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Nonparametric Graphical Models e

How do we make a

conditional probability
R table out of this?

5
-0 10

e How to learn parameters?
e How to perform inference?
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Review: Embedding Distribution of| 332:
One Variablesmoieta. 2007, -

The Hilbert Space Embedding of X density

v f\

px () =Ex.plox]| =
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Review: Cross Covariance secs
OperatOr [Smola et al. 2007] :.

Cxy =Exyv|[px @Yy]

Embed Joint Distribution of X and
Y in the Tensor Product of two F g
RKHS’s

e % Y @

X

® ¢ @2

Embedding of P [X, Y]
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Review: Auto Covariance secs
OperatOr [Smola et al. 2007] :.
Cxx =Ex|ox ® dx]
Only take expectation over these F

Embedding of Diag(P[X])
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Review: Conditional Embedding
Operat()r [Song et al. 2009]

e Conditional Embedding Operator:
—1
CX|Y — CXYCYY

e Has Following Property:.

x| Px|yl = Cx)y @y

e Analogous to “Slicing” a Conditional Probability Table in the
Discrete Case:

PIX|Y =1] = P[X|V]d
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Slicing the Conditional
Probability Matrix

| PIX]

I PlIX|Y =1 =P|X|Y]d:

I PlX|Y =2| =P|[X|Y]d
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“Slicing” the Conditional
Embedding Operator

/\

Hx|y=15 = EX\y[GbX\y] = CX\Y¢1.5 _

/
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. . 000
Why we Like Hilbert Space i
Embeddings oe
We can marginalize and use chain rule in Hilbert Space too!!!
Sum Rule: Sum Rule in RKHS:
PLX] ZLP[X,Y] _ LP[X|Y]]P’[Y] ix = Cyjy by
Chain Rule: Chain Rule in RKHS:

PIX, Y] =PIXYIP[Y] = P[YIX]P[Y] | Cyx = CyxCxx = CxyCyy

We will prove these now
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Sum Rules

e The sum rule can be expressed in two ways:

e First way:

Does not work in RKHS,
IED[X] — Z [ED[X? Y] since there is no “sum”

v operation for an operator

e Second way:

P[X]= ) PIX|Y]P[Y]  worksin RKHSI!

e What is special about the second way? Intuitively, it can be
expressed elegantly as matrix multiplication ©
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Sum Rule (Matrix Form) e

e Sum Rule

P[X] = ) P[X|Y]P[Y]
Y
e Equivalent view using Matrix Algebra

PlX] = PlX|Y] x PlY]

.
-l
e
il
=
Ce—

P[X =0]Y =0] P[X =0]Y =1 P[
T (P%leino% P%X:Uf:d) X (]P



Important Notation for this
Lecture

e We will use the calligraphic P to denote that the probability is
being treated as a matrix/vector/tensor

e Probabilities

P[X,Y] = P[X|V]|P[Y]

e Probability Vectors/Matrices/Tensors

PIX|=PIX[Y|P[Y]
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Chain Rule (Matrix Form)

. IP[X ;/] — P[X|V]P[Y] = P[Y|X]|P[V]

Means on diagonal

e Equivalent view using Matrix Algebra \
PIX,Y]= 7PIXIY] x PloY]
P[X =0.Y =0] P[X=0Y =1] _
( PIX =1.Y =0] P[X =1V =1] ) —
P|X =0]Y =0] P[X =0]Y =1] P[Y = 0] 0
(IP[X=1|Y=O] P[leYzl]) ( 0 P[Y_1])

e Note how diagonal is used to keep Y from being marginalized
Oult.
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Example

e \What about?

P|B|A]P[@A]P[C|A]"

P|B,C]

e Only if B and C are conditionally independent given A!!l



Different Proof of Matrix Sum
Rule with Expectations

e Let's now derive the matrix sum rule differently.

e Let §; denote an indicator vector, that is 1 in the it"* position.

- (3) o ()

PlX|=Ex|[dx| =P|X =0]do + P|X = 1|0,

PIXY =y| = EX\Y:y[(SX]
— IED[X — O‘Y — y]do + IED[X — 1‘}/ — y]51
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Random Variables?

Pl X| =Ex|dx]
_— N

Remember this is a probability vector. This is a random vector
It is not a random variable.

px = Ex|ox]
7 N

Similarly, this is afun_ction in an RKHS. This is a random function
It is not a random variable.
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Expectation Proof of Matrix Sum
Rule Cont.

