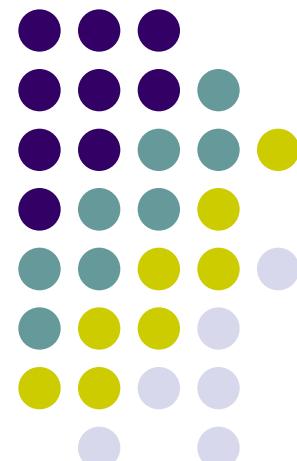
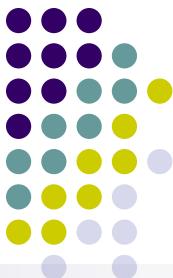


Spectral Learning for Graphical Models

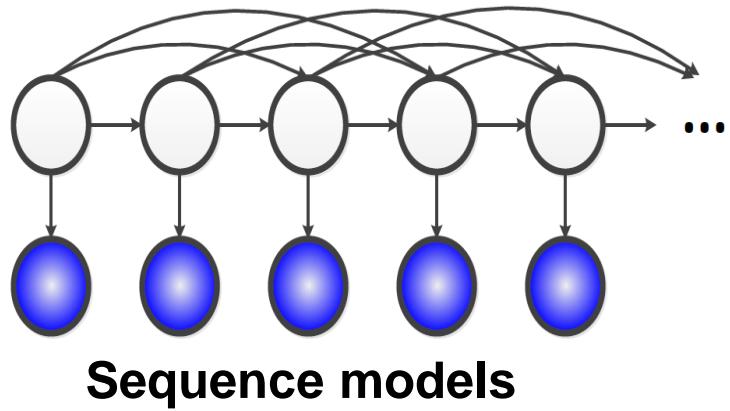
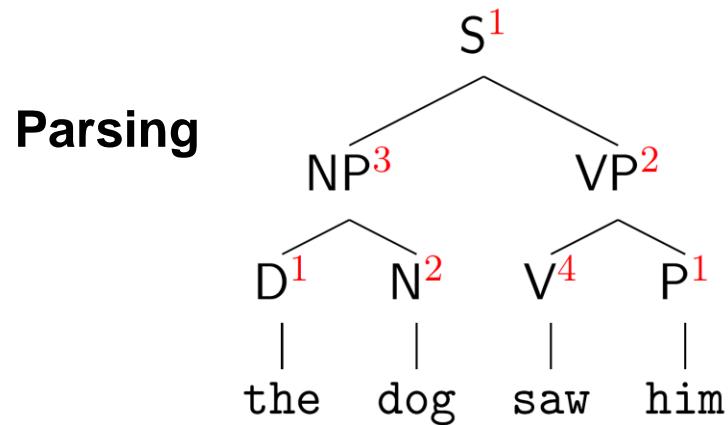
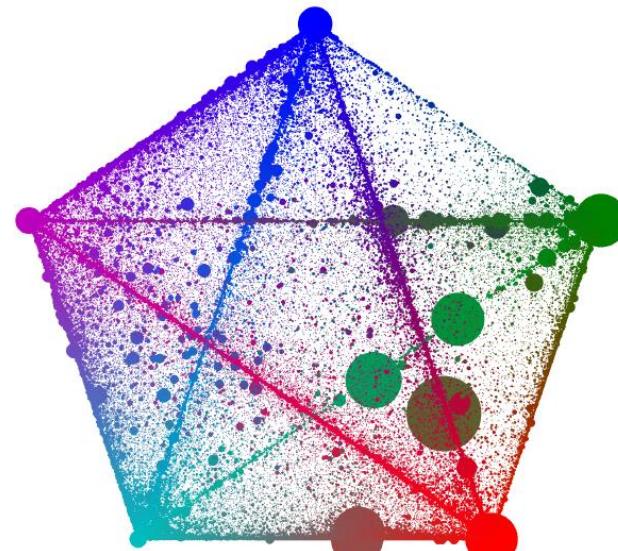
An Intuitive Introduction with a
Focus on NLP

Ankur Parikh
July 11, 2013





Latent Variable Models

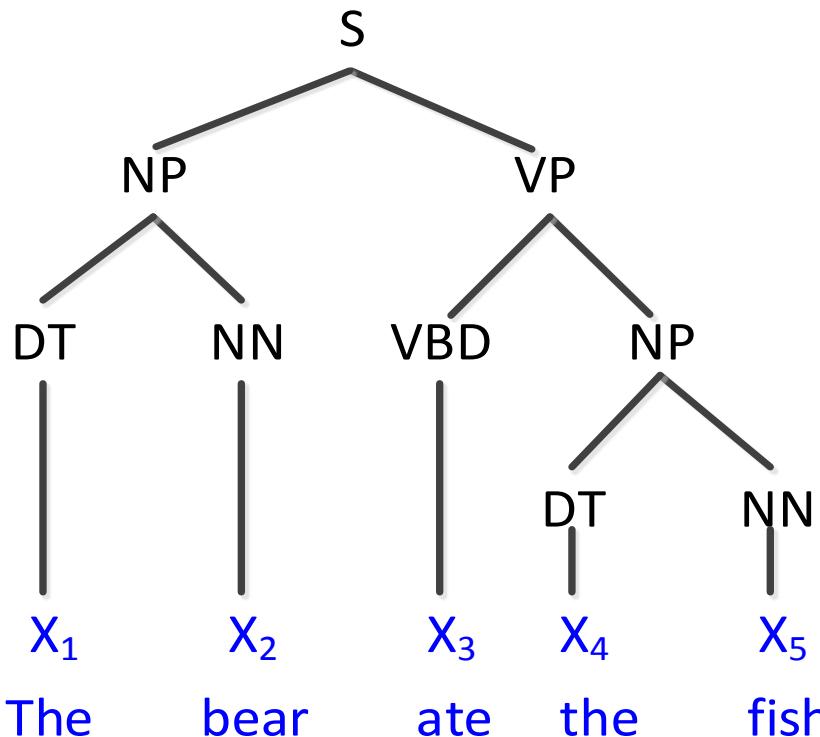


Mixed membership models

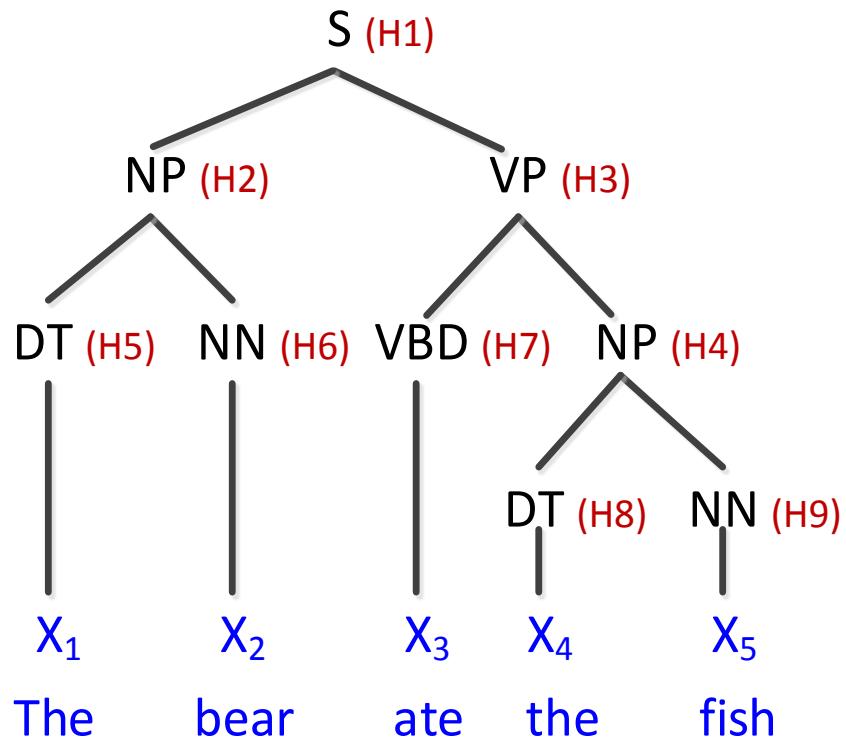
Latent Variable PCFG

[Matsuzaki et al., 2005,
Petrov et al. 2006]

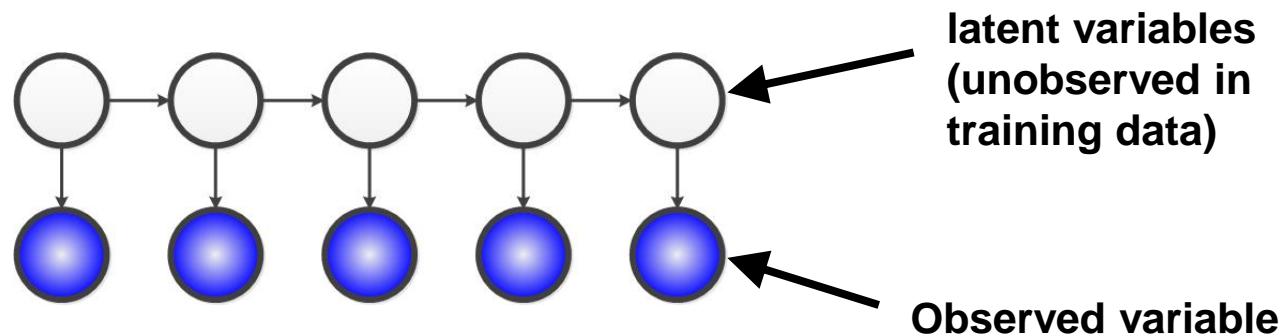
PCFG



Latent Variable PCFG



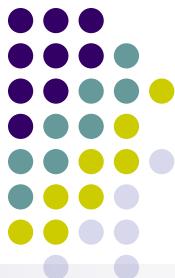
Learning Parameters (EM)



$$\mathbb{P}[X_1, \dots, X_5, H_1, \dots, H_5] = \mathbb{P}[H_1] \prod_{i=2}^5 \mathbb{P}[H_i | H_{i-1}] \prod_{i=1}^5 \mathbb{P}[X_i | H_i]$$

Since latent variables are not observed in the data, we have to use Expectation Maximization (EM) to learn parameters

- Slow
- Local Minima



Spectral Learning

- Different paradigm of learning in latent variable models based on linear algebra
- Theoretically,
 - Provably consistent
 - Can offer deeper insight into the identifiability
- Practically,
 - Local minima free
 - As if now, performs comparably to EM with 10-100x speed-up
 - Can also model non-Gaussian continuous data using kernels (usually performs much better than EM in this case)

Tutorial Outline

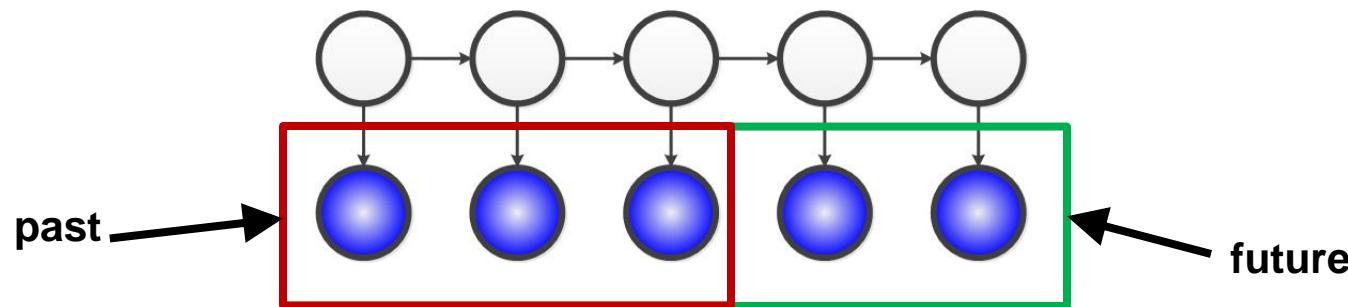
- The Spectral View of Graphical Models
- Small (HMM-like) example
- How to make Spectral Learning Work in Practice
- Intuition to why this works for trees / latent PCFGs
- Discussion of Empirical Aspects
- Detailed derivation for latent PCFG

