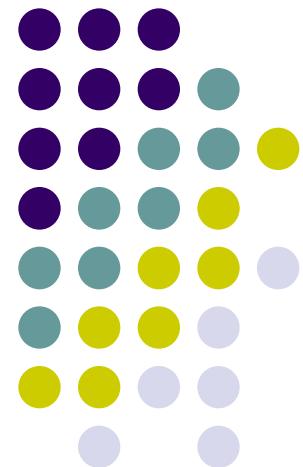
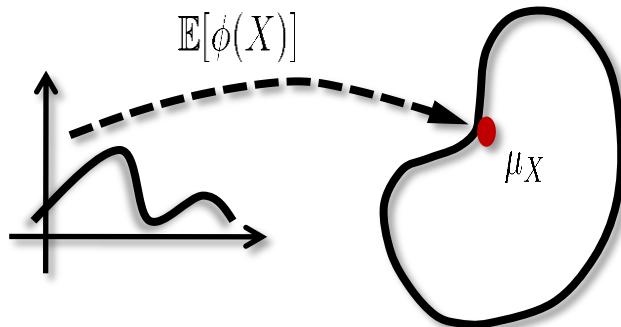


Probabilistic Graphical Models

Introduction to Hilbert Space Embeddings

Ankur Parikh

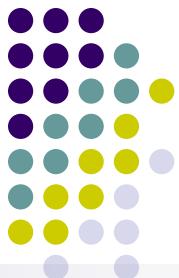
Lecture 19, March 27, 2013



The Optimization View of Graphical Models

- The connection between optimization and graphical models has led to many amazing discoveries
 - EM
 - Variational Inference
 - Max Margin/Max Entropy Learning
 - Bridge to Statistical Physics, Numerical Methods Communities
- Optimization has many advantages:
 - It is easy to formulate
 - Can derive principled approximations via convex relaxations
 - Can use existing optimization methods.
- But it has many challenges too:
 - Non-Gaussian continuous variables
 - Nonconvexity (local minima)

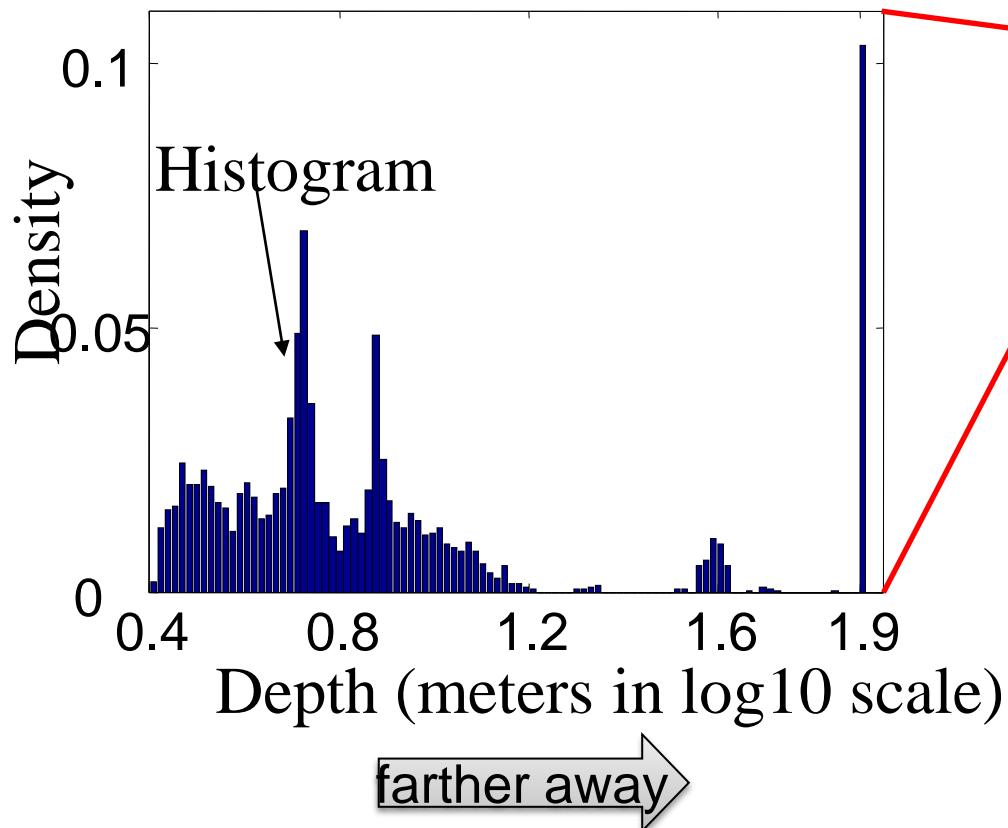
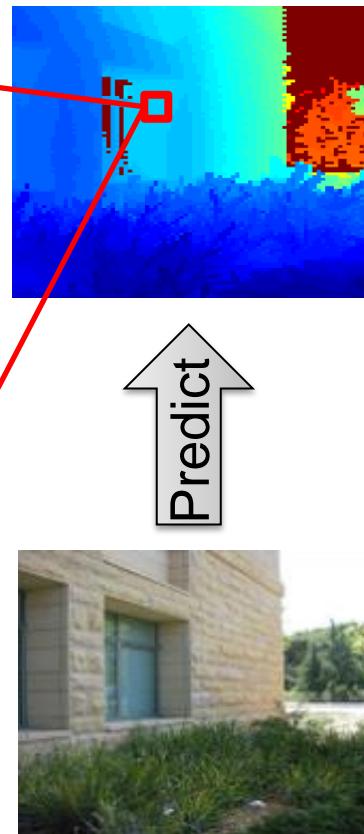
The Linear Algebra View of Graphical Models



- We are going to discuss a different (still not fully understood) point of view of graphical models that revolves around linear algebra.
- Compared to the optimization perspective, the linear algebra view often less intuitive to formulate.
- However, it lets us solve problems that are intractable from the optimization perspective
 - Graphical Models with Non-Gaussian Continuous Variables.
 - Local Minima Free Learning in Latent Variable Models
- Moreover it offers a different theoretical perspective and bridges the graphical models, kernels and tensor algebra communities.

Non-Gaussian Continuous Variables

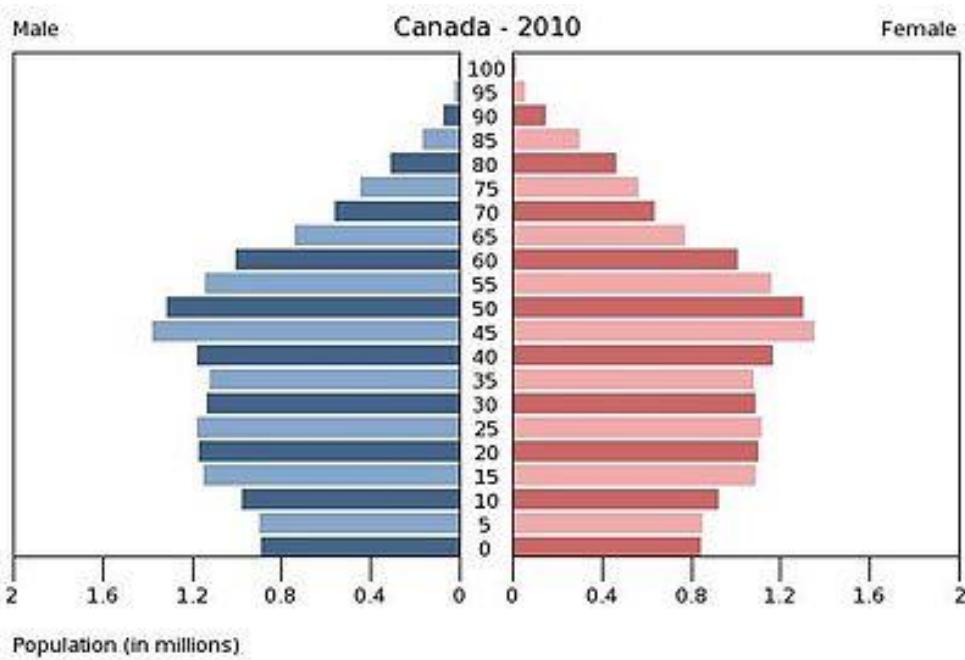
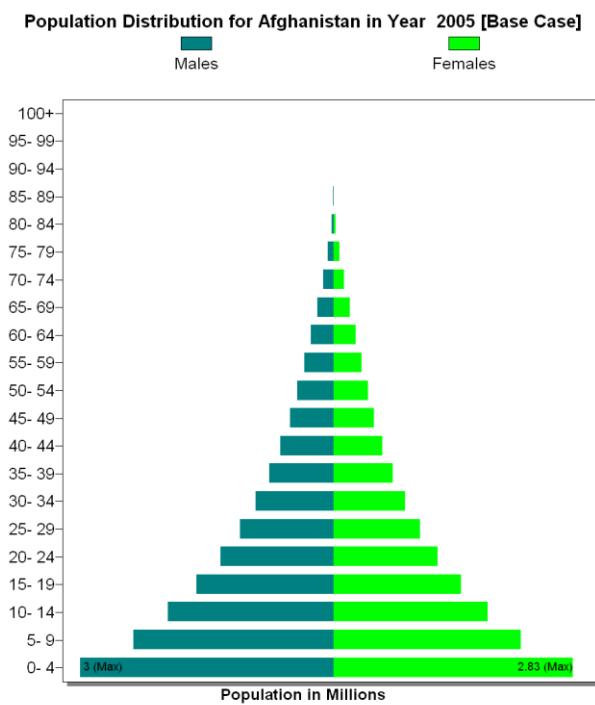
Depth Reconstruction



