\pi(s)} = k) = \sum_{i,j} \mathbb{I}(i = j) \mathbb{P}[X_s = i | X_{\pi(s)} = k] \mathbf{m}_{x_{\ell(s)}}(X_s = i) \mathbf{m}_{x_{r(s)}}(X_s = j)$$



At the Root

$$\mathbb{P}[\text{evidence}] = \overrightarrow{\mathbb{P}}[\emptyset X_s] \mathbf{m}_{r(s)} \mathbf{m}_{\ell(s)} = \overline{\times}_2 \mathbf{m}_{r(s)} \mathbf{m}_{\ell(s)} \mathbf{m}_{r(s)} \mathbf{m}_{\ell(s)} = \overline{\times}_1 \mathbf{m}_{r(s)} \mathbf{m}_{\ell(s)} \mathbf{m}_{r(s)} \mathbf{m}_{\ell(s)}$$

$$\mathbb{P}[\text{evidence}] = \sum_{i,j} \mathbb{I}(i = j) \mathbb{P}[X_s = i] \mathbf{m}_{x_{\ell(s)}}(X_s = i) \mathbf{m}_{x_{r(s)}}(X_s = j)$$

Kernel Graphical Models [Song et al. 2010,

Song et al. 2011]

- The Tensor CPTs at each node are replaced with RKHS functions/operators

Leaf: $\overrightarrow{\mathbb{P}}[X_s | X_{\pi(s)}] \rightarrow \mathcal{C}_{s|\pi(s)}$

Internal (non-root): $\overrightarrow{\mathbb{P}}[\emptyset | X_s] \rightarrow \mathcal{C}_{ss|\pi(s)}$

Root: $\overrightarrow{\mathbb{P}}[\emptyset | X_s] \rightarrow \mathcal{C}_{ss}$

Conditional Embedding Operator for Internal Nodes

What is $\mathcal{C}_{ss|\pi(s)}$?

$$\mathcal{C}_{XX|Y} = \mathcal{C}_{XXY} \mathcal{C}_{YY}^{-1}$$

Embedding of $\mathbb{P}[\emptyset X_s | X_{\pi(s)}]$

Embedding of Cross Covariance Operator in Different RKHS



$$\mathcal{C}_{XXY} = \mathbb{E}_{XY}[\phi_X \otimes \phi_X \otimes \psi_Y]$$