Related References

- Relevant works
 - **Hsu et al. 2009** – Spectral HMMs (also Bailly 2009)
 - **Siddiqi et al. 2009** – Features in Spectral Learning
 - **Parikh et al. 2011/2012** – Tensors to Generalize to Trees/Low Treewidth Graphs
 - **Cohen et al. 2012 / 2013** – Spectral Learning of latent PCFGs
- Will present it from “matrix factorization” view:
 - **Balle et al. 2012** – Connection between Spectral Learning / Hankel Matrix Factorization
 - **Song et al. 2013** – Spectral Learning as Hierarchical Tensor Decomposition

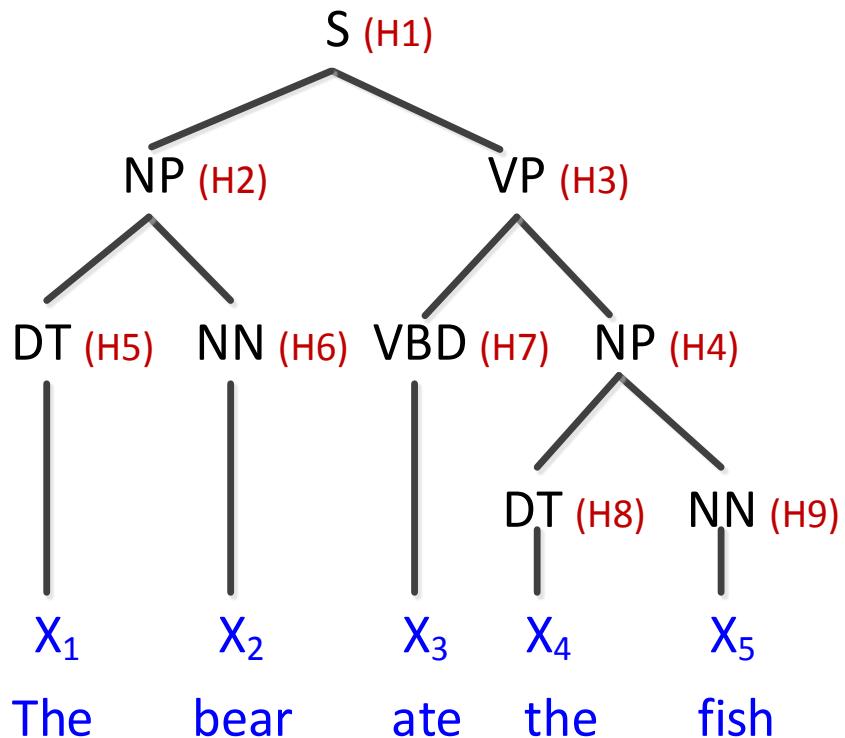
Focusing on Prediction

- In many applications that use latent variable models, the end task is not to recover the latent states, but rather to use the model for prediction among observed variables.
- Dynamical Systems – Predict future given past



Latent Variable PCFG

[Matsuzaki et al., 2005,
Petrov et al. 2006]



$$\mathbb{P}[\text{tree}] = \sum_{H_1, \dots, H_5} \mathbb{P}[\text{tree}, H_1, \dots, H_5]$$

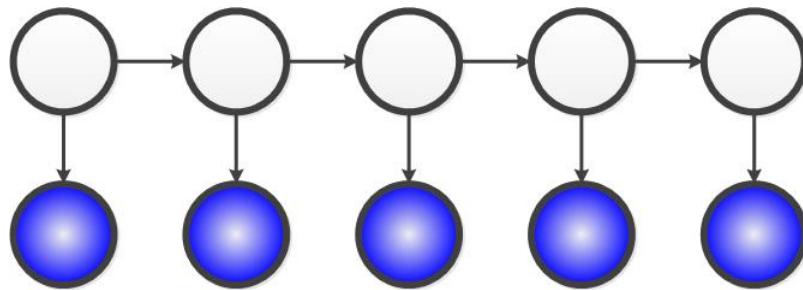


Focusing on Prediction

- We will only be concerned with quantities related to the observed variables:

$$\mathbb{P}[X_1, X_2, X_3, X_4, X_5]$$

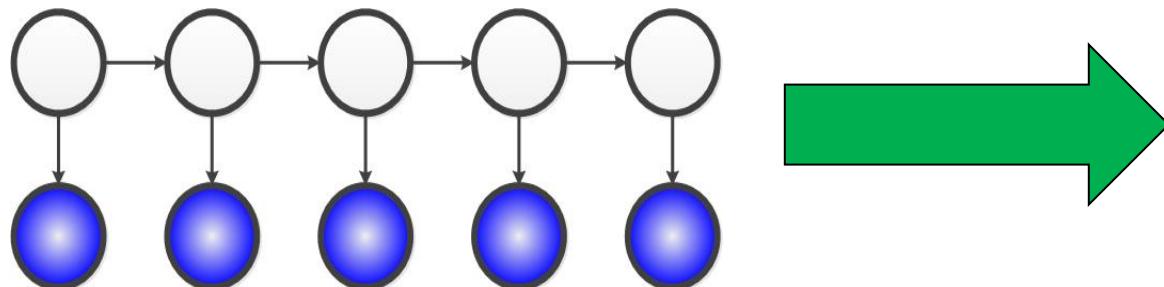
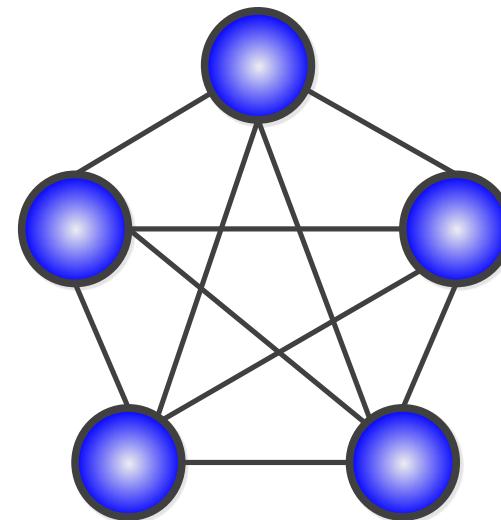
- We do not care about the latent variables explicitly.

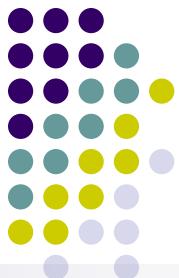


- **Do we still need EM to learn the parameters?**

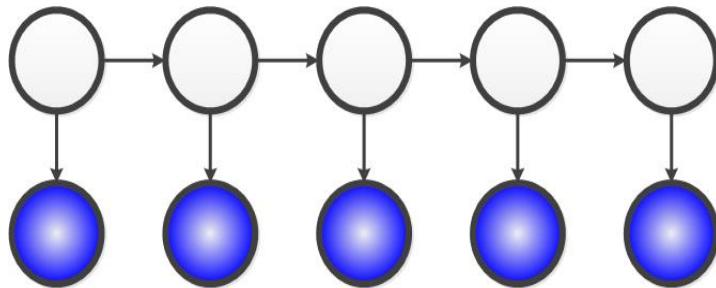
But if we don't care about the latent variables....

- Why don't we just integrate them out?
- Because integrating them out results in a clique ☹





Marginal Does Not Factorize

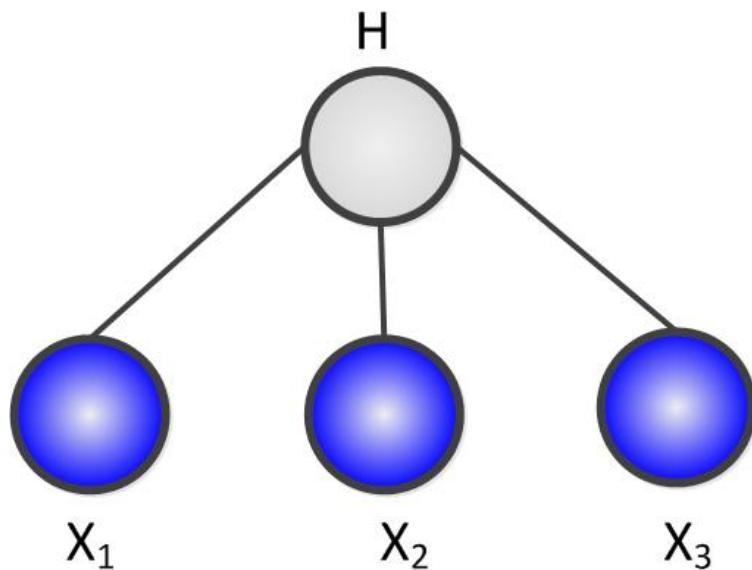


$$\mathbb{P}[X_1, X_2, X_3, X_4, X_5] = \sum_{H_1, \dots, H_5} \mathbb{P}[H_1] \mathbb{P}[H_1] \prod_{i=2}^5 \mathbb{P}[H_i | H_{i-1}] \prod_{i=1}^5 \mathbb{P}[X_i | H_i]$$

Does not factorize due to the outer sum (Can somewhat distribute the sum, but doesn't solve problem)

But isn't an HMM different from a clique?

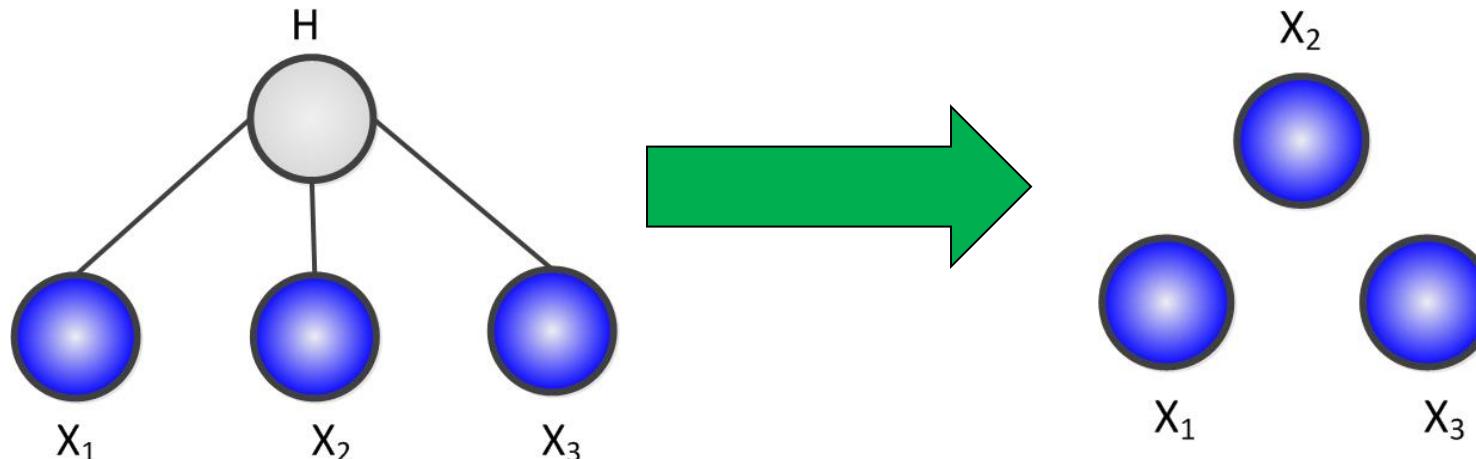
- It depends on the number of latent states.
- Consider the following model.





If H has only one state.....

