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The Optimization View of 

Graphical Models 

 The connection between optimization and graphical models has led to many 

amazing discoveries 

 EM 

 Variational Inference 

 Max Margin/Max Entropy Learning 

 Bridge to Statistical Physics, Numerical Methods Communities 

 

 Optimization has many advantages: 

 It is easy to formulate 

 Can derive principled approximations via convex relaxations 

 Can use existing optimization methods.   

 

 But it has many challenges too: 

 Non-Gaussian continuous variables 

 Nonconvexity (local minima) 

 

 

  

 

 

 

© Ankur Parikh, Eric Xing @ CMU, 2012-2013 

 

 

 

2 



The Linear Algebra View of 

Graphical Models 
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 We are going to discuss a different (still not fully understood) point of view 

of graphical models that revolves around linear algebra. 

 

 Compared to the optimization perspective, the linear algebra view often less 

intuitive to formulate. 

 

 However, it lets us solve problems that are intractable from the optimization 

perspective 

 Graphical Models with Non-Gaussian Continuous Variables. 

 Local Minima Free Learning in Latent Variable Models 

 

 Moreover it offers a different theoretical perspective and bridges the 

graphical models, kernels and tensor algebra communities. 

 



Non-Gaussian Continuous 

Variables 
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Non-Gaussian Continuous 

Variables 
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© Ankur Parikh, Eric Xing @ CMU, 2012-2013 

Demographics: Model relationships among 

different demographic variables  



Graphical Models - What we have 

learned so far… 
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 If variables are observed, just count from dataset 

 In case of hidden variables, can use Expectation Maximization….. 

 

 

 

Parameter Learning - What we 

have learned so far… 
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Samples 



 Can do exact inference with Variable Elimination, Belief 

Propagation. 

  

 Can do approximate inference with Loopy  BP, Mean Field, MCMC 

 

 

 

Inference - What we have learned 

so far… 
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Non-Parametric Continuous Case 

is Much Harder… 
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How do we make a 

conditional probability 

table out of this? 

 How to learn parameters? (What are the parameters?) 

 How to perform inference? 



Could Discretize the 

Distribution…. 
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0 1 2 3 

 Loses information that 0 and 1 are closer than 0 and 3 



Hilbert Space Embeddings of 

Distributions 

 General formulation for probabilistic modeling with 

continuous variables. 
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Le Song Alex Smola 

Bernhard Schölkopf Arthur Gretton Kenji Fukumizu 



Why do Gaussians Work? 
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(1) Because we have 

parameters (sufficient 

statistics) !!!! 

 

(2) It is easy to 

marginalize/condition etc. 

Bijection between (mean,variance) pair and distribution 



 I want to represent this distribution with a small vector 𝝁𝑿. 

 

 

 

 

 

Key Idea – Create Sufficient 

Statistic for Arbitrary Distribution 
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Idea 1: Take some Moments 
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            Problem:  Lots of Distributions have the same mean! 

Better, but lots of distributions still have the same mean and variance!  

Even better, but lots of distributions still have the same first three moments!  



 But the vector is infinite……..how do we compute things with 

it????? 

 

 

 

 

 

Better Idea: Create Infinite 

Dimensional Statistic 
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(not exactly, but right idea…) 



Remember the Kernel Trick!!! 
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Primal 

Formulation: 

Infinite, cannot be directly 

computed 

Dual Formulation: 

But the dot product is 

easy to compute  



Overview of Hilbert Space 

Embedding 
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 Create an infinite dimensional statistic for a distribution. 

 

 Two Requirements: 

 Map from distributions to statistics is one-to-one 

 Although statistic is infinite, it is cleverly constructed such that the kernel 

trick can be applied. 

 

 Perform Belief Propagation as if these statistics are the 

conditional probability tables. 

 

 We will now make this construction more formal by 

introducing the concept of Hilbert Spaces 



Vector Space 
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 A set of objects closed under linear combinations: 

 

 

 Normally, you think of these “objects” as finite dimensional 

vectors. However, in general the objects can be functions. 

 

 Nonrigorous Intuition: A function is like an infinite 

dimensional vector. 



 A Hilbert Space is a complete vector space equipped with an 

inner product. 

 

 The inner product                   has the following properties: 

 Symmetry  

 Linearity 

 Nonnegativity 

 Zero 

 

 Basically a “nice” infinite dimensional vector space, where lots 

of things behave like the finite case (e.g. using inner product 

we can define “norm” or “orthogonality”) 

 

 

 

 

 

 

 

Hilbert Space 
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 Example of an inner product (just an example, inner product 

not required to be an integral) 

 

 

 

 

 Non-rigorous Intuition: Like the traditional finite  vector 

space inner product 

 

 

 

 

 

 

 

 

 

 

 

 

Hilbert Space Inner Product 
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Inner product of two functions is a number 

scalar 



 An operator 𝑪 maps a function f in one Hilbert Space to 

another function g in the same or another Hilbert Space. 

 

 Linear Operator: 

 

 

 Non-rigorous Intuition: Operators are sort of like matrices. 