PIXIY|PIY] = PIX|Y]Ey|oy

Iginsdiifisnm Ly P[X Y 6Y

probability matrix, 2 _ ]
so itis not a \% 4“X|Y _6X]]

random variable = -

despite th <
ereaing Ty [0x] |

notation), and thus

the Expectation
can be pulled out ; [X]

\

This is arandom variable
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Proof of RKHS Sum Rule ot

e Now apply the same technique to the RKHS Case.

Cx|ypy
= CxyEy|tYy
= My _CX\YIPY_ Move expectation outside
= *’:y *ﬂX\Y ng ‘Y]] Property of conditional embedding

— *C*XY [ng Property of Expectation

— X Definition of Mean Map
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Kernel Graphical Models (songeta. 200 -+

Song et al. 2011]

e The idea is to replace the CPTs with RKHS
operators/functions.

e Let's do this for a simple example first.

A D

e We would like to compute P[A = a, D = d|
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Consider the Discrete Case

W o

P(B|A) P(C|B) P(D|C)




Inference as Matrix Multiplication

O—O—O o

P(D) = (B|A)'P(C|B)"P(D|C)'

Oops....we accidentally integrated out A
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Put A on Diagonal Instead

00909
NI




Now It works

W o

N

P(B|A) " P(C|B)'P(D|C)'




Introducing evidence 4+

0000

e Introduce evidence with delta vectors

P(A=a,D=d) =65 P(A, D),
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Now with Kernels

Cpla

Estimated Probability Density Function Estimated Probability Density Function

001 e i
A -
5 L3008

400

0000

Cc Cpic

Estimated Probability Density Function

Estimated Probability Density Function

L
e
i
A
A
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Sum-Product with Kernels

A B C D

00090

Cuap = CAACB\A

Cap = CAACB\ACB\CCC\D
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Sum-Product with Kernels ot

A B G D

00090

some number = ¢, C4 poy




What does it mean to evaluate
the mean map at a point?

e Consider just evaluating one random variable X at a particular
evidence value using the Gaussian RBF Kernel:

Mx, Pz) (Px, Pz)]
= Ex|[K(X,7)]

| (—X —M)
— LX | €XP 5
a

e \What does this looks like?

LA'J
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Kernel Density Estimation! oo

e Consider Kernel Density Estimate at point X:

B[ X = 7]ocE [eXp (X . f%”

o

e And its empirical estimate:

N _
5 L |X —2[3
Prae| X = SE]OCW Z exp (— p

n=1

e S0 evaluating the mean map at a point is like an unnormalized
kernel density estimate. To find the “MAP” assignment, we can
evaluate on a grid of points, and then pick the one with the highest
value.
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Multiple Variables

e Kernel Density Estimation with Gaussian RBF Kernel in
Multiple Variables is:

— X0 — o3
Prae[X 1.0 = Tr.o]E | | [exp ( -
| o=1

02

e Like evaluating a “"Huge” Covariance Operator using
Gaussian RBF Kernel (without normalization):

<CX1?...1X@? Q{)ff?l 0 qbfz .. & ¢f@>
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What is the problem with this? 1T

e The empirical estimate is very inaccurate because of curse of
dimensionality

5 N Rt 1X5” — %3
Prae| X1.0 = xl:(’)]ocﬁ > [exp | - ;

n=1o=1

e Empirically computing the *huge” covariance operator will
have the same problem.

e But then what is the point of Hilbert Space Embeddings?
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We can factorize the “Huge”
Covariance Operator

e Hilbert Space Embeddings allow us to factorize the huge

covariance operator using the graphical model structure that

kernel density estimation does not do.

Cxi...X0 Pz, ® zy... @ Pz, )

&

Factorizes into smaller covariance/conditional
embedding operators using the graphical model

that are more efficient to estimate.