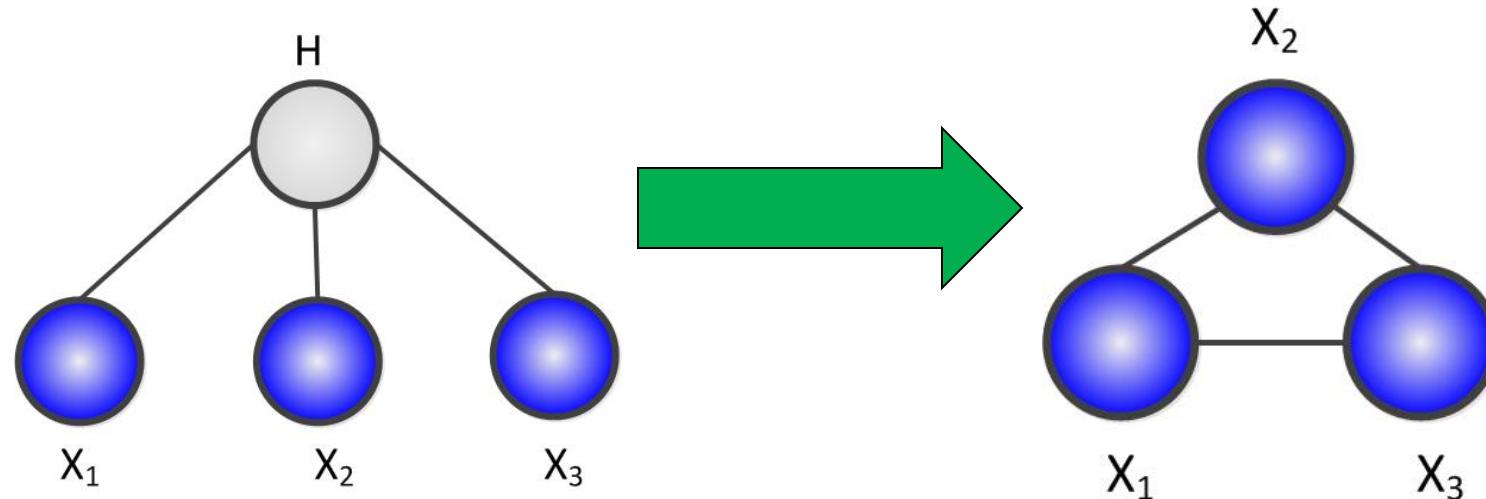
- Then the observed variables are independent!



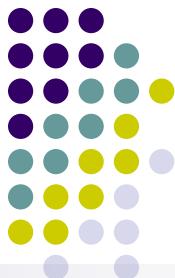


What if H has many states?

- Let us say the observed variables each have m states.
- Then if H has m^3 states then the latent model can be exactly equivalent to a clique (depending on how parameters are set).

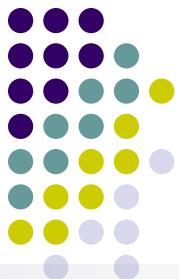


- But what about all the other cases?



The Question

- Under existing methods, latent models all require EM to learn regardless of the number of hidden states.
- However, is there a formulation of latent variable models where the difficulty of learning is a function of the number of latent states?
- This is the question that the *spectral view* will answer.



Tutorial Outline

- The Spectral View of Graphical Models

Sum Rule (Matrix Form)

- Sum Rule

$$\mathbb{P}[X] = \sum_Y \mathbb{P}[X|Y]\mathbb{P}[Y]$$

- Equivalent view using Matrix Algebra

$$\mathcal{P}[X] = \mathcal{P}[X|Y] \times \mathcal{P}[Y]$$

$$\begin{pmatrix} \mathbb{P}[X = 0] \\ \mathbb{P}[X = 1] \end{pmatrix} = \begin{pmatrix} \mathbb{P}[X = 0|Y = 0] & \mathbb{P}[X = 0|Y = 1] \\ \mathbb{P}[X = 1|Y = 0] & \mathbb{P}[X = 1|Y = 1] \end{pmatrix} \times \begin{pmatrix} \mathbb{P}[Y = 0] \\ \mathbb{P}[Y = 1] \end{pmatrix}$$

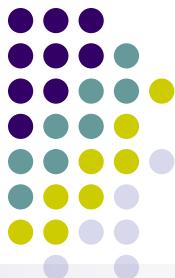
Important Notation

- Calligraphic P to denotes that the probability is being treated as a matrix/vector/tensor
- Probabilities

$$\mathbb{P}[X, Y] = \mathbb{P}[X|Y]\mathbb{P}[Y]$$

- Probability Vectors/Matrices/Tensors

$$\mathcal{P}[X] = \mathcal{P}[X|Y]\mathcal{P}[Y]$$



Chain Rule (Matrix Form)

- Chain Rule

$$\mathbb{P}[X, Y] = \mathbb{P}[X|Y]\mathbb{P}[Y] = \mathbb{P}[Y|X]\mathbb{P}[Y]$$

- Equivalent view using Matrix Algebra

Means on diagonal

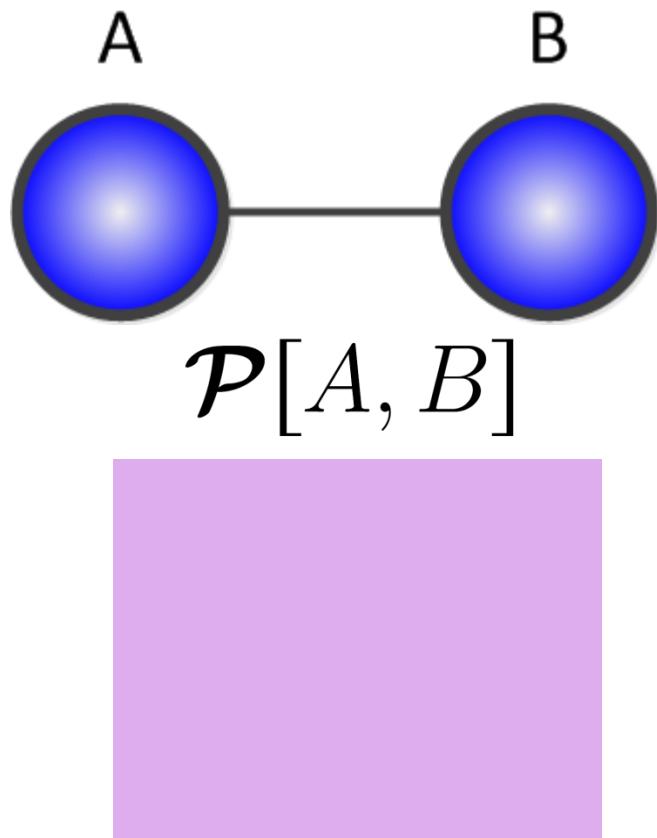
$$\mathcal{P}[X, Y] = \mathcal{P}[X|Y] \times \mathcal{P}[\emptyset Y]$$

$$\begin{pmatrix} \mathbb{P}[X = 0, Y = 0] & \mathbb{P}[X = 0, Y = 1] \\ \mathbb{P}[X = 1, Y = 0] & \mathbb{P}[X = 1, Y = 1] \end{pmatrix} =$$

$$\begin{pmatrix} \mathbb{P}[X = 0|Y = 0] & \mathbb{P}[X = 0|Y = 1] \\ \mathbb{P}[X = 1|Y = 0] & \mathbb{P}[X = 1|Y = 1] \end{pmatrix} \times \begin{pmatrix} \mathbb{P}[Y = 0] & 0 \\ 0 & \mathbb{P}[Y = 1] \end{pmatrix}$$

- Note how diagonal is used to keep Y from being marginalized out.

Graphical Models: The Linear Algebra View

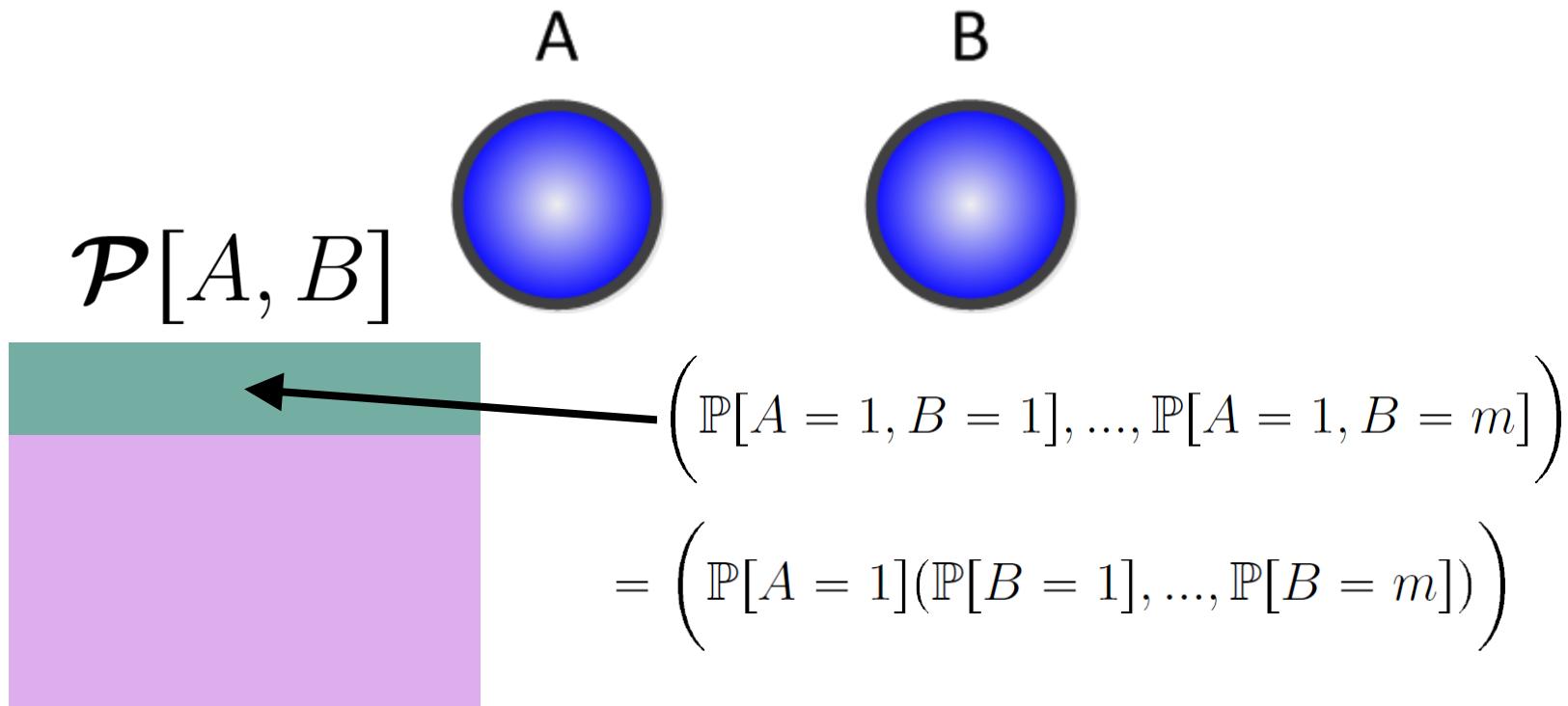


A and B have m states each.

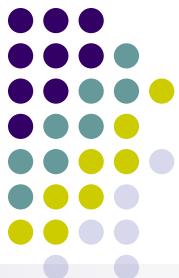
- In general, nothing we can say about the nature of this matrix.

Independence: The Linear Algebra View

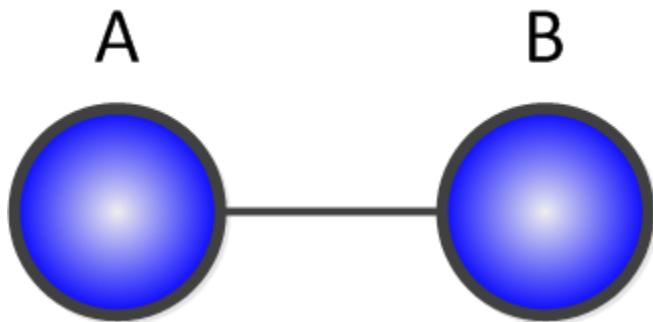
- What if we know A and B are independent?



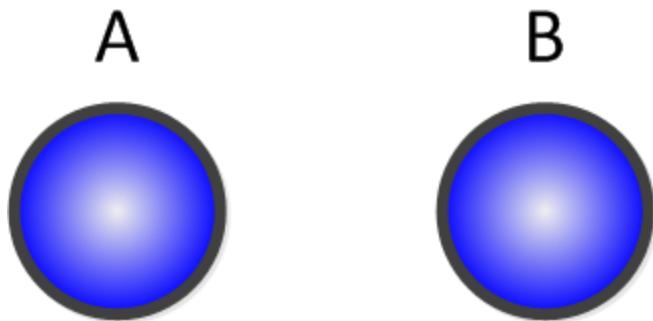
- Joint probability matrix is rank one, since all rows are multiples of one another!!