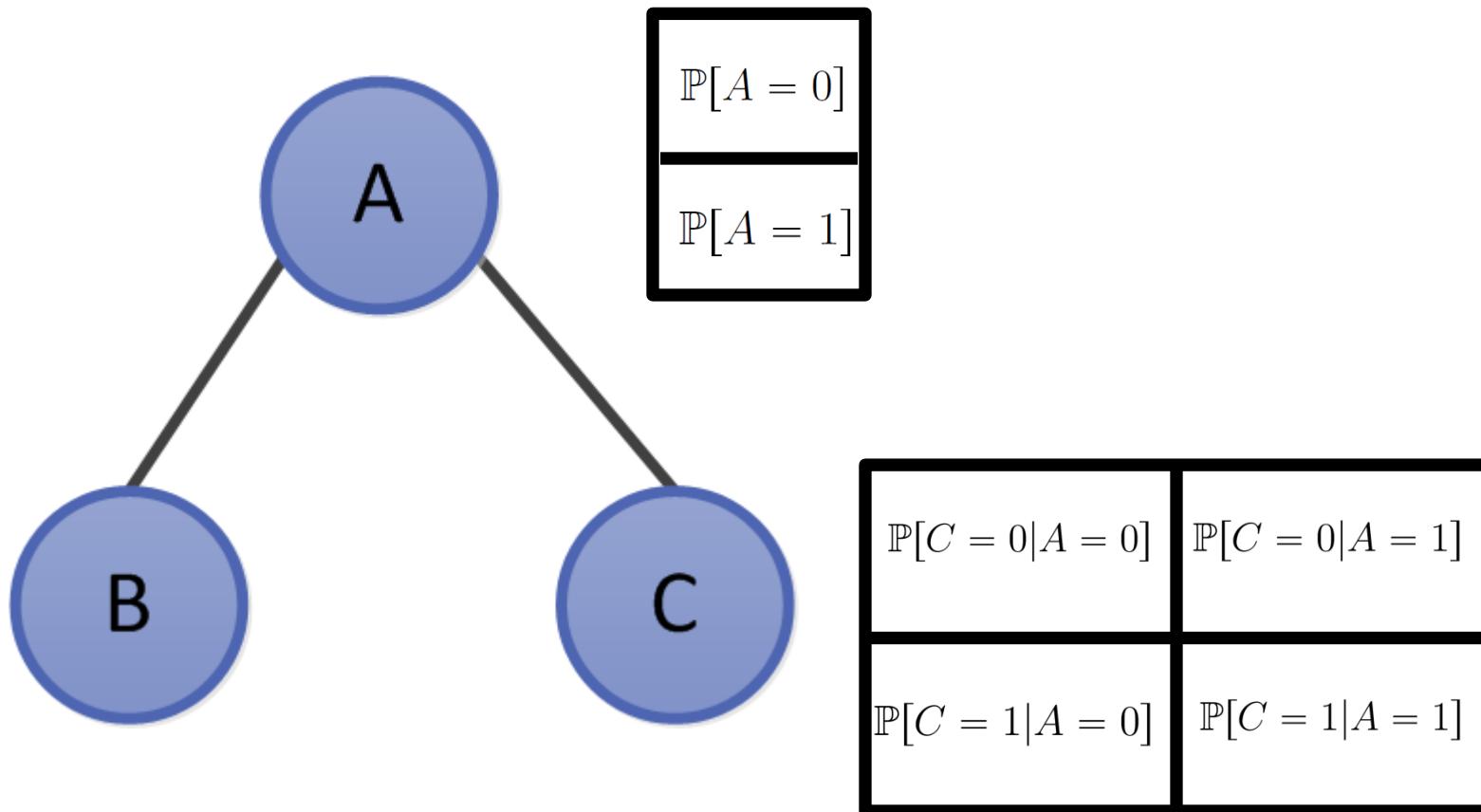
[Saxena, Chung and Ng 2005]

Non-Gaussian Continuous Variables

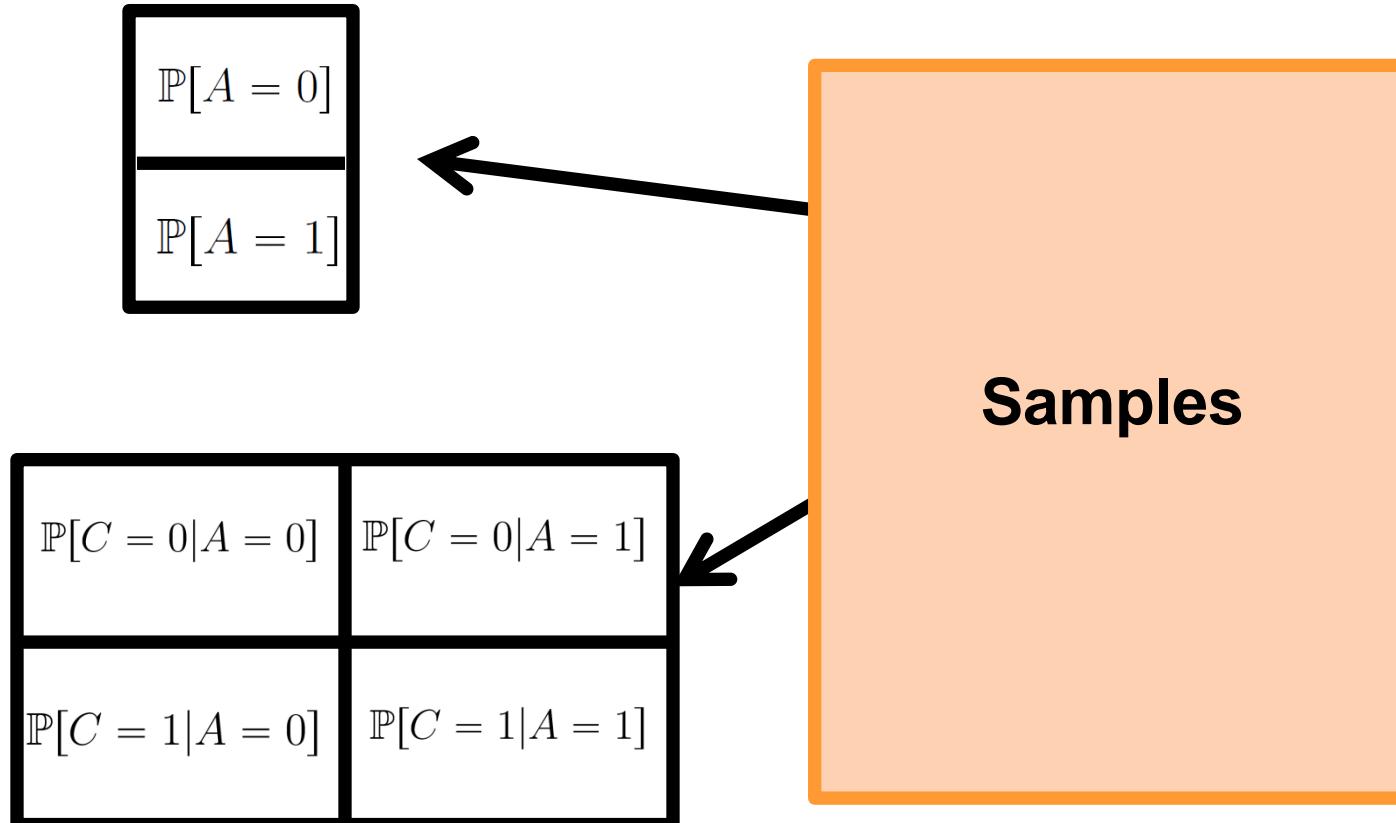
Demographics: Model relationships among different demographic variables



Graphical Models - What we have learned so far...

