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The Optimization View of
Graphical Models

e The connection between optimization and graphical models has led to many
amazing discoveries

e EM

e Variational Inference

e Max Margin/Max Entropy Learning

e Bridge to Statistical Physics, Numerical Methods Communities

e Optimization has many advantages:
e Itis easy to formulate
e Can derive principled approximations via convex relaxations
e Can use existing optimization methods.

e But it has many challenges too:
e Non-Gaussian continuous variables

e Nonconvexity (local minima)
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The Linear Algebra View of
Graphical Models

e We are going to discuss a different (still not fully understood) point of view
of graphical models that revolves around linear algebra.

e Compared to the optimization perspective, the linear algebra view often less
intuitive to formulate.

e However, it lets us solve problems that are intractable from the optimization
perspective

e Graphical Models with Non-Gaussian Continuous Variables.
e Local Minima Free Learning in Latent Variable Models

e Moreover it offers a different theoretical perspective and bridges the
graphical models, kernels and tensor algebra communities.

© Ankur Parikh, Eric Xing @ CMU, 2012-2013 3



Non-Gaussian Continuous i
Variables oo
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Non-Gaussian Continuous eess.
Variables

Demographics: Model relationships among
different demographic variables

Population Distribution for Afghanistan in Year 2005 [Base Case]
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Graphical Models - What we have | s
learned so far... -

P[C =1]A =0] | P[C = 1{A = 1]
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Parameter Learning - What we
have learned so far...

Samples

e |f variables are observed, just count from dataset

e In case of hidden variables, can use Expectation Maximization.....
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Inference - What we have learned | 8322
so far... -

P[C = 1|A = 0] | P[C = 1]A = 1]

e Can do exact inference with Variable Elimination, Belief
Propagation.

e Can do approximate inference with Loopy BP, Mean Field, MCMC
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Non-Parametric Continuous Case | 222:
is Much Harder... o2

A

How do we make a

conditional probability
R table out of this?

5
-0 -10

¥

e How to learn parameters? (What are the parameters?)
e How to perform inference?
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Could Discretize the
Distribution.... o2

I I I

0 1o 2 3 ]
[ [ [ [

e Loses information that O and 1 are closer than O and 3
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Hilbert Space Embeddings of
Distributions

e General formulation for probabilistic modeling with

continuous variables.

Kenji Fukumizu Arthur Gretton Bernhard Scholkopf

= | R(x
\JEE ! l
] ' 7
RN

Alex Smola
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Why do Gaussians Work? 1

(1) Because we have
parameters (sufficient
statistics) !!!!

(2) Itis easyto
marginalize/condition etc.

Bijection between (mean,variance) pair and distribution

(1, 00) {E===) N(m,01)
(ho,090) {m====)  N(uz,09)
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Key Idea — Create Sufficient i
Statistic for Arbitrary Distribution |

e | want to represent this distribution with a small vector iy.

ﬁ
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ldea 1: Take some Moments

/i:; MXZ(E[X])

>

Problem: Lots of Distributions have the same mean!

/\/\ e ( IIEE[@] )

>

Better, but lots of distributions still have the same mean and variance!

t x-op ElX]
x = | E[X?]
/\/\) H E[x]

Even better, but lots of distributions still have the same first three moments!
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Better Idea: Create Infinite
Dimensional Statistic °°

A
[ BIX]
E[X?]
. (not exactly, but right idea...)
e But the vector is infinite........ how do we compute things with
1?7?7777
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Remember the Kernel Trick!!!

Primal

Formulation: mm ’w Tw + CZf
‘—I—byj /1_53 vJ
>0 Yy

Infinite, cannot be dlrectly

But the dot product is
computed

easy to compute ©

Dual Formulation: 1
' maxz o — = Z ;oY YK
o 2 =
? 1,
Z a;y; = 0
)
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Overview of Hilbert Space
Embedding

e Create an infinite dimensional statistic for a distribution.

e Two Requirements:

e Map from distributions to statistics is one-to-one

e Although statistic is infinite, it is cleverly constructed such that the kernel
trick can be applied.

e Perform Belief Propagation as if these statistics are the
conditional probability tables.

e We will now make this construction more formal by
Introducing the concept of Hilbert Spaces
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Vector Space

e A set of objects closed under linear combinations:

v,weY — av+ PweV

e Normally, you think of these “objects” as finite dimensional
vectors. However, in general the objects can be functions.