Independence and Rank

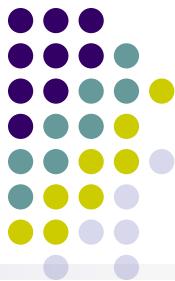


$\mathcal{P}[A, B]$ has rank m (at most)



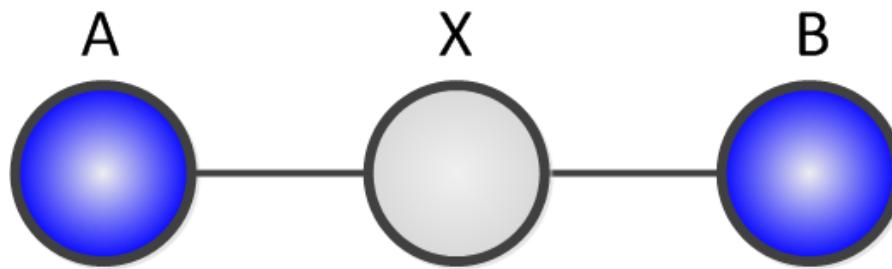
$\mathcal{P}[A, B]$ has rank 1

- What about rank in between 1 and m?

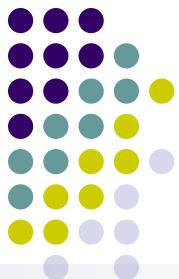


Low Rank Structure

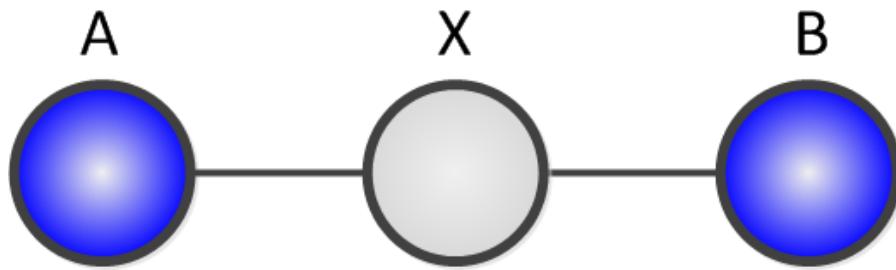
- \mathbf{A} and \mathbf{B} are not marginally independent (They are only conditionally independent given \mathbf{X}).



- Assume \mathbf{X} has k states (while \mathbf{A} and \mathbf{B} have m states).
- Then, $\text{rank}(\mathcal{P}[A, B]) \leq k$
- Why?



Low Rank Structure



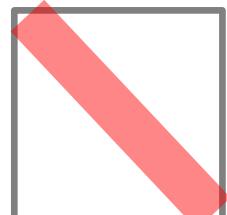
$$\mathcal{P}[A, B]$$

rank $\leq k$

$$\mathcal{P}[A|X]$$

rank $\leq k$

$$\mathcal{P}(\emptyset|X)$$



rank $\leq k$

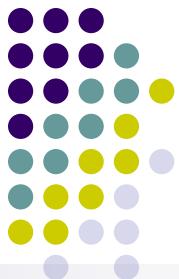
$$\mathcal{P}[B|X]^\top$$

rank $\leq k$



The Spectral View

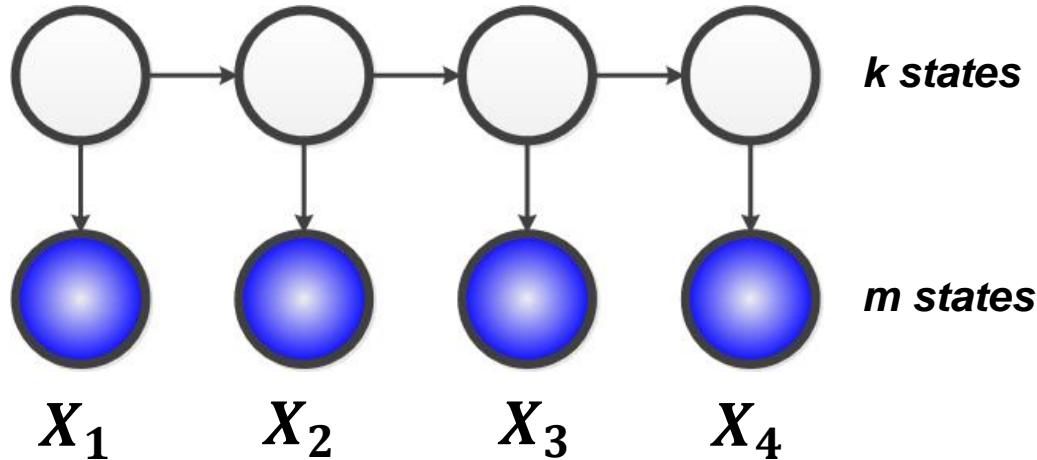
- Latent variable models encode **low rank dependencies** among variables (*both marginal and conditional*)
- Use tools from linear algebra to exploit this structure.
 - Rank
 - Eigenvalues
 - SVD
 - Tensors



Tutorial Outline

- The Spectral View of Graphical Models
- Small (HMM-like) example

A More Interesting Example



$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}]$$

$$\{X_1, X_2\}$$

$$\{X_3, X_4\}$$

has rank k

Low Rank Matrices “Factorize”

$$M = RL \quad \text{If } M \text{ has rank } k$$

m by n m by k k by n

We already know one factorization!!!

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \mathcal{P}[X_{\{1,2\}} | H_2] \mathcal{P}[\emptyset | H_2] \mathcal{P}[X_{\{3,4\}} | H_2]^\top$$

Factor of 4 variables Factor of 3 variables Factor of 3 variables

Factor of 1 variable



Alternate Factorizations

- The key insight is that this factorization is not unique.
- Consider Matrix Factorization. Can add any invertible transformation:

$$M = RL$$

$$M = RSS^{-1}L$$

- **The magic of spectral learning is that there exists an alternative factorization that only depends on observed variables!**



An Alternate Factorization

- Let us say we only want to factorize this matrix of 4 variables

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}]$$

such that it is product of matrices that contain at most three ***observed*** variables e.g.

$$\mathcal{P}[X_{\{1,2\}}, X_3]$$

$$\mathcal{P}[X_2, X_{\{3,4\}}]$$

An Alternate Factorization

- Note that

$$\mathcal{P}[X_{\{1,2\}}, X_3] = \underline{\mathcal{P}[X_{\{1,2\}}|H_2]} \underline{\mathcal{P}[\emptyset|H_2]} \underline{\mathcal{P}[X_3|H_2]}^\top$$

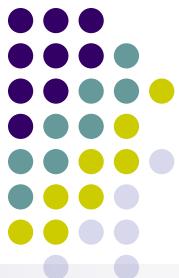
$$\mathcal{P}[X_2, X_{\{3,4\}}] = \underline{\mathcal{P}[X_2|H_2]} \underline{\mathcal{P}[\emptyset|H_2]} \underline{\mathcal{P}[X_{\{3,4\}}|H_2]}^\top$$

- Product of green terms (in some order) is

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}]$$

- Product of red terms (in some order) is

$$\mathcal{P}[X_2, X_3]$$



An Alternate Factorization

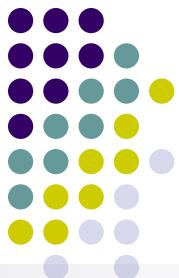
$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \mathcal{P}[X_{\{1,2\}}, X_3] \mathcal{P}[X_2, X_3]^{-1} \mathcal{P}[X_2, X_{\{3,4\}}]$$

factor of 4 variables factor of 3 variables factor of 3 variables

Advantage: Factors are only functions of observed variables! Can be directly computed from data without EM!!!!

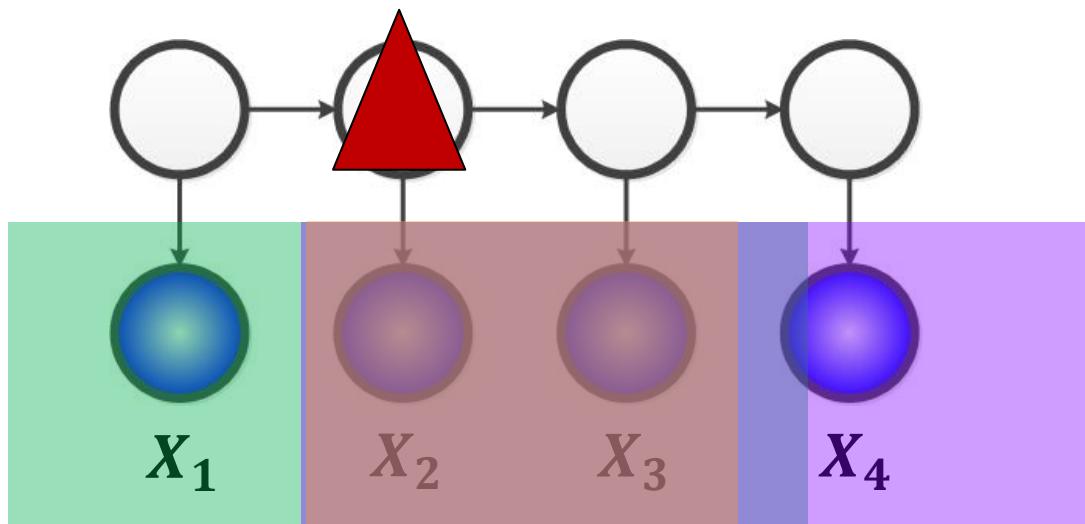
Caveat: Factors are no longer probability tables (do not have to be non-negative)

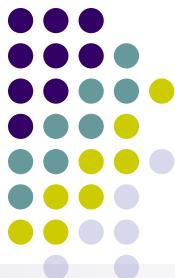
We will call this factorization the **observable factorization**.



Graphical Relationship

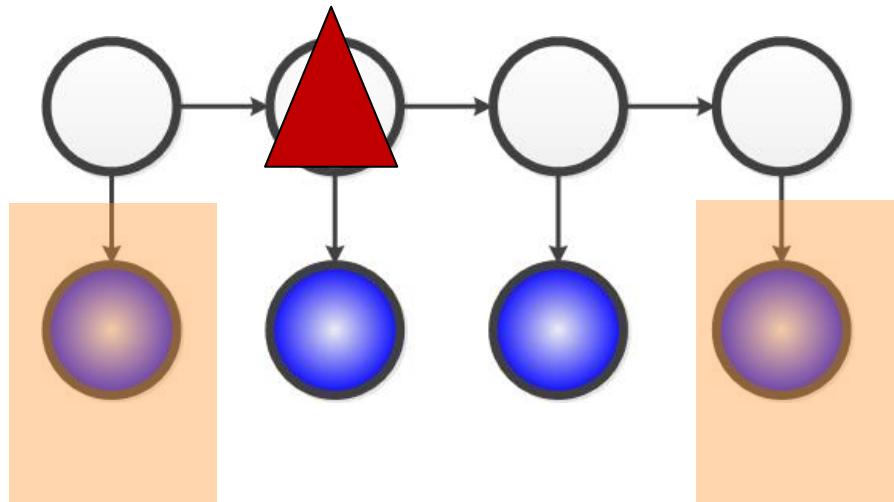
$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \underline{\mathcal{P}[X_{\{1,2\}}, X_3]} \underline{\mathcal{P}[X_2, X_3]^{-1}} \underline{\mathcal{P}[X_2, X_{\{3,4\}}]}$$





Another Factorization

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \mathcal{P}[X_{\{1,2\}}, X_4] \mathcal{P}[X_1, X_4]^{-1} \mathcal{P}[X_1, X_{\{3,4\}}]$$



- Seems we would do better empirically if you could “combine” both factorizations. Will come back to this later.

Relationship to Original Factorization

- What is the relationship between the original factorization and the new factorization?

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \underline{\mathcal{P}[X_{\{1,2\}} | H_2]} \underline{\mathcal{P}[\emptyset | H_2]} \underline{\mathcal{P}[X_{\{3,4\}} | H_2]^\top}$$

$$M$$

$$R$$

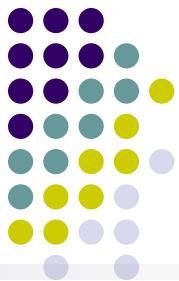
$$L$$

$$M = RL$$

$$M = RSS^{-1}L$$

Can I choose S to get the observable factorization?