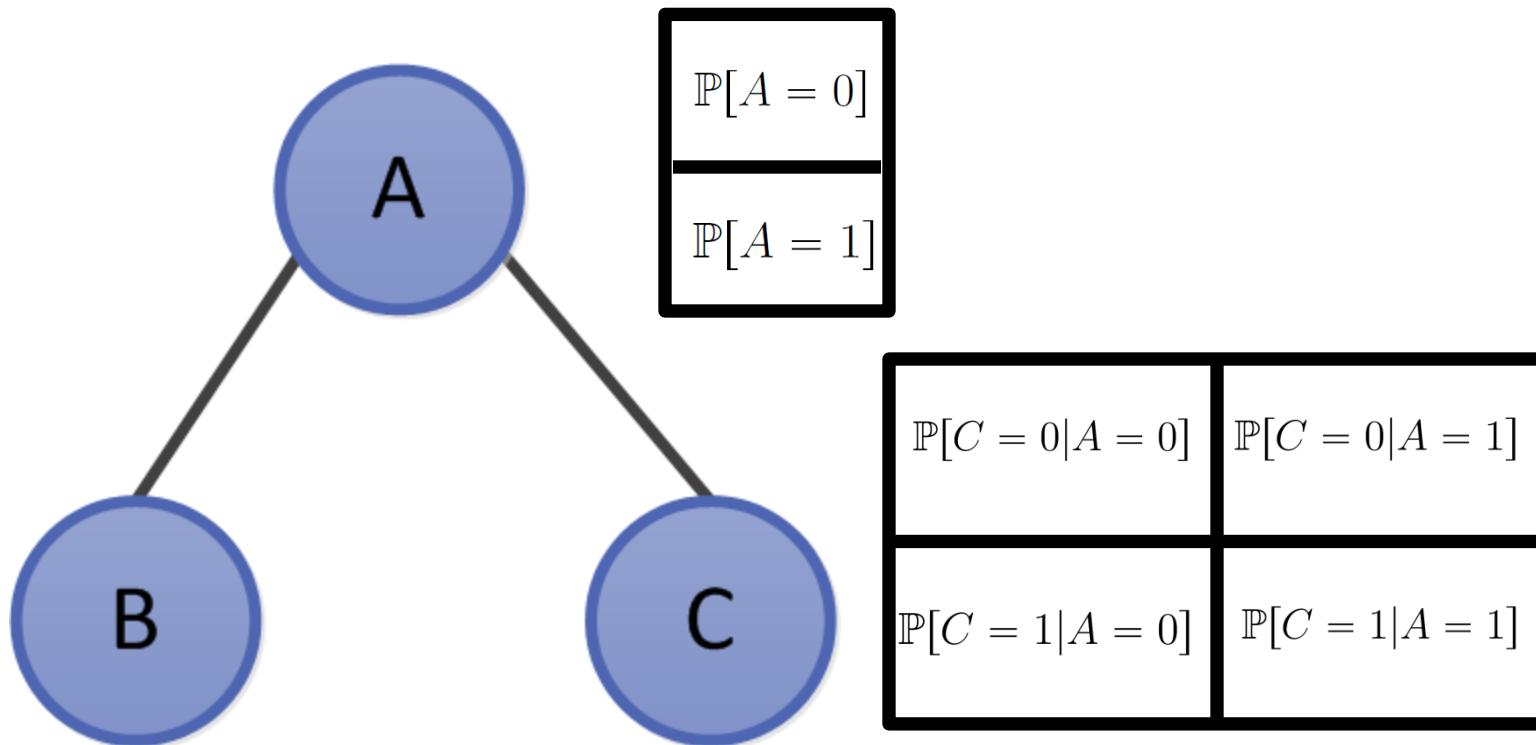


Parameter Learning - What we have learned so far...



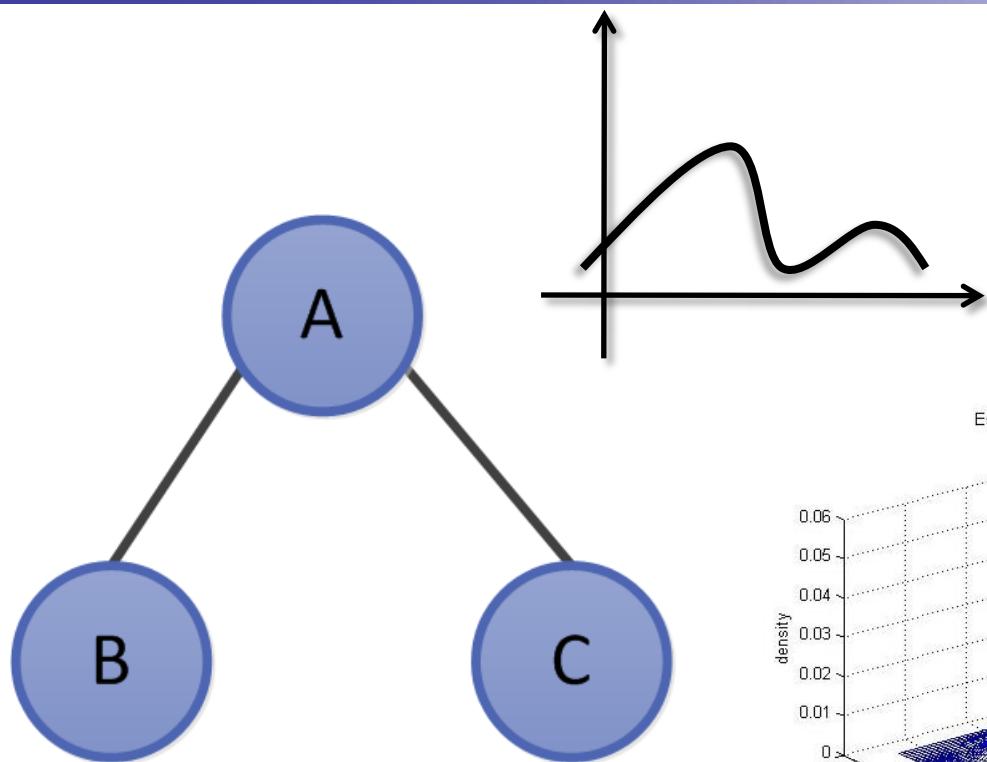
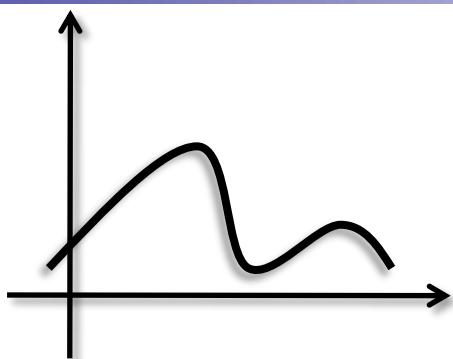
- If variables are observed, just count from dataset
- In case of hidden variables, can use Expectation Maximization.....

Inference - What we have learned so far...

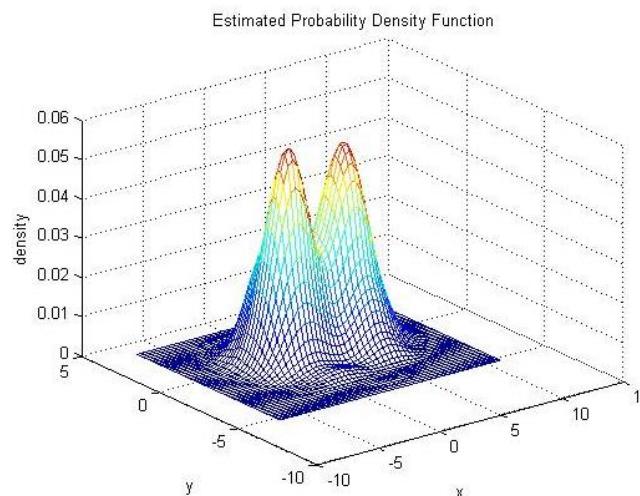


- Can do exact inference with Variable Elimination, Belief Propagation.
- Can do approximate inference with Loopy BP, Mean Field, MCMC

Non-Parametric Continuous Case is Much Harder...