Caa Cpa Co Cpc

© Ankur Parikh, Eric Xing @ CMU, 2012-2013
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. 000
Kernel Graphical Models: The eecs
- o0
Overall Picture -
Naive way to represent joint Discrete Graphical Models allow us
distribution of discrete variables to factorize the “huge” joint
IS to store and manipulate a distribution table into smaller
“huge” probability table. factors.
Naive way to represent joint Kernel Graphical Models allow us to
distribution for many factorize joint distributions of

continuous variables is to continuous variables into smaller

use multivariate kernel factors.
density estimation.
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Consider an Even Simpler
Graphical Model

A B G

000

Caa  Cpa CgB

We are going to show how to estimate these operators from data.
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The Kernel Matrix

[ ] [ ]
|
] [ ]
]
<¢xNa¢a:1> e '<¢$N7¢$N> I
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Empirical Estimate Auto

Covariance

CXX —

x|y @ dx|

. 1 &

CXX —

1
— O Dy

Defined on next slide

rikh, Eric Xing @ CMU, 2012-2013
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Conceptually,

|\ o)

)]

Dy = G Py o000, B OO

|



Conceptually,

N

Z vi¢xn —

n=1

II i

¢331 ¢ZC2 ¢ 00 a:n
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Conceptually,

Dy
o7 f G Gy,
b1 - - f

6! f

amm o, =)
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Rigorously,

(I)X IS an operator that maps vectors in RNto functions in f
such that:

N
Z viqb:cn — (I)Xv

n=1

Its adjoint (transpose) (I);r( can then be derived to be:

(@ar> f)
/ {buss ) \ T

\ @L.F)
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Empirical Estimate Cross

Covariance

CYX —

Py @ Px]

. 1 X

cYX —

1
ﬁcbyq)}

41



Getting the Kernel Matrix

e [t can then be shown that,

(I);r(q:)X — KXX KXX(iaj) - = <¢xza¢aﬁ3>

e This is finite and easy to compute!! ©

e However, note that the estimates of the covariance operators
are not finite since:
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Intuition 1. Why the Kernel Trick
Works

N
~ 1
Cxx = N Z Pz, @ Pz, This operator Is
n=1

Il Infinite dimensional

a — PPl but it has at most
XX N XEX rank N
The kernel matrix is
T B N by N, and thus
(I)X(I)X — KXX the kernel trick is

exploiting the low
rank structure
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Empirical Estimate of Conditional | gz
Embedding Operator oo
~ —1 7
CY\X = CyxCyy
Sort of...... f
We need to regularize so that this
IS invertible
éYX aXX

\ regularizer
N N

Cyx + A
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Return of Matrix Inversion
Lemma

e Believe it or not, the matrix inversion lemma works for linear,
bounded operators too.

(E-FH 'G) '=E '+E 'F(H-GE 'F) 'GE '

e Using it we get,

Cyix = By (®PLPy + ANI) DL

Cyix = ®y(Kxx + ANI) '@},
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But Our estimates are still

Infinite.... oo
A B C

. 1 .

EB\A — (I)B(KAA + )\NI)_l(I);

Cop = ®c(Kpp+ ANI) " '®],

Lets do inference and see what happens.
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Running Inference

A B C
~T ~T

CAO — CAACB|AC |

1
Cac = P P\ PN(K g+ \NI) | ®PLPA(Kpp + ANI)™'

/ N\

K sa Kgpp
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Incorporating the Evidence :

gb;_EACCbc —

1
Wqﬁg(I)AKAA(KAA + )\NI)_lX
Khn(Kpp + ANI) | @56,

N

Ki4(1: N, a) Kcoe(l: N, c)




Reparameterize the Model 4

A Flnii[e!!!!!
CAA Dy = NKAA

B S
C B|A Dy = (Kas+ANI) 'Kgp

¢ - ~1
o D = (Kgp + ANI)
CciB

KAA(l : Na CL)
KCC(l : N? C)

Evidence:
Da
Pe
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Intuition 2: Why the Kernel Trick | ss22

Works

ommm [\ ——)
<¢$17 ¢5131> il <¢ﬂ3n7 ¢Zlfn>

[ | [ |
|
Dy Pir) wuw{Pa,, a)
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Intuition 2: Why the Kernel Trick
Works oo

Evaluating a feature function at the N data points!!!

51



Intuition 2: Why the Kernel Trick | ss22

Works oo

e Generally people interpret the kernel matrix to be a similarity
matrix.

e However, we can also view each row of the kernel matrix as
evaluating a function at the N data points.

e Although the function may be continuous and not easily
represented analytically, we only really care about what its
value is on the N data points.

e Thus, when we only have a finite amount of data, the
computation should be inherently finite.
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Protein Sidechains °°

Goal is to predict the 3D
configuration of each
sidechain

, ,I,l , ' 2 NN
v/l 'S . _ " ‘ A ; ‘
http://t3.gstatic.com/images?g=tbn:ANd9GcS_nfJy1lo9yrDt3
7YIpK7i5s0f7QFghPrG7-1CLm2AfWNt5wCE50pIKNZdO
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Protein Sidechains

e 3D configuration of the sidechain is determined by two angles

(spherical coordinates).