Relationship to Original Factorization



- Let

$$S := \mathcal{P}[X_3 | H_2]$$

$$\begin{aligned}\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] &= \underline{\mathcal{P}[X_{\{1,2\}}, X_3]} \underline{\mathcal{P}[X_2, X_3]^{-1}} \mathcal{P}[X_2, X_{\{3,4\}}] \\ &= LS \quad = S^{-1}R\end{aligned}$$



Our Alternate Factorization

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \mathcal{P}[X_{\{1,2\}}, X_3] \mathcal{P}[X_2, X_3]^{-1} \mathcal{P}[X_2, X_{\{3,4\}}]$$

factor of 4 variables

factor of 3 variables

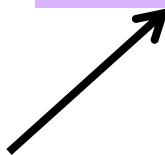
factor of 3 variables

- It may not seem very amazing at the moment (we have only reduced the size of the factor by 1)
- What is cool is that every latent tree of V variables has such a factorization where:
 - All factors are of size 3
 - All factors are only functions of observed variables

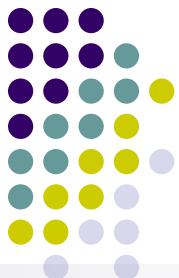
Where's the Catch?

- Before we said that if the number of latent states was very large then the model was equivalent to a clique.
- Where does that scenario enter in our factorization?

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \mathcal{P}[X_{\{1,2\}}, X_3] \mathcal{P}[X_2, X_3]^{-1} \mathcal{P}[X_2, X_{\{3,4\}}]$$



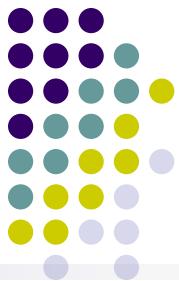
When does this inverse exist?



When Does the Inverse Exist

$$\mathcal{P}[X_2, X_3] = \mathcal{P}[X_2 | H_2] \mathcal{P}[\emptyset | H_2] \mathcal{P}[X_3 | H_2]^\top$$

- All the matrices on the right hand side must have full rank. (This is in general a requirement of spectral learning, although it can be somewhat relaxed)



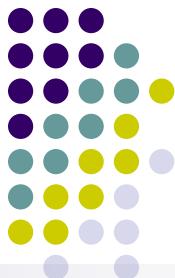
When $m > k$

- The inverse cannot exist, but this situation is easily fixable (project onto lower dimensional space)

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] =$$

$$\mathcal{P}[X_{\{1,2\}}, X_3] \mathbf{V} (\mathbf{U}^\top \mathcal{P}[X_2, X_3] \mathbf{V})^{-1} \mathbf{U}^\top \mathcal{P}[X_2, X_{\{3,4\}}]$$

- Where \mathbf{U} , \mathbf{V} are the top left/right k singular vectors of $\mathcal{P}[X_2, X_3]$



When $k > m$

- The inverse does exist. But it no longer satisfies the following property, which we used to derive the factorization

$$\mathcal{P}[X_2, X_3]^{-1} = (\mathcal{P}[X_3|H_2]^\top)^{-1} \mathcal{P}[\emptyset|H_2]^{-1} \mathcal{P}[X_2|H_2]^{-1}$$

- This is much more difficult to fix, and intuitively corresponds to how the problem becomes intractable if $k \gg m$.

What does $k>m$ mean?

- Intuitively, large k , small m means long range dependencies
- Consider following generative process:
 - (1) With probability 0.5, let $S=X$, and with probability 0.5 let $S=Y$.
 - (2) Print A n times.
 - (3) Print S
 - (4) Go back to step (2)

With $n=1$ we either generate:

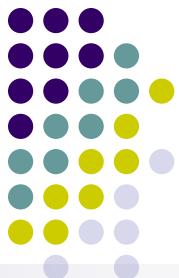
AXAXAXA..... or AYAYAYA.....

With $n=2$ we either generate:

AAXAAXAA..... or AAYAAAYAA.....

How many hidden states does HMM need?

- HMM needs **2n** states.
- Needs to remember count as well as whether we picked **S=X** or **S=Y**
- However, number of observed states **m** does not change, so our previous spectral algorithm will break for **n > 2**.
- How to deal with this in spectral framework?

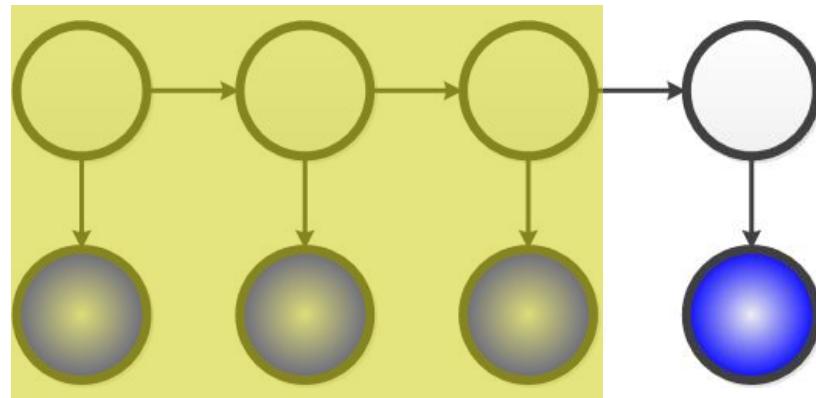


Tutorial Outline

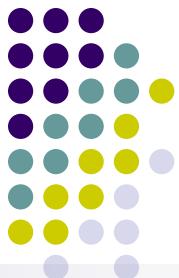
- The Spectral View of Graphical Models
- Small (HMM-like) example
- How to make Spectral Learning Work in Practice

Making Spectral Learning Work In Practice

- We are only using marginals of pairs/triples of variables to construct the full marginal among the observed variables.
- Only works when $k < m$.

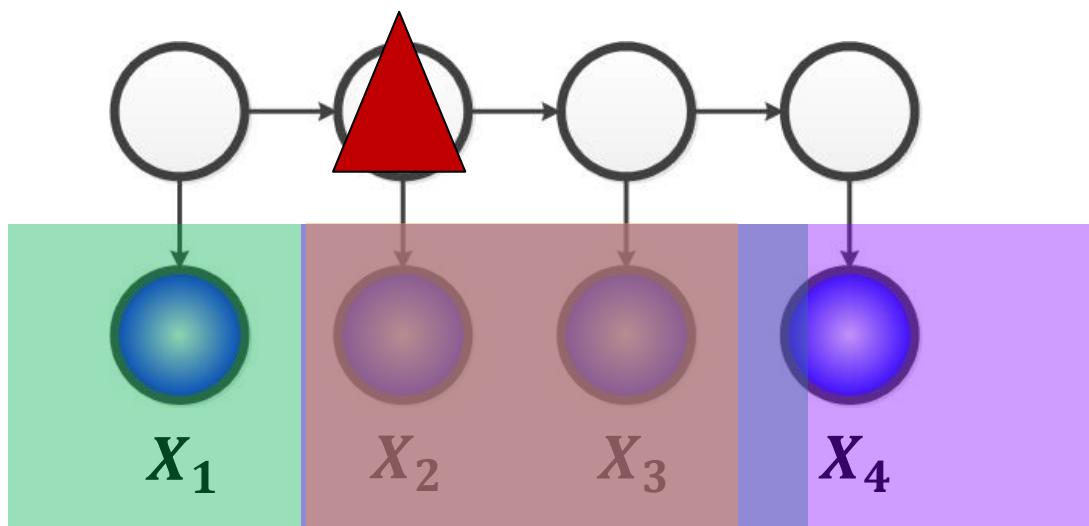


- However, in real problems we need to capture longer range dependencies.

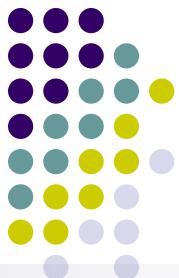
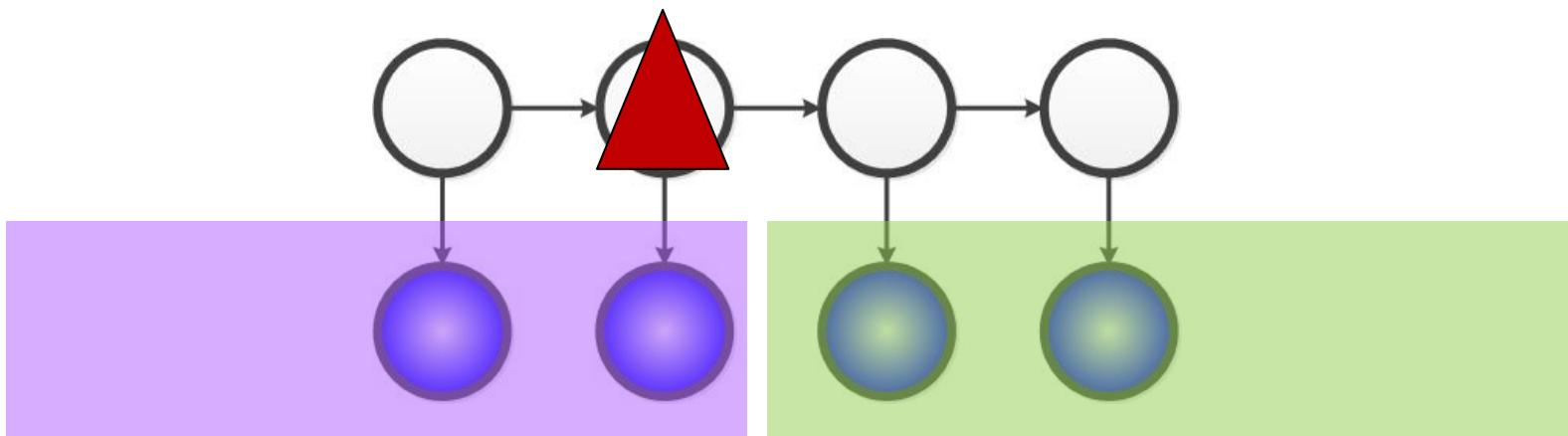


Recall our factorization

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] = \underline{\mathcal{P}[X_{\{1,2\}}, X_3]} \underline{\mathcal{P}[X_2, X_3]^{-1}} \underline{\mathcal{P}[X_2, X_{\{3,4\}}]}$$



Key Idea: Use Long-Range Features



**Construct feature
vector of left side**

$$\phi_L$$

**Construct feature
vector of right side**

$$\phi_R$$

Observable Factorization Works With Features Too

$$\mathcal{P}[X_2, X_3] = \mathbb{E}[\delta_2 \otimes \delta_3] := \mathbb{E}[\delta_2 \delta_3^\top]$$

Use more complex feature instead:

$$\mathbb{E}[\phi_L \otimes \phi_R]$$

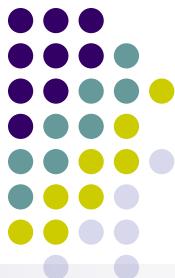
$$\begin{aligned}\mathcal{P}[X_{\{1,2\}}, X_{\{3,4\}}] &= \mathbb{E}[\delta_{1\otimes 2}, \delta_{3\otimes 4}] \\ &= \mathbb{E}[\delta_{1\otimes 2}, \phi_R] V (U^\top \mathbb{E}[\phi_L \otimes \phi_R] V)^{-1} U^\top \mathcal{P}[\phi_L, X_{\{3,4\}}]\end{aligned}$$

Interesting Engineering Trick

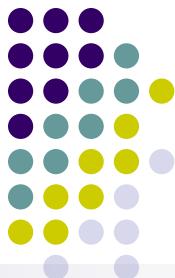
- SVD may be very sensitive to very common features.
- Normalize features based on how many times they appear in the dataset.

$$\tilde{\phi}_L^{(i)} = \phi_L^{(i)} \times \sqrt{\frac{1}{\text{count}(i) + \kappa}}$$

Other (Simple) Engineering Tricks



- Sometimes, spectral learning will produce negative probabilities. There are two options to deal with this.
 - Set to zero (or very small probability)
 - Flip the sign (i.e. take absolute value)
- Flipping the sign works much, much better!
- Sometimes the matrices/cubes are sparse. Can interpolate with lower order models to make them more dense.