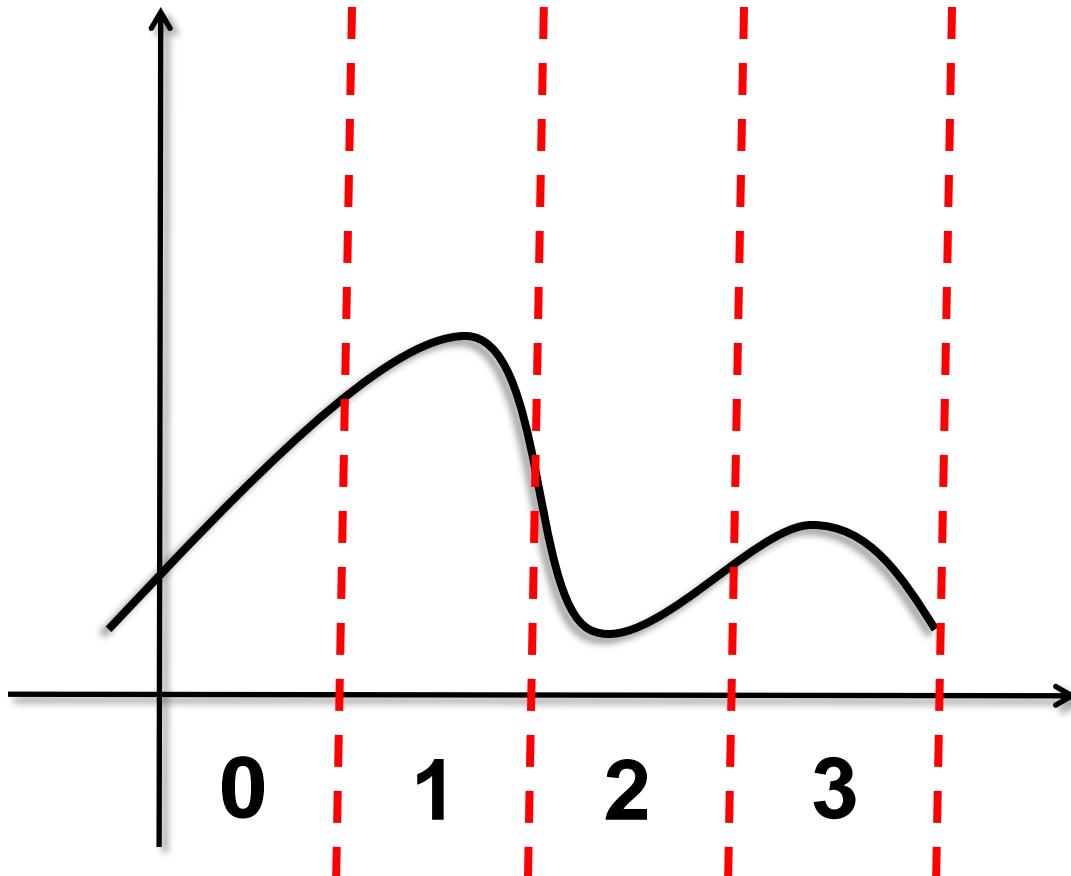


How do we make a
conditional probability
table out of this?



- **How to learn parameters? (What are the parameters?)**
- **How to perform inference?**

Could Discretize the Distribution....



- **Loses information** that 0 and 1 are closer than 0 and 3

Hilbert Space Embeddings of Distributions

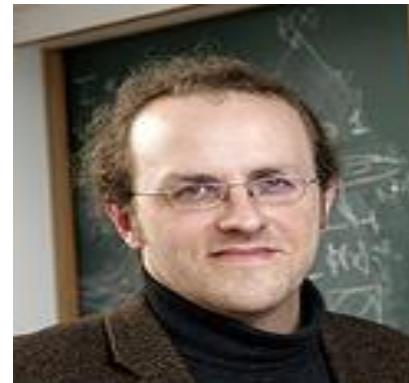


- General formulation for probabilistic modeling with continuous variables.

Kenji Fukumizu

Arthur Gretton

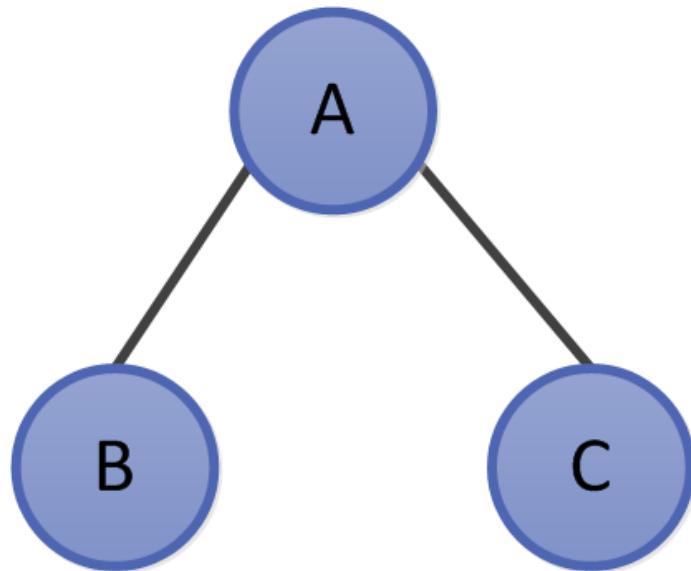
Bernhard Schölkopf



Alex Smola

Le Song

Why do Gaussians Work?



- (1) Because we have parameters (sufficient statistics) !!!!
- (2) It is easy to marginalize/condition etc.

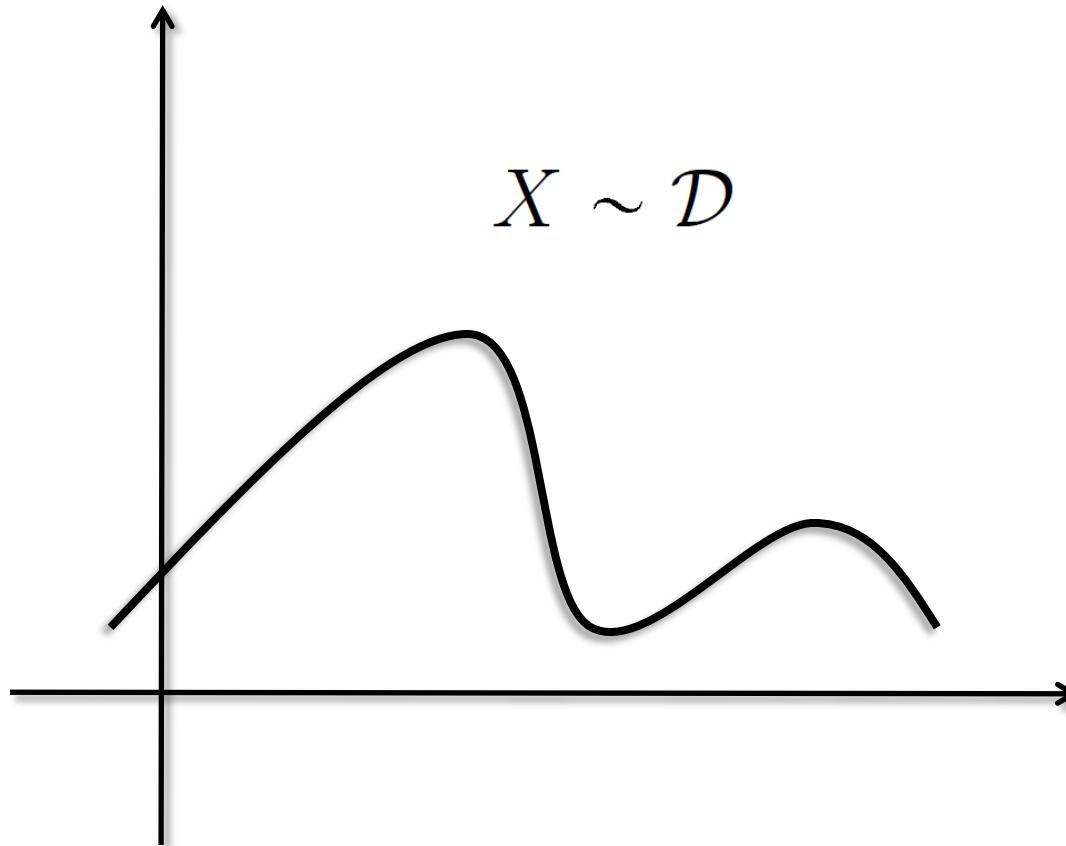
Bijection between (mean,variance) pair and distribution

$$(\mu_1, \sigma_1) \quad \longleftrightarrow \quad N(\mu_1, \sigma_1)$$

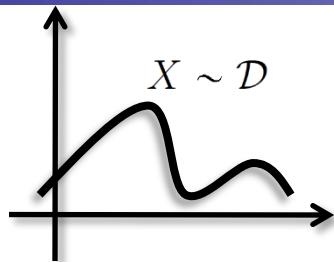
$$(\mu_2, \sigma_2) \quad \longleftrightarrow \quad N(\mu_2, \sigma_2)$$

Key Idea – Create Sufficient Statistic for Arbitrary Distribution

- I want to represent this distribution with a small vector μ_X .