 

 

 

 

 

Linear Operators 
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Adjoints (Transposes) 

 The adjoint                         of an operator                        is 

defined such that  

 

 

 

 Like transpose / conjugate transpose for real / complex 

matrices: 
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 Non-rigorous Intuition: Like Vector Space Outer Product 

 

 

 

 

 

Hilbert Space Outer Product 

  

 

 

 

© Ankur Parikh, Eric Xing @ CMU, 2012-2013 

 

 

 

23 

Outer Product of two functions is an operator 

is implicitly defined such that 



Reproducing Kernel Hilbert 

Space 

 Basically, a  “really nice” infinite dimensional vector space where 

even more things behave like the finite case 

 

 We are going to “construct” our Reproducing Kernel Hilbert Space 

with a Mercer Kernel. A Mercer Kernel 𝑲 𝒙, 𝒚  is a function of two 

variables, such that: 

 

 

 The is a generalization of a positive definite matrix: 
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Gaussian Kernel 

 The most common kernel that we will use is the Gaussian 

RBF Kernel: 
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The Feature Function 

 Consider holding one element of the kernel fixed. We get a 

function of one variable which we call the feature function. 

The collection of feature functions is called the feature map. 

 

 

 For a Gaussian Kernel the feature functions are unnormalized 

Gaussians: 
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Defining the Inner Product 

 Define the Inner Product as: 

 

 

 

 

 

 

 Note that: 
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scalar 



Reproducing Kernel Hilbert 

Space 

 Consider the set of functions that can be formed with linear 

combinations of  these feature functions: 

 

 

 

 We define the Reproducing Kernel Hilbert Space       to the 

completion of          (like        with the “holes” filled in) 

 

 Intuitively, the feature functions are like an over-complete basis for 

the RKHS 
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Reproducing Property 

 It can now be derived that the inner product of a function f 

with 𝟇𝑋, evaluates a function at point x: 
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scalar 

Linearity of inner product 

Definition of kernel 

Remember that 



SVM Kernel Intuition 
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Maps features to RKHS Feature Functions! 



How To Embed Distributions  

(Mean Map) [Smola et al. 2007] 
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density 
The Hilbert Space Embedding of X 



 Mean Map 

 

 If the kernel is universal, then the map from distributions to 

embeddings is one-to-one. Examples of universal kernels: 

 Gaussian RBF Kernel. 

 Laplace Kernel 

 

 “Empirical Estimate” (not actually computable from data if 

feature map is infinite….but we will solve this problem in the 

next lecture) 

 

 

 

Mean Map cont. 
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Data point 



Example (Discrete) 
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 Consider a random variable X that takes the values 𝟏, 𝟐, 𝟑, 𝟒. 

     We want to embed it into an RKHS. Which RKHS? 

 

 The RKHS of 4 dimensional vectors in 𝑹𝟒. The feature functions in this 

RKHS are: 

 

 

 

Embedding equal to marginal 

probability vector in the discrete 

case 



 

 

 Why? 

 

 

 

 

 

 

Mean Map cont. 
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If f is in the RKHS 



Embedding Joint Distribution of 2 

Variables [Smola et al. 2007] 

 

 Define the uncentered cross-covariance operator  

𝑪𝒀𝑿 implicitly such that 

 

 

 

 Note how 𝒇 is in one Hilbert Space, while 𝒈 is in another. 

 

 𝑪𝒀𝑿  will be our embedding of the joint distribution of X and Y. 

 

 Note how 𝑪𝒀𝑿  is an operator, just like 𝑷 𝑿, 𝒀  is a matrix. 
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Cross Covariance Operator cont. 
 

 Let                  and                    (the feature functions of these 

two RKHSs) 

 

 Then explicit form of cross-covariance operator is: 

 

 

 Looks like the Uncentered Covariance of two variables X and 

Y: 
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Embedding Joint Distribution of 

Two Variables [Smola et al. 2007] 
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Embed in the Tensor 

Product of two RKHS’s 



 Consider two finite sets: 

 

 

 If “outer product” is defined as: 

 

 

 

 Then tensor product is: 

 

 

 (Don’t take the example too literally since this is not a vector 

space) 

 

 

 

“Tensor Product” Intuition 
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Tensor Product of Two Vector 

Spaces 
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Cross Covariance Operator cont. 
 

 Proof: 
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Move expectation outside 

Definition of outer product 

Rearrange 

Reproducing Property 



Auto Covariance Operator 
 

 The uncentered auto-covariance operator is: 

 

 

 Looks like the uncentered variance of X 

 

 

 Intuition: Analogous to  
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Conditional Embedding Operator 

 Conditional Embedding Operator: 

 

 

 

 

 Intuition: 
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Conditional Embedding Cont. 

 Conditional Embedding Operator: 

 

 

 Has Following Property: 

 

 

 

 Analogous to “Slicing” a Conditional Probability Table in the 

Discrete Case: 
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Why We Care 

 So we have some statistics for marginal, joint, and conditional 

distributions…. 

 How does this help us define Belief Propagation? 

 There are many parametric distributions where it is hard to 

define message passing 

 

 

 Think Back: What makes Gaussians different? 

 Easy to marginalize, perform Chain Rule with Gaussians! 
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Why we Like Hilbert Space 

Embeddings 
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We will prove these in the 

next lecture 

We can marginalize and use chain rule in Hilbert Space too!!! 

Sum Rule: 

Chain Rule: 

Sum Rule in RKHS: 

Chain Rule in RKHS: 



Summary 
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 Hilbert Space Embedding provides a way to create a 

“sufficient statistic” for an arbitrary distribution. 

 

 Can embed marginal, joint, and conditional distributions into 

the RKHS 

 

 Next time: 

 Prove sum rule and chain rule for RKHS embedding 

 Performing Belief Propagation with the Embedding Operators  

 Why the messages are easily computed from data (and not infinite) 
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