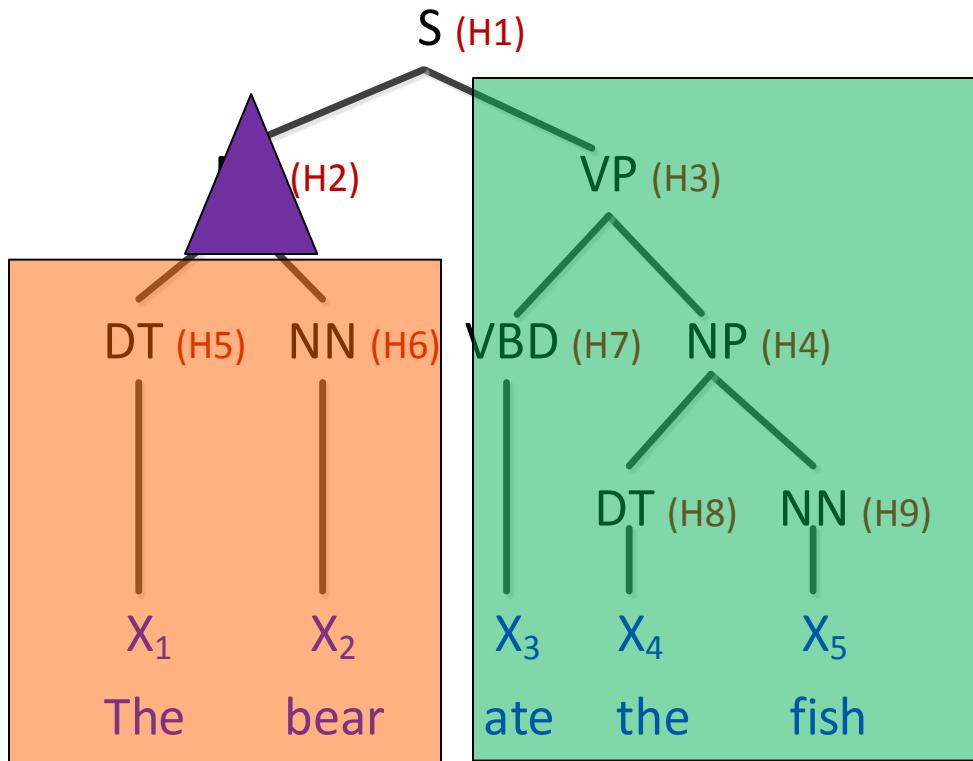


Tutorial Outline

- The Spectral View of Graphical Models
- Small (HMM-like) example
- How to make Spectral Learning Work in Practice
- Intuition to why this works for trees / latent PCFGs
- Discussion of Empirical Aspects

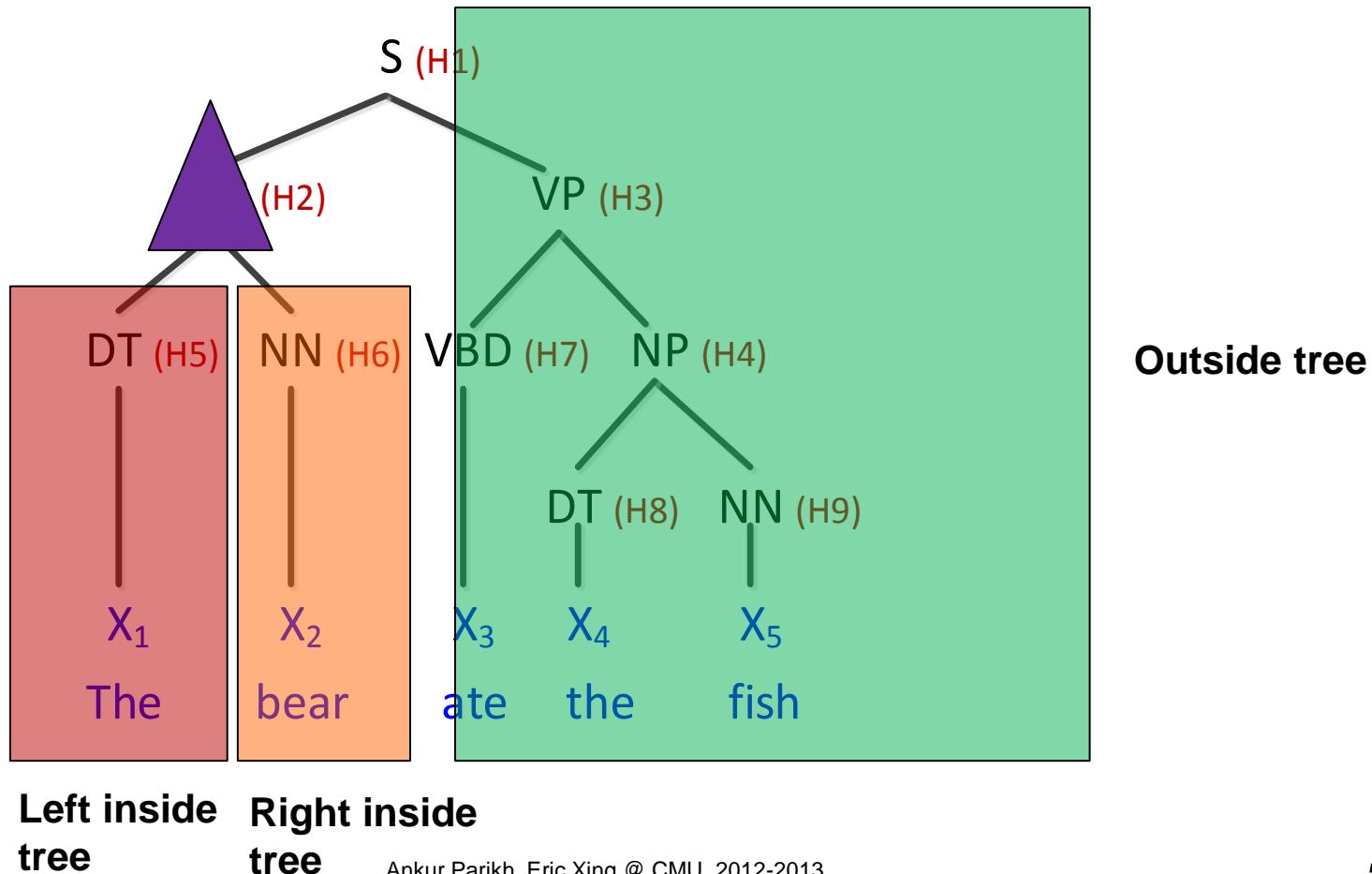
Same General Ideas work with Latent Variable PCFGs

- General Idea is to use same strategy as before partitioning inside/outside trees.



Features

- Use Features of Inside/Outside Trees Instead



Empirical Results for Latent PCFGs

	section 22		section 23	
	EM	spectral	EM	spectral
$m = 8$	86.87	85.60	—	—
$m = 16$	88.32	87.77	—	—
$m = 24$	88.35	88.53	—	—
$m = 32$	88.56	88.82	87.76	88.05

Results from Cohen et al. 2013

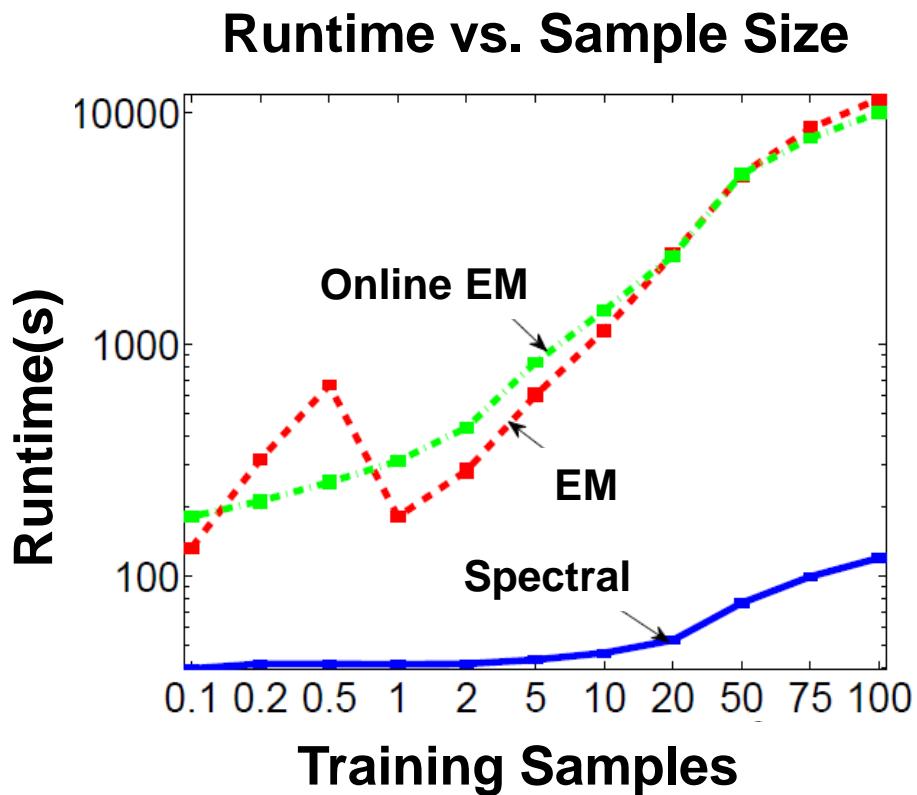
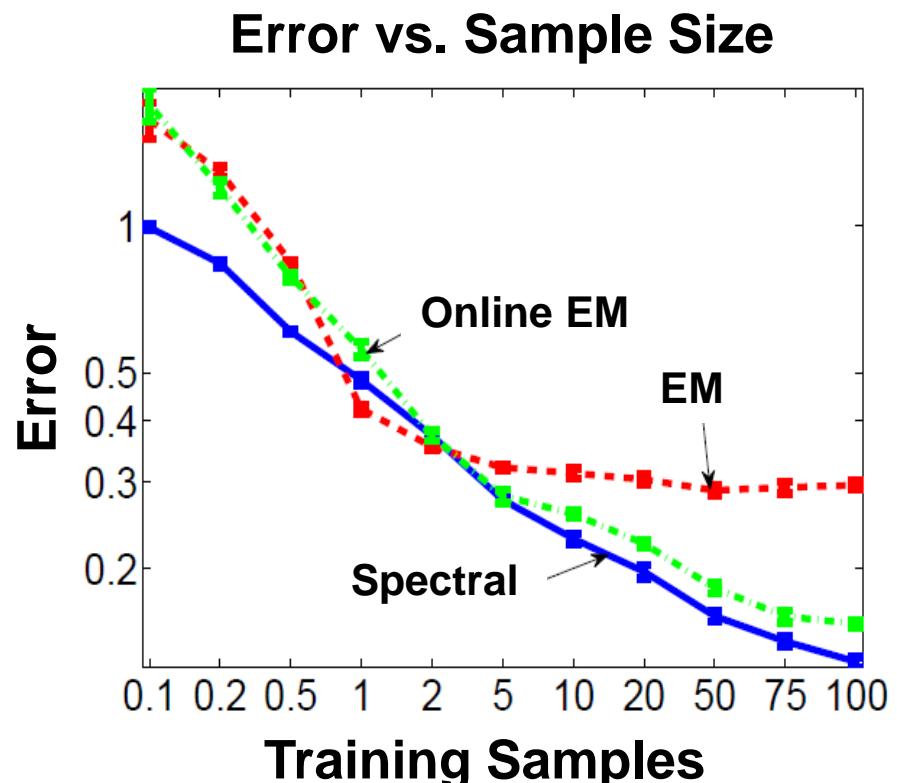
Spectral Learning is Much Faster

	single EM iter.	EM best model	total	feature	spectral algorithm transfer + scaling	SVD	$a \rightarrow b$	c	$a \rightarrow x$
$m = 8$	6m	3h	3h32m			36m	1h34m		10m
$m = 16$	52m	26h6m	5h19m			34m	3h13m		19m
$m = 24$	3h7m	93h36m	7h15m	22m		36m	4h54m		28m
$m = 32$	9h21m	187h12m	9h52m		49m	35m	7h16m		41m

Results from Cohen et al. 2013

Spectral Learning Scales Better with Training Sample Size

- Synthetic 3rd order HMM Example (Spectral/EM/Online EM):



Results from Parikh et al. 2012



EM vs Spectral (Part I)

EM

- Aims to Find MLE so more “statistically” efficient
- Can get stuck in local-optima
- Lack of theoretical guarantees
- Slow
- Easy to derive for new models

Spectral

- Does not aim to find MLE so less statistically efficient.
- Local-optima-free
- Provably consistent
- Very fast
- Challenging to derive for new models (Unknown whether it can generalize to arbitrary loopy models)



EM vs Spectral (Part II)

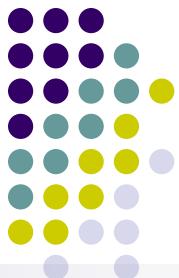
EM

- No issues with negative numbers
- Allows for easy modelling with conditional distributions
- Difficult to incorporate long-range features (since it increases treewidth).
- Generalizes poorly to non-Gaussian continuous variables.