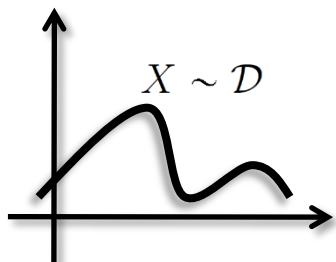


Idea 1: Take some Moments



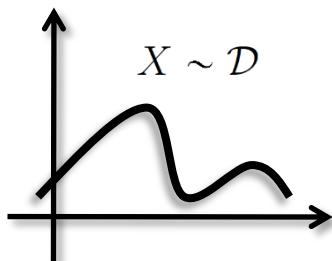
$$\mu_X = (\mathbb{E}[X])$$

Problem: Lots of Distributions have the same mean!



$$\mu_X = \begin{pmatrix} \mathbb{E}[X] \\ \mathbb{E}[X^2] \end{pmatrix}$$

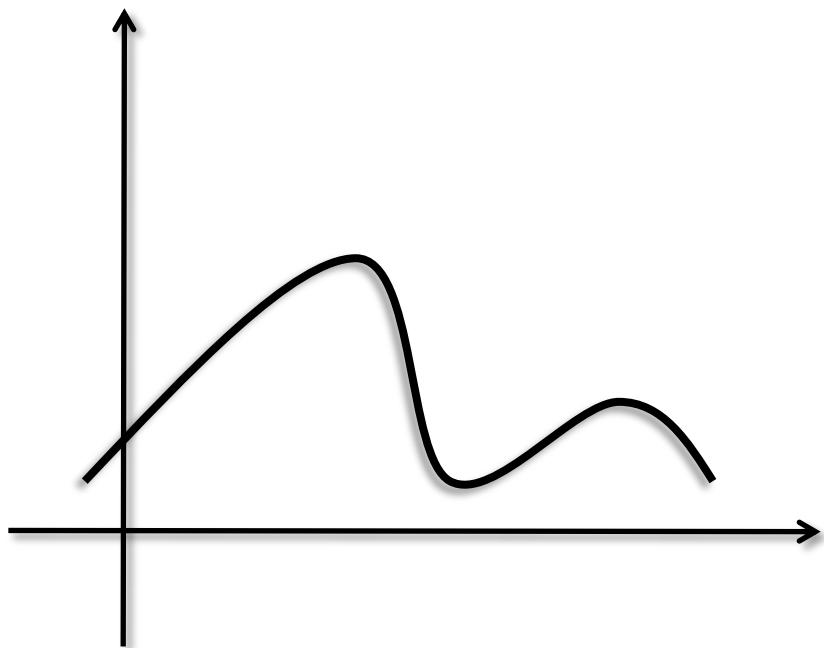
Better, but lots of distributions still have the same mean and variance!



$$\mu_X = \begin{pmatrix} \mathbb{E}[X] \\ \mathbb{E}[X^2] \\ \mathbb{E}[X^3] \end{pmatrix}$$

Even better, but lots of distributions still have the same first three moments!

Better Idea: Create Infinite Dimensional Statistic



$$\mu_X = \begin{pmatrix} \mathbb{E}[X] \\ \mathbb{E}[X^2] \\ \mathbb{E}[X^3] \\ \dots \\ \dots \end{pmatrix}$$

(not exactly, but right idea...)

- But the vector is infinite.....how do we compute things with it?????

Remember the Kernel Trick!!!

Primal Formulation:

$$\min_{w,b} \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_j \xi_j$$

$$(\mathbf{w}^\top \phi(\mathbf{x}_j) + b) y_j \geq 1 - \xi_j \quad \forall j$$

$$\xi_j \geq 0 \quad \forall j$$

Infinite, cannot be directly computed

But the dot product is easy to compute ☺

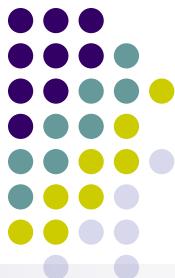
Dual Formulation:

$$\max_{\alpha} \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j)$$

$$\sum_i \alpha_i y_i = 0$$

$$0 \leq \alpha_i \leq C \quad \forall i$$

Overview of Hilbert Space Embedding



- Create an infinite dimensional statistic for a distribution.
- Two Requirements:
 - Map from distributions to statistics is one-to-one
 - Although statistic is infinite, it is cleverly constructed such that the kernel trick can be applied.
- Perform Belief Propagation as if these statistics are the conditional probability tables.
- We will now make this construction more formal by introducing the concept of Hilbert Spaces

Vector Space

- A set of objects closed under linear combinations:

$$\mathbf{v}, \mathbf{w} \in \mathcal{V} \implies \alpha\mathbf{v} + \beta\mathbf{w} \in \mathcal{V}$$

- Normally, you think of these “objects” as finite dimensional vectors. However, in general the objects can be functions.
- **Nonrigorous Intuition:** A function is like an infinite dimensional vector.

$$f = \boxed{}$$



Hilbert Space

- A Hilbert Space is a complete vector space equipped with an inner product.
- The inner product $\langle \mathbf{f}, \mathbf{g} \rangle$ has the following properties:
 - Symmetry $\langle \mathbf{f}, \mathbf{g} \rangle = \langle \mathbf{g}, \mathbf{f} \rangle$
 - Linearity $\langle \alpha \mathbf{f}_1 + \beta \mathbf{f}_2, \mathbf{g} \rangle = \alpha \langle \mathbf{f}_1, \mathbf{g} \rangle + \beta \langle \mathbf{f}_2, \mathbf{g} \rangle$
 - Nonnegativity $\langle \mathbf{f}, \mathbf{f} \rangle \geq 0$
 - Zero $\langle \mathbf{f}, \mathbf{f} \rangle = 0 \implies \mathbf{f} = 0$
- Basically a “nice” infinite dimensional vector space, where lots of things behave like the finite case (e.g. using inner product we can define “norm” or “orthogonality”)

Hilbert Space Inner Product

- Example of an inner product (just an example, inner product not required to be an integral)

$$\langle f, g \rangle = \int f(x)g(x) dx$$

Inner product of two functions is a number

- **Non-rigorous Intuition:** Like the traditional finite vector space inner product

$$\langle v, w \rangle = v^\top w$$

 = scalar

Linear Operators

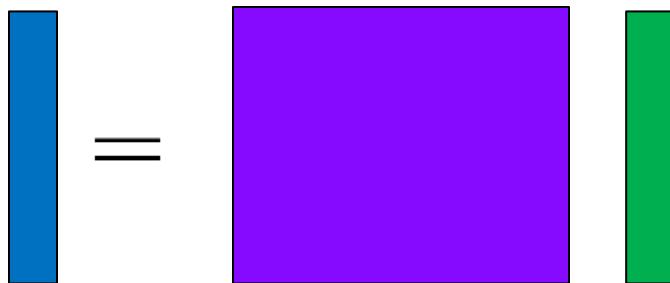
- An operator C maps a function f in one Hilbert Space to another function g in the same or another Hilbert Space.

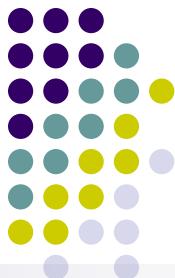
$$g = Cf$$

- Linear Operator:

$$C(\alpha f + \beta g) = \alpha Cf + \beta Cg$$

- **Non-rigorous Intuition:** Operators are sort of like matrices.





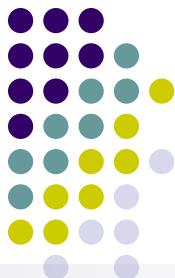
Adjoints (Transposes)

- The adjoint $\mathcal{C}^\top : \mathcal{G} \rightarrow \mathcal{F}$ of an operator $\mathcal{C} : \mathcal{F} \rightarrow \mathcal{G}$ is defined such that

$$\langle \mathbf{g}, \mathcal{C} \mathbf{f} \rangle = \langle \mathcal{C}^\top \mathbf{g}, \mathbf{f} \rangle \quad \forall \mathbf{f} \in \mathcal{F}, \mathbf{g} \in \mathcal{G}$$

- Like transpose / conjugate transpose for real / complex matrices:

$$\mathbf{w}^\top \mathbf{M} \mathbf{v} = (\mathbf{M}^\top \mathbf{w})^\top \mathbf{v}$$



Hilbert Space Outer Product

$f \otimes g$ is implicitly defined such that

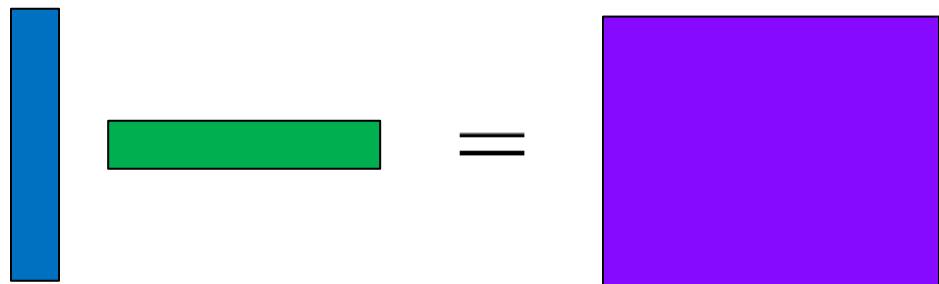
$$f \otimes g(h) = \langle g, h \rangle f$$