e Nonrigorous Intuition: A function is like an infinite
dimensional vector.
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Hilbert Space

e A Hilbert Space is a complete vector space equipped with an
Inner product.

e Theinner product {f,g) has the following properties:
e Symmetry (f.9)=49.F)
e Linearity <Oéf1 T 5f279> = Oé<f1;9> + 5<f279>
e Nonnegativity (f, f> >0
o Zero (f, f)=0 = f=0

e Basically a "nice” infinite dimensional vector space, where lots
of things behave like the finite case (e.g. using inner product
we can define “norm” or “orthogonality”)
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Hilbert Space Inner Product :

e Example of an inner product (just an example, inner product
not required to be an integral)

(. 9> = f f(@)g(x) da

Inner product of two functions is a number

e Non-rigorous Intuition: Like the traditional finite vector
space inner product

VD, W Z’UT’U)
)

] — scalar
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Linear Operators

e An operator € maps a function f in one Hilbert Space to
another function g in the same or another Hilbert Space.

e Linear Operator: 9= Cf
Claf +pg) =aCf + Cg

e Non-rigorous Intuition: Operators are sort of like matrices.
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Adjoints (Transposes)

e The adjoint C' : G — F of an operator C : F — G is
defined such that

(g.Cfy={C'g.f) VfeF,geg

e Like transpose / conjugate transpose for real / complex
matrices:

w' Mv = (MT'w)T’U
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Hilbert Space Outer Product

f ® g isimplicitly defined such that

f®gh)=<{g h)f

Outer Product of two functions is an operator

e Non-rigorous Intuition: Like Vector Space Outer Product

VW =vw'
E —
vw' (z2) ={(w, 2)v I
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Reproducing Kernel Hilbert
Space

e Basically, a “really nice” infinite dimensional vector space where
even more things behave like the finite case

e We are going to “construct” our Reproducing Kernel Hilbert Space
with a Mercer Kernel. A Mercer Kernel K(x, y) is a function of two
variables, such that:

j j K(e.)f()f(y)dedy >0 V§

e The is a generalization of a positive definite matrix:

v A0 e _-I -0
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Gaussian Kernel oo

e The most common kernel that we will use is the Gaussian
RBF Kernel:

|z — y|3

0-2

K (z,y) = exp
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The Feature Function ot

e Consider holding one element of the kernel fixed. We get a
function of one variable which we call the feature function.
The collection of feature functions is called the feature map.

(;ba’: = K(CIZ'? )

e For a Gaussian Kernel the feature functions are unnormalized
Gaussians:

() = exp (Il — y%)

o2

L 2
¢1.5(y) = exp (‘15 yHQ)

o2
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Defining the Inner Product ss:

e Define the Inner Product as:

(P Oy = (K(v,"), K(y,-)) = K(x,y)

_I — scalar

e Note that:

®.(y) = ¢, (v) = K(x,y)



Reproducing Kernel Hilbert eecs
Space oo

e Consider the set of functions that can be formed with linear
combinations of these feature functions:

k
Fo = {f(z) : Z o, (2), Yk e Ny and z; € X}
j=1

e We define the Reproducing Kernel Hilbert Space F to the
completion of Fo (like Fo with the “holes” filled in)

e Intuitively, the feature functions are like an over-complete basis for
the RKHS

f(2) = a101(2) + a202(2)
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Reproducing Property 4+

e It can now be derived that the inner product of a function f
with ¢, evaluates a function at point x:

(Fobry - <Z@j¢%,¢$>
= Z aj<¢xja ¢.> Linearity of inner product

J
= Z OéjK(ilfj, :13) Definition of kernel
J

= T \
f( ) Remember that

K(:Ejﬁ x) = ¢CUj (@)

] — scalar
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SVM Kernel Intuition e

min w ’w+CZf

w.,b

(wig(@) + by, =16 Vi &0 V)

Maps features to RKHS Feature Functions!
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How To Embed Distributions
(Mean Map) [Smola et al. 2007] :.

The Hilbert Space Embedding of X density
= K __
px () = Ex.plox]| = J
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Mean Map cont.

e Mean Map

px = Ex|ox]

e If the kernel is universal, then the map from distributions to
embeddings is one-to-one. Examples of universal kernels:

e Gaussian RBF Kernel.
e Laplace Kernel

e “Empirical Estimate” (not actually computable from data if
feature map is infinite....but we will solve this problem in the

next lecture)

[Lx = Z ¢xn
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Example (Discrete)

We want to embed it into an RKHS. Which RKHS?