Z

M(x,y,Z)

rs

X
http://www.math24.net/images/triple-int23.jpg
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The Graphical Model -

e Construct a Markov Random Field.

e Each side-chain angle pair is a node. There is an edge
between side-chains that are nearby in the protein.

Edge potentials are

already determined by
/ physics equations.

(0, )

© Ankur Parikh, Eric Xing @ CMU, 2012-2013 55



The Graphical Model -

e Goalis to find the MAP assignment of all the sidechain angle
pairs.

e Note that this is not Gaussian. But it is easy to define a kernel
between angle pairs:

K (p;,p;) = exp (p, p;)

e Can then run Kernel Belief Propagation ©
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Supplemental: Kernel Belief
Propagation on Trees
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Kernel Tree Graphical Models o | 222

al. 2010]

e The goal is to somehow replace the CPTs with RKHS
operators/functions.

PlA] mmm) ?

P[C|A] E) 7

e But we need to do this in a certain way so that we can
still do inference.
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Message Passing/Belief
Propagation

e We need to “matricize” message passing to apply the RKHS
trick (but matrices are not enough, we need tensors © )
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Outline

e Show how to represent discrete graphical models using higher
order tensors

e Derive Tensor Message Passing

e Show how Tensor Message Passing can also be derived using
Expectations

e Derive Kernel Message Passing [Song et al. 2010] using the
Intuition from Tensor Message Passing / Expectations

e (For simplicity, we will assume a binary tree — all internal nodes
have 2 children).
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Tensors

e Multidimensional arrays
e A Tensor of order N has N modes (N indices):

T (i1, .y in)

e Each mode is associated with a dimension. In the example,
e Dimension of mode 1 is 4
e Dimension of mode 2 is 3
e Dimension of mode 3 is 4

v

‘/:;
<< >
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Diagonal Tensors

PIX]

)
>
||

i ifi=j=k

0 otherwise

N

© Ankur Parikh, Eric Xing @ CMU, 2012-2013
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Partially Diagonal Tensors

T(Zvjﬁk) — {

P[X = i|]Y = k]
0

© Ankur Parikh, Eric Xing @ CMU, 2012-2013
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Tensor Vector Multiplication

e Multiplying a 3" order tensor by a vector produces a matrix

M T

X1

I -

M(j, k) = 2, T, j, K)o (i)
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Tensor Vector Multiplication S
Cont.

e Multiplying a 3" order tensor by two vectors produces a
vector
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Conditional Probability Table At ceces

Leaf IS a Matrix eoct




CPT At Internal Node (Non-Root) | $32:
is 39 Order Tensor :

e Note that we have

PIX, =11 Xy =k| ifi=7

otherwise
X
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CPT At Root

e CPT at root is a matrix.

P[X, =i] ifi=]

0 otherwise
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The Outgoing Message as a
Vector (at Leaf)

/ () Xae /
“bar” denotes
O~

evidence




The Outgoing Message At sesc.
Internal Node T

mS I_P))[®X3‘Xw(s)] mfr(s) mﬁ(s)




At the Root ese’

Mr(s)  TT(s)

T . I I
Plevidence| = X, =1]m,, (X, =i)m, (X,

35’



Kernel Graphical Models (songeta. 200 -+

Song et al. 2011]

e The Tensor CPTs at each node are replaced with RKHS
functions/operators

L eaf: TD)[XS‘XW(S)] ‘ c8|7T(8)
Internal (non-root): [_P)>[®X3‘X7r(s)] ‘ CSS\W(S)

Root: I_P)[@XS] ‘ cSS
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Conditional Embedding Operator
for Internal Nodes

What is Cgsgjr(s) ?

—1
CXX\Y — CXXYCYY

Embedding of P[@Xs ‘X:fr(s)]




Embedding
Operator In

CXXY —

of Cross Covariance | 83t
Different RKHS oo
LXY [CbX & (bX R Py |

O

Embedding of ]P) @X Y
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