Outer Product of two functions is an operator

- **Non-rigorous Intuition:** Like Vector Space Outer Product

$$v \otimes w = vw^\top$$

$$vw^\top(z) = \langle w, z \rangle v$$



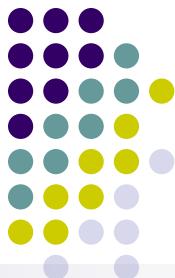
Reproducing Kernel Hilbert Space

- Basically, a “really nice” infinite dimensional vector space where even more things behave like the finite case
- We are going to “construct” our Reproducing Kernel Hilbert Space with a **Mercer Kernel**. A Mercer Kernel $K(x, y)$ is a function of two variables, such that:

$$\int \int K(x, y) f(x) f(y) dx dy > 0 \quad \forall f$$

- This is a generalization of a positive definite matrix:

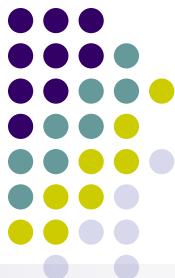
$$x^\top A x > 0 \quad \forall x$$
A diagram illustrating the quadratic form $x^\top A x$. On the left, a green horizontal bar represents the vector x . To its right is a purple square box representing the matrix A . A green bracket is placed over the term $x^\top A$ to indicate the result of the matrix-vector multiplication. To the right of the bracket is the expression > 0 .



Gaussian Kernel

- The most common kernel that we will use is the Gaussian RBF Kernel:

$$K(x, y) = \exp\left(\frac{\|x - y\|_2^2}{\sigma^2}\right)$$



The Feature Function

- Consider holding one element of the kernel fixed. We get a function of one variable which we call the feature function. The collection of feature functions is called the **feature map**.

$$\phi_x := \mathbf{K}(x, \cdot)$$

- For a Gaussian Kernel the feature functions are unnormalized Gaussians:

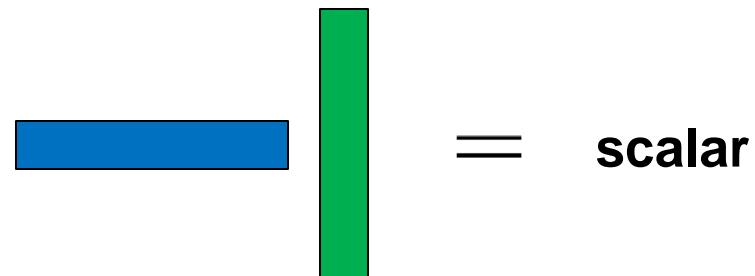
$$\phi_1(y) = \exp\left(\frac{\|1 - y\|_2^2}{\sigma^2}\right)$$

$$\phi_{1.5}(y) = \exp\left(\frac{\|1.5 - y\|_2^2}{\sigma^2}\right)$$

Defining the Inner Product

- Define the Inner Product as:

$$\langle \phi_x, \phi_y \rangle = \langle \mathbf{K}(x, \cdot), \mathbf{K}(y, \cdot) \rangle := \mathbf{K}(x, y)$$



scalar

- Note that:

$$\phi_x(y) = \phi_y(x) = \mathbf{K}(x, y)$$

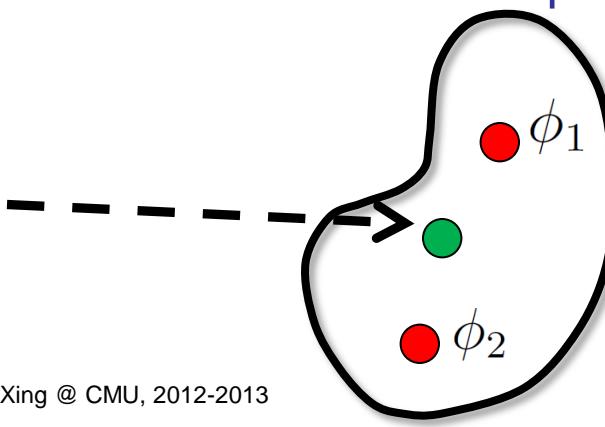
Reproducing Kernel Hilbert Space

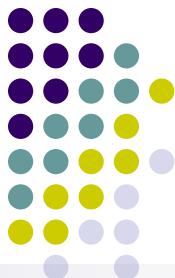
- Consider the set of functions that can be formed with linear combinations of these feature functions:

$$\mathcal{F}_0 = \left\{ f(z) : \sum_{j=1}^k \alpha_j \phi_{x_j}(z), \forall k \in \mathbb{N}_+ \text{ and } x_j \in \mathcal{X} \right\}$$

- We define the Reproducing Kernel Hilbert Space \mathcal{F} to be the completion of \mathcal{F}_0 (like \mathcal{F}_0 with the “holes” filled in)
- Intuitively, the feature functions are like an over-complete basis for the RKHS

$$f(z) = \alpha_1 \phi_1(z) + \alpha_2 \phi_2(z)$$





Reproducing Property

- It can now be derived that the inner product of a function \mathbf{f} with ϕ_x , evaluates a function at point \mathbf{x} :

$$\begin{aligned}\langle \mathbf{f}, \phi_x \rangle &= \left\langle \sum_j \alpha_j \phi_{x_j}, \phi_x \right\rangle \\ &= \sum_j \alpha_j \langle \phi_{x_j}, \phi_x \rangle \quad \text{Linearity of inner product} \\ &= \sum_j \alpha_j \mathbf{K}(x_j, x) \quad \text{Definition of kernel} \\ &= \mathbf{f}(x)\end{aligned}$$