Consider a random variable X that takes the values 1, 2, 3, 4.

The RKHS of 4 dimensional vectors in R*. The feature functions in this

¢3 + P|X = 4|y

RKHS are:
1 0 0 0\
0 1 0 0
=] o |P2=| | =] =],
0 0 0 1
px = Ex[ox] = P[X = 1]¢1 + P[X = 2]¢ps + P[X = 3]
PIX =1
P[X — Embedding equal to marginal
Hx = IPfX _ 3 probability vector in the discrete
P[X = 4 case
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Mean Map cont.

Exp|f(X)] = {f, px) iffisinthe RKHS

e Why?

Fopx) (f,.Ex-plox])

= Ex-pl|f(X)]




Embedding Joint Distribution of 2
Var I a.b I ES [Smola et al. 2007]

e Define the uncentered cross-covariance operator
Cy x implicitly such that

9, Cyxf)=Eyx|f(X)g(Y)] VfeF vgeg
e Note how f is in one Hilbert Space, while g is in another.
e Cyy will be our embedding of the joint distribution of X and Y.

e Note how Cyy is an operator, just like P[X,Y] is a matrix.
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Cross Covariance Operator cont.

e Let dx € F and Yy € G (the feature functions of these
two RKHSS)

e Then explicit form of cross-covariance operator Is:
Cyx = Eyx|vy @ ¢x]

e Looks like the Uncentered Covariance of two variables X and
Y:

CJOV()(7 Y) = My x [YX]
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Embedding Joint Distribution of
TWO VarlableS [Smola et al. 2007]

Embed in the Tensor
Product of two RKHS'’s

X
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“Tensor Product” Intuition

e Consider two finite sets:
S ={1,3,4} T = {2,6}

e |f “outer product” is defined as:
a & b = (a’a b)

e Then tensor product Is:

S®T = {(1,2),(1,6),(3,2),(3,6), (4,3), (4, 0)]

e (Don't take the example too literally since this is not a vector
space)
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Tensor Product of Two Vector
Spaces

H=F®J




Cross Covariance Operator cont.

e Proof:

<gchXf>

G, Eyx|[vy @ dx]f)

EYX

:<gj [’L/Jy X ¢X]f>] Move expectation outside
<g; <§l5)(j f>’l./)y>] Definition of outer product
_<ga 1/)Y><f; ¢X>] Rearrange

Q(Y)f(X)] Reproducing Property
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Auto Covariance Operator

e The uncentered auto-covariance operator is:

Cxx =Ex|ox @ dx]

e Looks like the uncentered variance of X

Uncentered-Var(X) = E[X?]

e Intuition: Analogous to

Diag(P|X])
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Conditional Embedding Operator

e Conditional Embedding Operator:

Cy|x = CyxCxyx

e Intuition:

P[Y|X] = P[Y, X] x Diag(P[X])~"




Conditional Embedding Cont.

e Conditional Embedding Operator:

Cyix = CyxCxx

e Has Following Property:.
vzl Pv|z| = Cyx by

e Analogous to “Slicing” a Conditional Probability Table in the
Discrete Case:

P[Y|X = 1] = P[Y|X]d,
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Why We Care

e S0 we have some statistics for marginal, joint, and conditional
distributions....

e How does this help us define Belief Propagation?

e There are many parametric distributions where it is hard to
define message passing

e Think Back: What makes Gaussians different?
e Easy to marginalize, perform Chain Rule with Gaussians!
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. . 000
Why we Like Hilbert Space i
Embeddings oe
We can marginalize and use chain rule in Hilbert Space too!!!
Sum Rule: Sum Rule in RKHS:
Mﬂ:ﬁymﬁqummnMﬂ ix = Cyjy by
Chain Rule: Chain Rule in RKHS:

PIX,Y] =PIX[YVIPY] =P[YIXIP[Y] | Cyx = Cy|xCxx = CxyCyy

We will prove these in the
next lecture
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Summary

e Hilbert Space Embedding provides a way to create a
“sufficient statistic” for an arbitrary distribution.

e Can embed marginal, joint, and conditional distributions into
the RKHS

e Next time:
e Prove sum rule and chain rule for RKHS embedding
e Performing Belief Propagation with the Embedding Operators
e Why the messages are easily computed from data (and not infinite)
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