Spectral

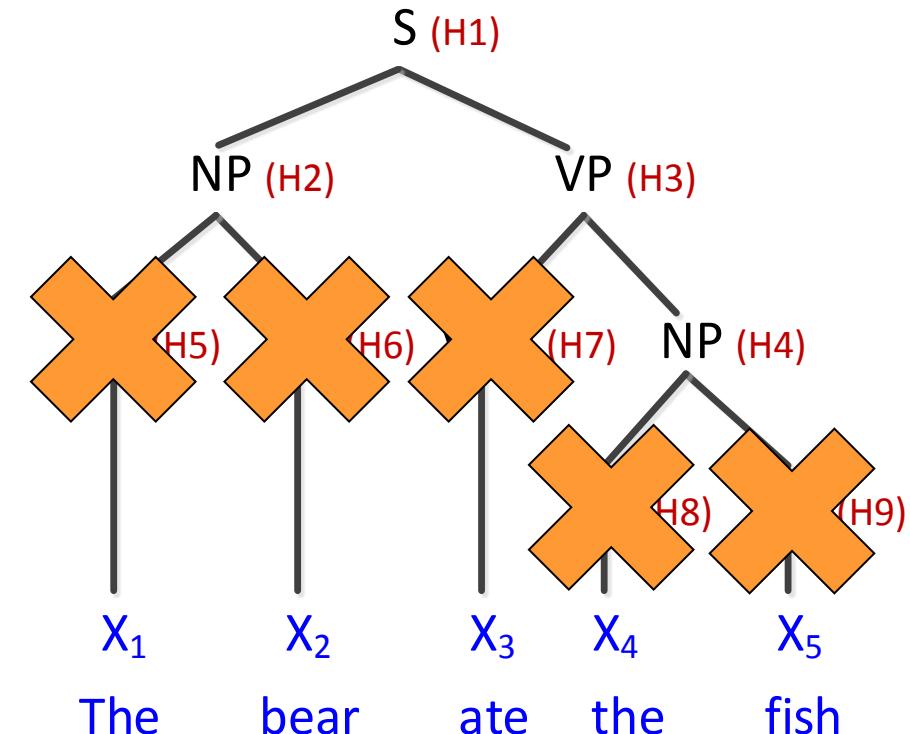
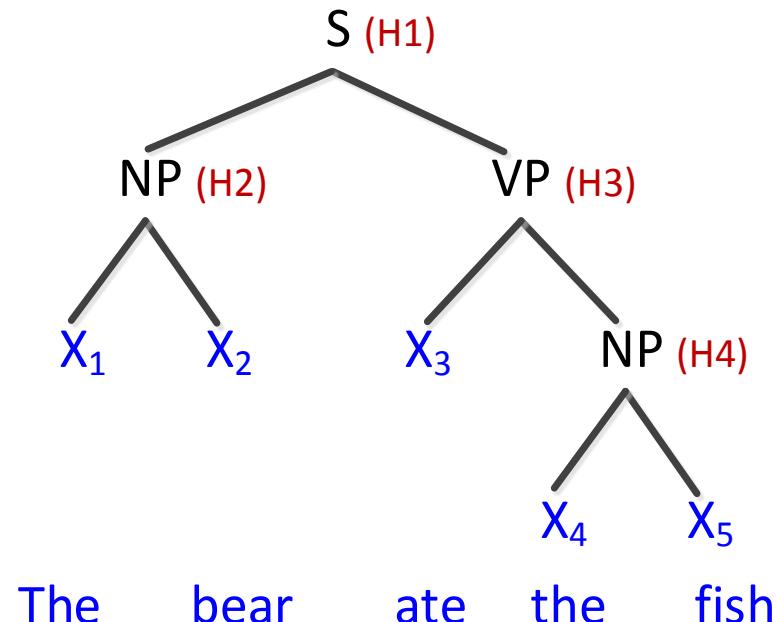
- Problems with negative numbers. Requires explicit normalization to compute likelihood.
- Allows for easy modelling with marginal distributions
- Easy to incorporate long-range features.
- Easy to generalize to non-Gaussian continuous variables via Hilbert Space Embeddings

Other “Spectral” Directions in NLP



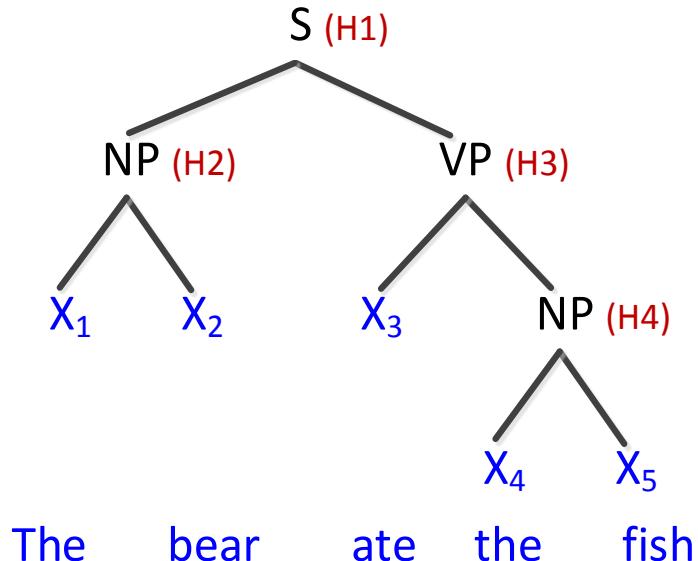
- Recovering the original parameters using tensor decomposition.
 - **Anandkumar et al. 2012** (HMMs, Mixture of Gaussians)
 - **Anandkumar et al. 2012** (Latent Dirichlet Allocation)
- “Spectral Inspired” Methods
 - **Dhillon et al. 2011/2012** – Word Embeddings using CCA
 - **Parikh et al. 2013 (Hopefully)** – Local-Optima-Free Unsupervised Parsing

Latent PCFGs (Simplification)





Latent PCFGs (Simplification)



Rules

$$S \rightarrow NP, VP$$

$$NP \rightarrow X_1, X_2$$

$$VP \rightarrow X_3, NP$$

$$NP \rightarrow X_4, X_5$$

$$\mathbb{P}[X_1, \dots, X_5, S_1, NP_2, VP_3, NP_4, H_1, \dots, H_5] =$$

$$\mathbb{P}[X_1, X_2 | NP_2, H_2] \times \mathbb{P}[X_4, X_5 | NP_4, H_4] \times \mathbb{P}[X_3, NP_4, H_4 | VP_3, H_3]$$

$$\times \mathbb{P}[NP_2, H_2, VP_3, H_3 | S_1, H_1] \times \mathbb{P}[S_1, H_1]$$



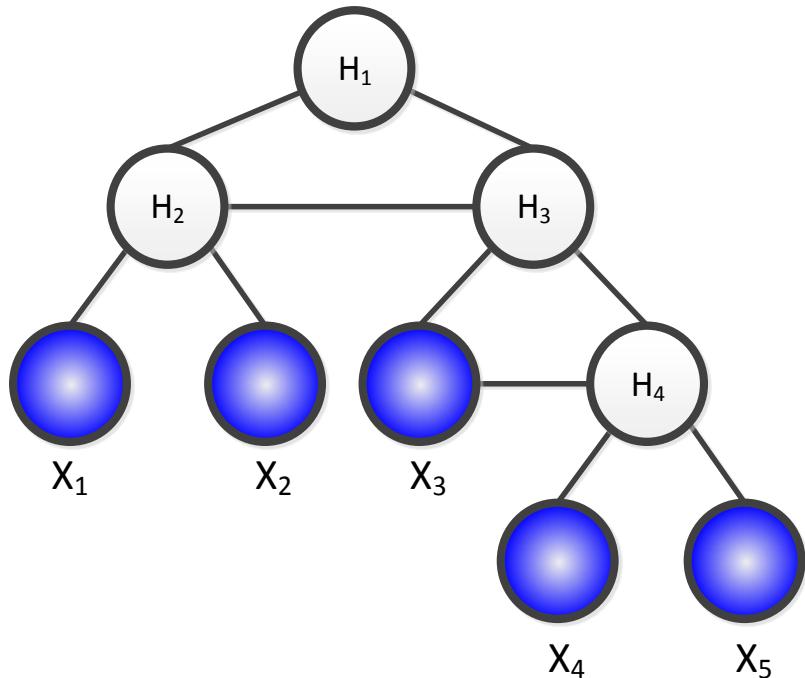
Latent PCFGs (Simplification)

- For now ignore the observed, non-leaf variables (i.e. the rules). They can easily be added later.

$$\begin{aligned}\mathbb{P}[X_1, \dots, X_5, H_1, \dots, H_5] &= \\ \mathbb{P}[X_1, X_2] &\times \mathbb{P}[X_2, H_2] \times \mathbb{P}[X_4, X_5] \times \mathbb{P}[X_4, H_4] \times \mathbb{P}[X_3, H_4] \\ &\times \mathbb{P}[X_3, H_4] \times \mathbb{P}[H_3, H_3] \times \mathbb{P}[H_1, H_1]\end{aligned}$$

$$\begin{aligned}\mathbb{P}[X_1, \dots, X_5, H_1, \dots, H_5] &= \\ \mathbb{P}[X_1, X_2 | H_2] &\times \mathbb{P}[X_4, X_5 | H_4] \times \mathbb{P}[X_3, H_4 | H_3] \\ &\times \mathbb{P}[H_2, H_3 | H_1] \times \mathbb{P}[H_1]\end{aligned}$$

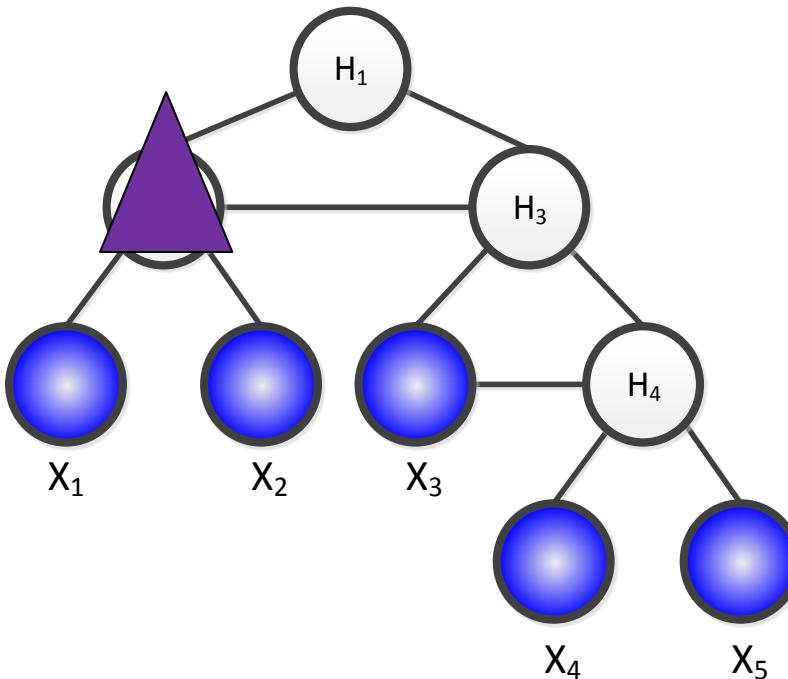
Now Our Graphical Model Looks Like This



$$\mathbb{P}[X_1, \dots, X_5, H_1, \dots, H_5] =$$

$$\begin{aligned} & \mathbb{P}[X_1, X_2 | H_2] \times \mathbb{P}[X_4, X_5 | H_4] \times \mathbb{P}[X_3, H_4 | H_3] \\ & \times \mathbb{P}[H_2, H_3 | H_1] \times \mathbb{P}[H_1] \end{aligned}$$