Remember that
 $\mathbf{K}(x_j, x) := \phi_{x_j}(x)$

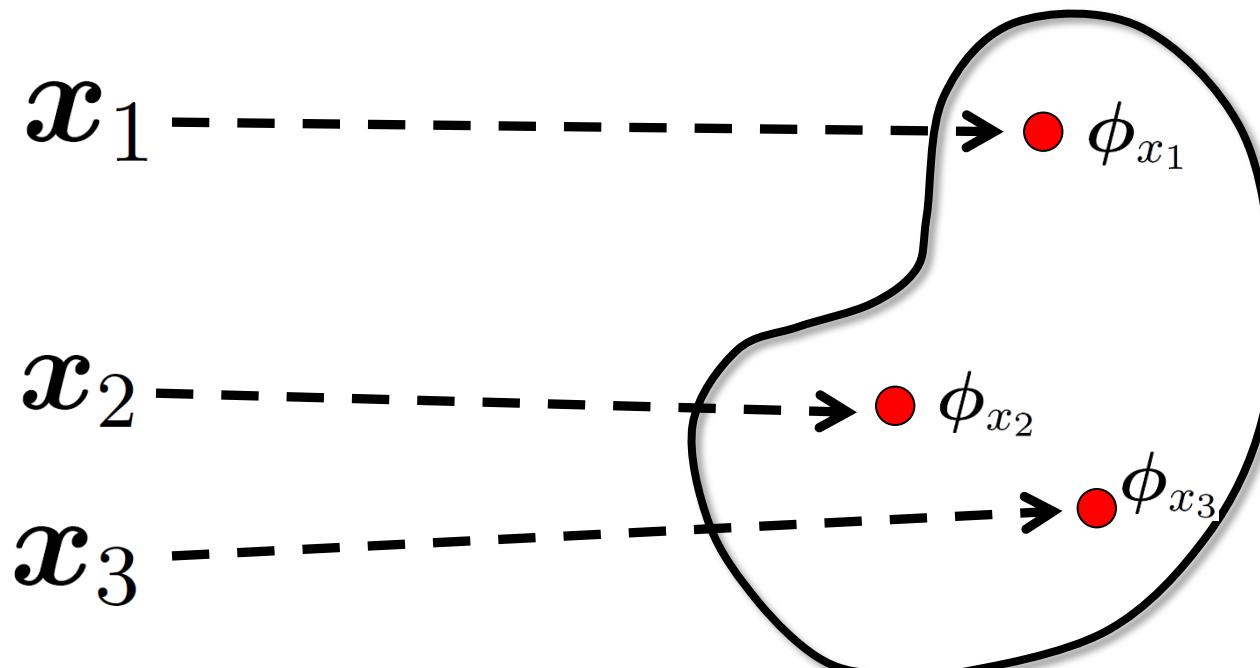
= scalar

SVM Kernel Intuition

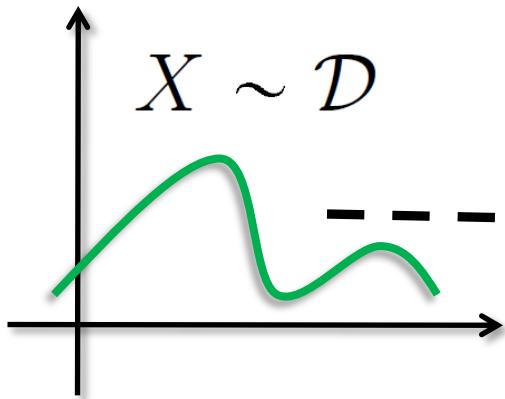
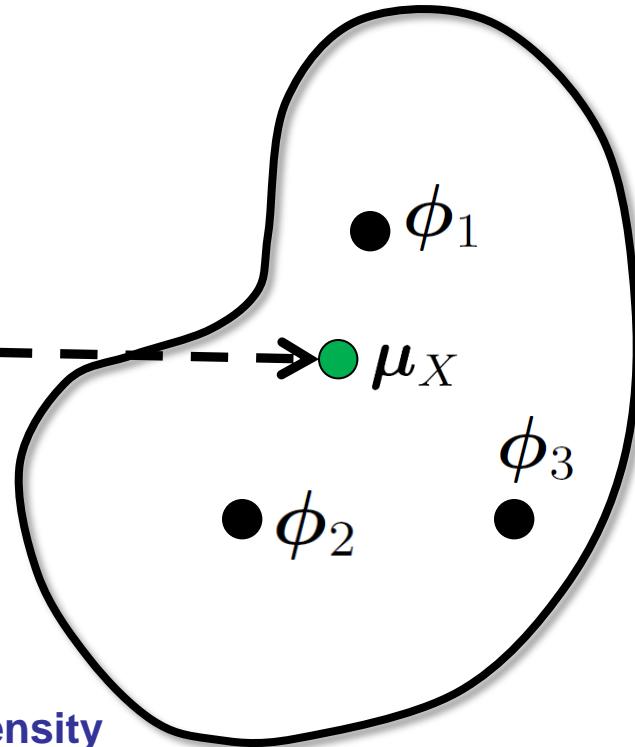
$$\min_{\mathbf{w}, b} \frac{1}{2} \mathbf{w}^\top \mathbf{w} + C \sum_j \xi_j$$

$$(\mathbf{w}^\top \phi(\mathbf{x}_j) + b)y_j \geq 1 - \xi_j \quad \forall j \quad \xi_j \geq 0 \quad \forall j$$

Maps features to RKHS Feature Functions!

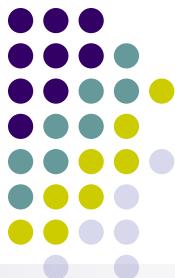


How To Embed Distributions (Mean Map) [Smola et al. 2007]



The Hilbert Space Embedding of X

$$\mu_X(\cdot) = \mathbb{E}_{X \sim \mathcal{D}}[\phi_X] = \int p_{\mathcal{D}}(X) \phi_X(\cdot) dX$$



Mean Map cont.

- Mean Map $\mu_X = \mathbb{E}_X[\phi_X]$
- If the kernel is universal, then the map from distributions to embeddings is one-to-one. Examples of universal kernels:
 - Gaussian RBF Kernel.
 - Laplace Kernel
- “Empirical Estimate” (not actually computable from data if feature map is infinite....but we will solve this problem in the next lecture)

$$\hat{\mu}_X = \frac{1}{N} \sum_{n=1}^N \phi_{x_n}$$

Data point

Example (Discrete)

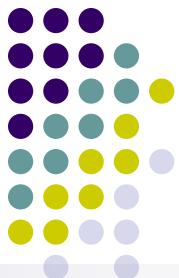
- Consider a random variable X that takes the values $1, 2, 3, 4$. We want to embed it into an **RKHS**. Which **RKHS**?
- The RKHS of 4 dimensional vectors in \mathbf{R}^4 . The feature functions in this RKHS are:

$$\phi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \phi_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \phi_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \phi_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\mu_X = \mathbb{E}_X[\phi_X] = \mathbb{P}[X = 1]\phi_1 + \mathbb{P}[X = 2]\phi_2 + \mathbb{P}[X = 3]\phi_3 + \mathbb{P}[X = 4]\phi_4$$

$$\mu_X = \begin{pmatrix} \mathbb{P}[X = 1] \\ \mathbb{P}[X = 2] \\ \mathbb{P}[X = 3] \\ \mathbb{P}[X = 4] \end{pmatrix}$$

Embedding equal to marginal probability vector in the discrete case



Mean Map cont.

$$\mathbb{E}_{X \sim \mathcal{D}}[f(X)] = \langle f, \mu_X \rangle \text{ If } f \text{ is in the RKHS}$$

- Why?

$$\begin{aligned}\langle f, \mu_X \rangle &= \langle f, \mathbb{E}_{X \sim \mathcal{D}}[\phi_X] \rangle \\ &= \mathbb{E}_{X \sim \mathcal{D}}[f(X)]\end{aligned}$$

Embedding Joint Distribution of 2 Variables [Smola et al. 2007]

- Define the uncentered cross-covariance operator \mathcal{C}_{YX} implicitly such that

$$\langle \mathbf{g}, \mathcal{C}_{YX} \mathbf{f} \rangle = \mathbb{E}_{YX} [\mathbf{f}(X) \mathbf{g}(Y)] \quad \forall \mathbf{f} \in \mathcal{F}, \forall \mathbf{g} \in \mathcal{G}$$

- Note how \mathbf{f} is in one Hilbert Space, while \mathbf{g} is in another.
- \mathcal{C}_{YX} will be our embedding of the joint distribution of \mathbf{X} and \mathbf{Y} .
- Note how \mathcal{C}_{YX} is an operator, just like $\mathbf{P}[\mathbf{X}, \mathbf{Y}]$ is a matrix.



Cross Covariance Operator cont.

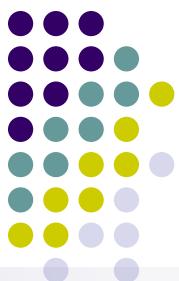
- Let $\phi_X \in \mathcal{F}$ and $\psi_Y \in \mathcal{G}$ (the feature functions of these two RKHSs)
- Then explicit form of cross-covariance operator is:

$$\mathcal{C}_{YX} = \mathbb{E}_{YX}[\psi_Y \otimes \phi_X]$$

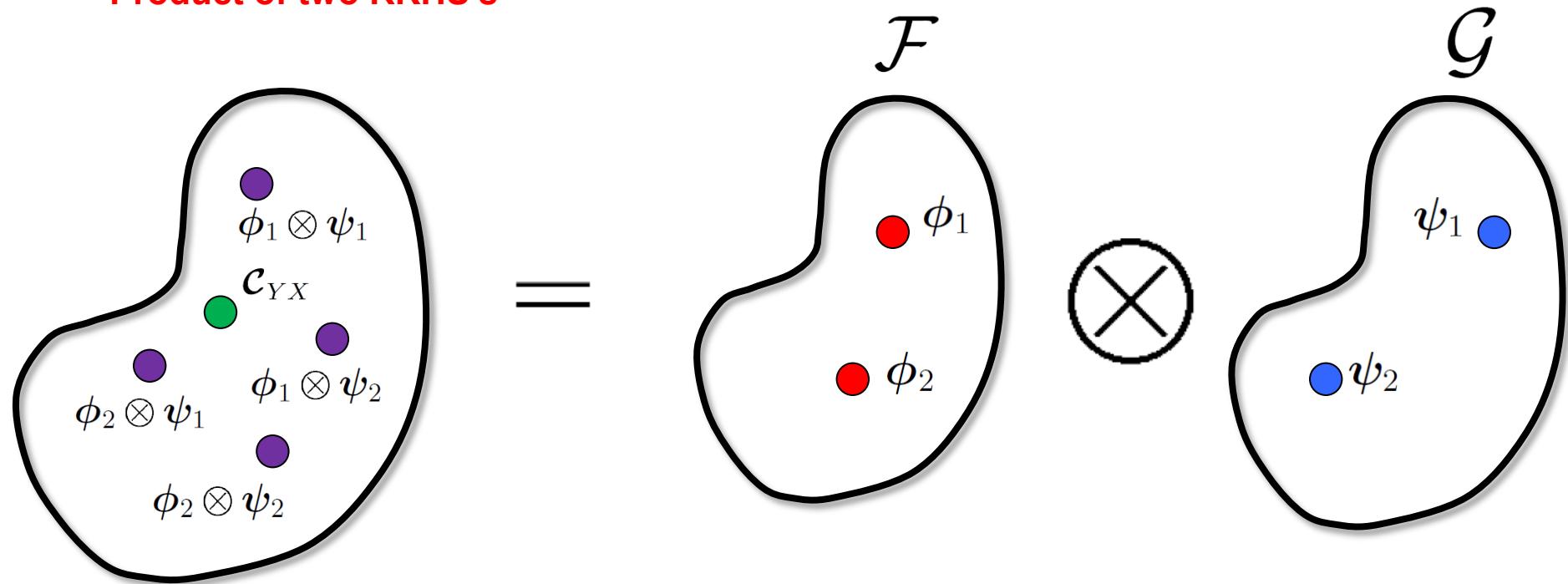
- Looks like the Uncentered Covariance of two variables X and Y :

$$\text{Cov}(X, Y) = \mathbb{E}_{YX}[YX]$$

Embedding Joint Distribution of Two Variables [Smola et al. 2007]



Embed in the Tensor Product of two RKHS's



“Tensor Product” Intuition

- Consider two finite sets:

$$S = \{1, 3, 4\}$$

$$T = \{2, 6\}$$

- If “outer product” is defined as:

$$a \otimes b = (a, b)$$

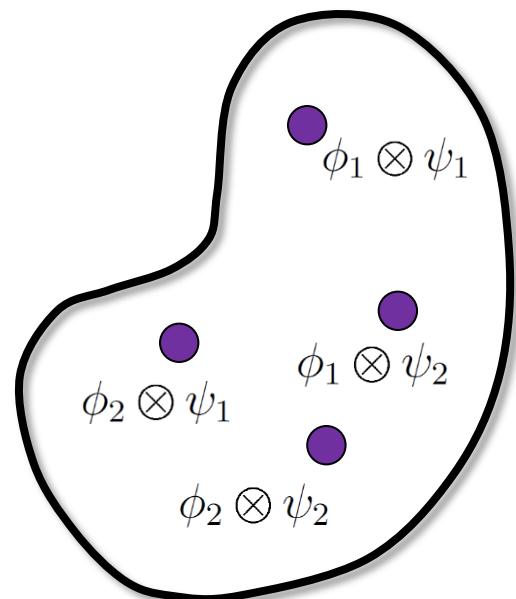
- Then tensor product is:

$$S \otimes T = \{(1, 2), (1, 6), (3, 2), (3, 6), (4, 3), (4, 6)\}$$

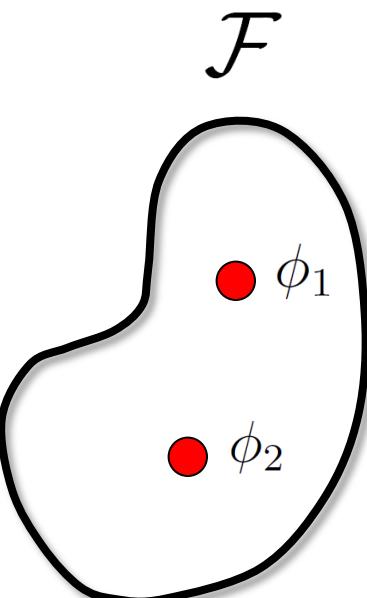
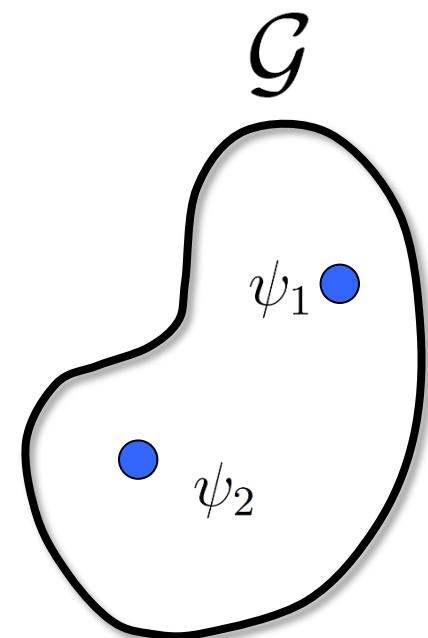
- (Don’t take the example too literally since this is not a vector space)

Tensor Product of Two Vector Spaces

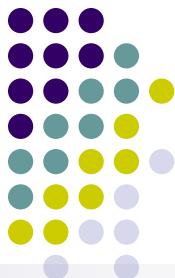
$$\mathcal{H} = \mathcal{F} \otimes \mathcal{G}$$



=



$$\mathcal{H} = \{ \mathbf{h} : \exists \mathbf{f} \in \mathcal{F}, \mathbf{g} \in \mathcal{G} \text{ s.t. } \mathbf{h} = \mathbf{f} \otimes \mathbf{g} \}$$



Cross Covariance Operator cont.

- Proof:

$$\begin{aligned}\langle \mathbf{g}, \mathcal{C}_{YX} \mathbf{f} \rangle &= \langle \mathbf{g}, \mathbb{E}_{YX} [\psi_Y \otimes \phi_X] \mathbf{f} \rangle \\ &= \mathbb{E}_{YX} [\langle \mathbf{g}, [\psi_Y \otimes \phi_X] \mathbf{f} \rangle] \quad \text{Move expectation outside} \\ &= \mathbb{E}_{YX} [\langle \mathbf{g}, \langle \phi_X, \mathbf{f} \rangle \psi_Y \rangle] \quad \text{Definition of outer product} \\ &= \mathbb{E}_{YX} [\langle \mathbf{g}, \psi_Y \times \mathbf{f}, \phi_X \rangle] \quad \text{Rearrange} \\ &= \mathbb{E}_{YX} [\mathbf{g}(Y) \mathbf{f}(X)] \quad \text{Reproducing Property}\end{aligned}$$

Auto Covariance Operator

- The uncentered auto-covariance operator is:

$$\mathcal{C}_{XX} = \mathbb{E}_X[\phi_X \otimes \phi_X]$$

- Looks like the uncentered variance of X

$$\text{Uncentered-Var}(X) = \mathbb{E}[X^2]$$

- **Intuition:** Analogous to

$$\text{Diag}(\mathbb{P}[X])$$



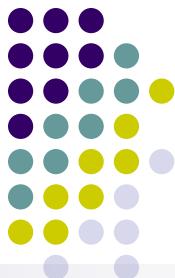
Conditional Embedding Operator

- Conditional Embedding Operator:

$$\mathcal{C}_{Y|X} = \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1}$$

- Intuition:

$$\mathbb{P}[Y|X] = \mathbb{P}[Y, X] \times \text{Diag}(\mathbb{P}[X])^{-1}$$



Conditional Embedding Cont.

- Conditional Embedding Operator:

$$\mathcal{C}_{Y|X} = \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1}$$

- Has Following Property:

$$\mathbb{E}_{Y|x}[\phi_Y|x] = \mathcal{C}_{Y|X} \phi_x$$

- Analogous to “Slicing” a Conditional Probability Table in the Discrete Case:

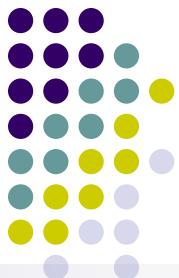
$$\mathbb{P}[Y|X=1] = \mathbb{P}[Y|X]\delta_1$$



Why We Care

- So we have some statistics for marginal, joint, and conditional distributions....
- How does this help us define Belief Propagation?
- There are many parametric distributions where it is hard to define message passing
- Think Back: What makes Gaussians different?
 - Easy to marginalize, perform Chain Rule with Gaussians!

Why we Like Hilbert Space Embeddings



We can marginalize and use chain rule in Hilbert Space too!!!

Sum Rule:

$$\mathbb{P}[X] = \int_Y \mathbb{P}[X, Y] = \int_Y \mathbb{P}[X|Y] \mathbb{P}[Y]$$

Chain Rule:

$$\mathbb{P}[X, Y] = \mathbb{P}[X|Y] \mathbb{P}[Y] = \mathbb{P}[Y|X] \mathbb{P}[Y]$$

Sum Rule in RKHS:

$$\mu_X = \mathcal{C}_{X|Y} \mu_Y$$

Chain Rule in RKHS:

$$\mathcal{C}_{YX} = \mathcal{C}_{Y|X} \mathcal{C}_{XX} = \mathcal{C}_{X|Y} \mathcal{C}_{YY}$$

We will prove these in the next lecture



Summary

- Hilbert Space Embedding provides a way to create a “sufficient statistic” for an arbitrary distribution.
- Can embed marginal, joint, and conditional distributions into the RKHS
- **Next time:**
 - Prove sum rule and chain rule for RKHS embedding
 - Performing Belief Propagation with the Embedding Operators
 - Why the messages are easily computed from data (and not infinite)

References

- Smola, A. J., Gretton, A., Song, L., and Schölkopf, B., **A Hilbert Space Embedding for Distributions**, Algorithmic Learning Theory, E. Takimoto (Eds.), Lecture Notes on Computer Science, Springer, 2007.
- L. Song. **Learning via Hilbert space embedding of distributions**. PhD Thesis 2008.
- Song, L., Huang, J., Smola, A., and Fukumizu, K., **Hilbert space embeddings of conditional distributions**, International Conference on Machine Learning, 2009.