Constructing The Observable Factorization



Like we did before

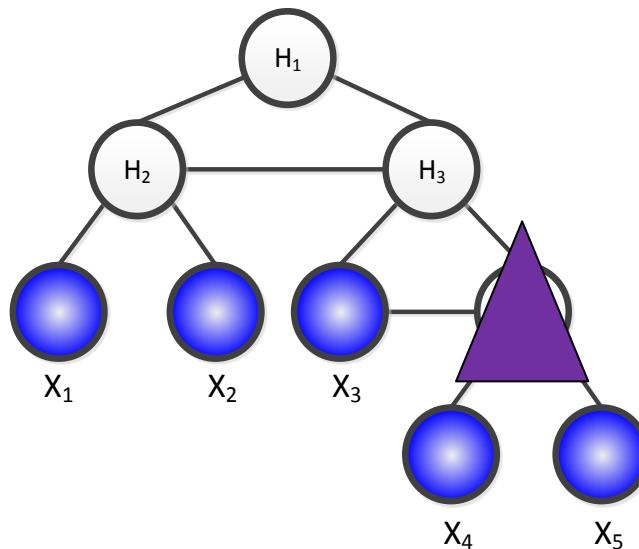
$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4,5\}}] = \mathcal{P}[X_{\{1,2\}}, X_3] \mathcal{P}[X_2, X_3]^{-1} \mathcal{P}[X_2, X_{\{3,4,5\}}]$$

Decompose this recursively

Constructing The Observable Factorization

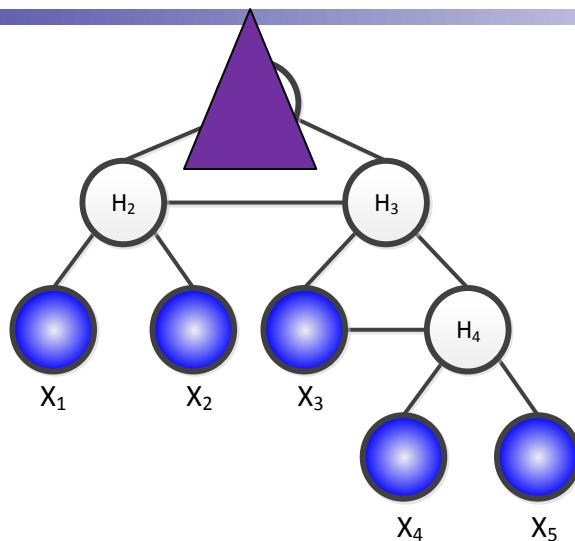
But first reshape:

$$\mathcal{P}[X_2, X_{\{3,4,5\}}] \rightarrow \mathcal{P}[X_{\{2,3\}}, X_{\{4,5\}}]$$



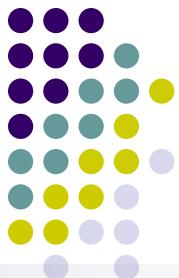
$$\mathcal{P}[X_{\{2,3\}}, X_{\{4,5\}}] = \mathcal{P}[X_{\{2,3\}}, X_4] \mathcal{P}[X_3, X_4]^{-1} \mathcal{P}[X_3, X_{\{4,5\}}]$$

This is Redundant But....



$$\mathcal{P}[X_2, X_{\{3,4\}}] = \mathcal{P}[X_2, X_3]\mathcal{P}[X_2, X_3]^{-1}\mathcal{P}[X_2, X_{\{3,4\}}]$$

- Having the additional factor makes some other comparisons easier



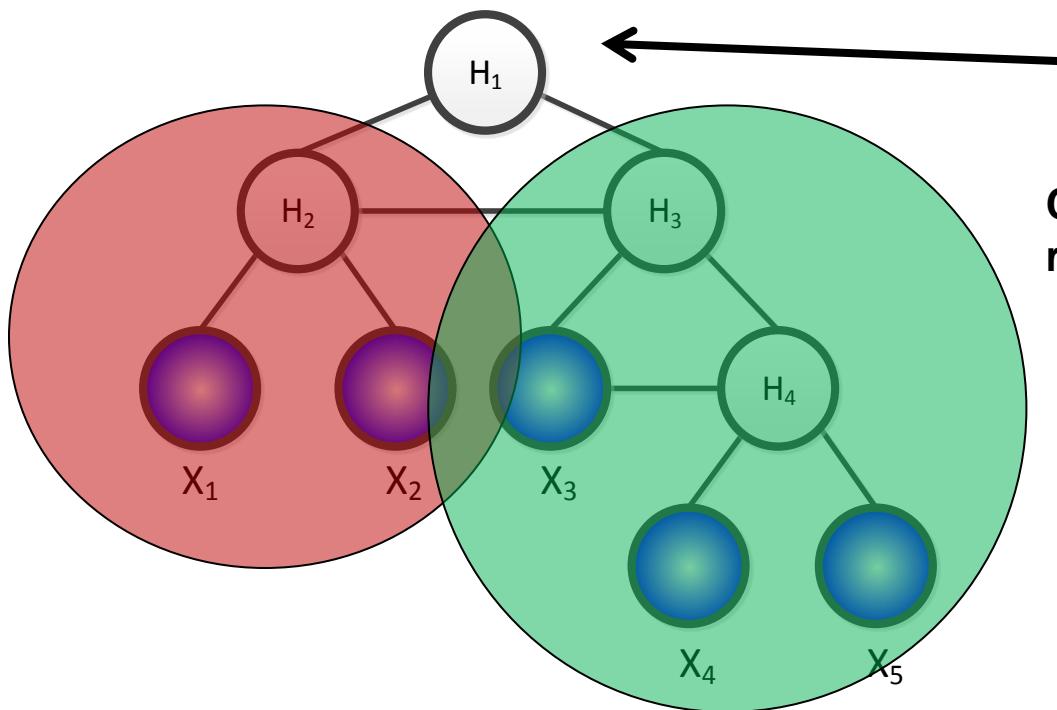
Our Observable Factorization

$$\mathcal{P}[X_{\{1,2\}}, X_{\{3,4,5\}}] = \mathcal{P}[X_{\{1,2\}}, X_3] \mathcal{P}[X_2, X_3]^{-1} \mathcal{P}[X_2, X_{\{3,4,5\}}]$$

$$\mathcal{P}[X_{\{2,3\}}, X_{\{4,5\}}] = \mathcal{P}[X_{\{2,3\}}, X_4] \mathcal{P}[X_3, X_4]^{-1} \mathcal{P}[X_3, X_{\{4,5\}}]$$

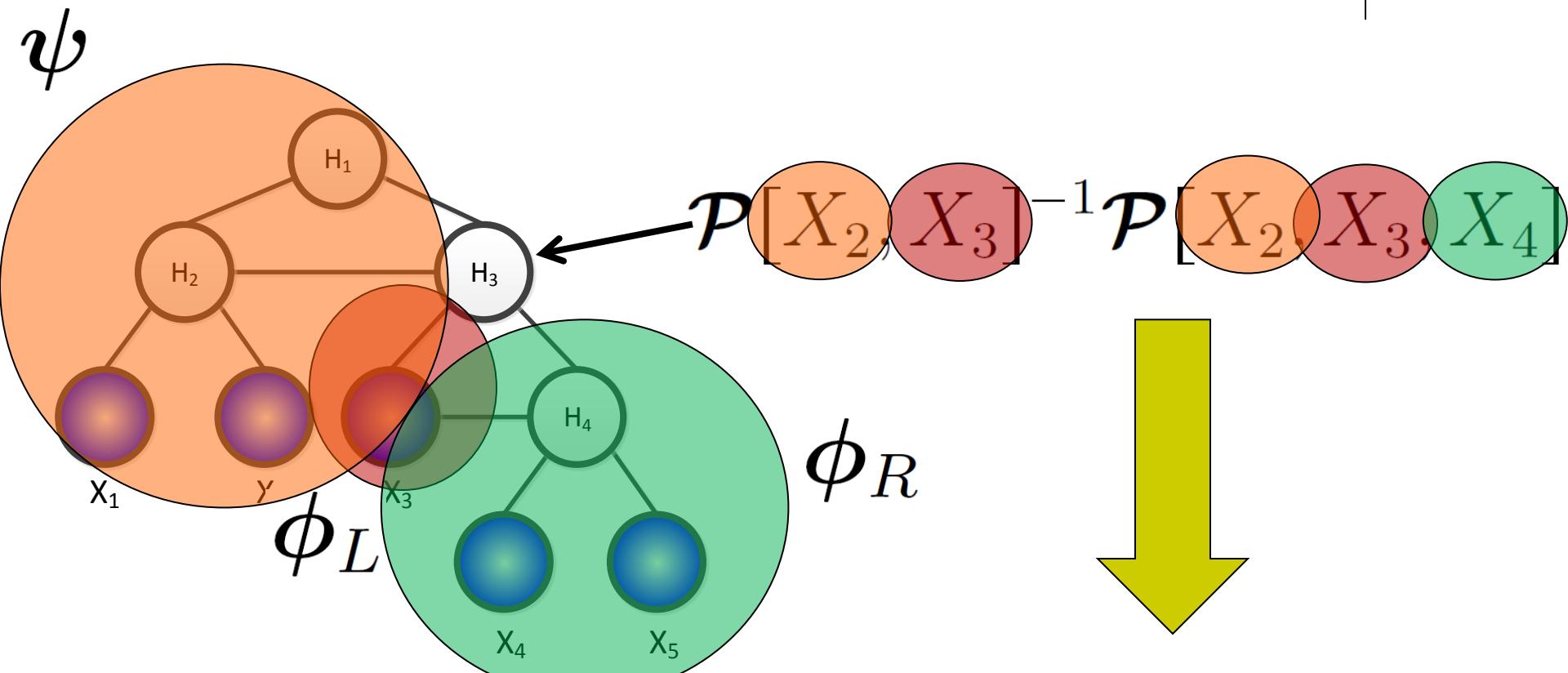
$$\mathcal{P}[X_2, X_{\{3,4\}}] = \mathcal{P}[X_2, X_3] \mathcal{P}[X_2, X_3]^{-1} \mathcal{P}[X_2, X_{\{3,4\}}]$$

Intuitively,



Corresponds to parameter for root

Intuitively,





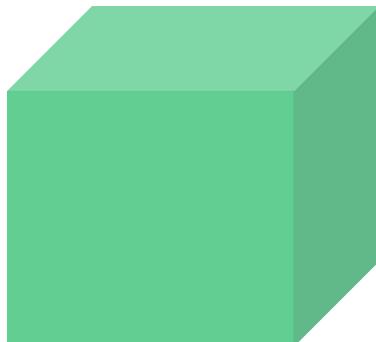
How To Add Back In The Rules

$$a \rightarrow b, c$$

$$\mathbb{P}[X_3, b = \text{NP}, H_4 | a = \text{VP}, H_3]$$

Instead of thinking of this as a factor of 5 variables, think of it as several factors of 3 variables, one for each combination of a,b

$$\mathcal{P}[X_3, b = \text{NP}, H_4 | a = \text{VP}, H_3]$$



$$\mathcal{P}[X_3, b = \text{NP}, H_4 | a = \text{NP}, H_3]$$



How To Add Back In The Rules

- As a result instead of just one

$$C = \mathbb{E}[\psi \otimes \phi_L]^{-1} \mathbb{E}[\psi \otimes \phi_L \otimes \phi_R]$$

- We will have one for every choice of **a,b** i.e.

$$C^{a,b} = \mathbb{E}[\psi^{a,b} \otimes \phi_L^{a,b}]^{-1} \mathbb{E}[\psi^{a,b} \otimes \phi_L^{a,b} \otimes \phi_R^{a,b}]$$