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training data)
'\ Observed variable
P[X1. ... X5 Hi. ... Hs] = P{H ]| | P[Hi|Hio] | | PLXG|H]

Since latent variables are not observed in the data, we have to
use Expectation Maximization (EM) to learn parameters
 Slow
* Local Minima
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Spectral Learning

e Different paradigm of learning in latent variable models based on

linear algebra

e Theoretically,

Provably consistent
Can offer deeper insight into the identifiability

e Practically,

Local minima free
As if now, performs comparably to EM with 10-100x speed-up

Can also model non-Gaussian continuous data using kernels (usually
performs much better than EM in this case)
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Tutorial Outline

e The Spectral View of Graphical Models

e Small (HMM-like) example

e How to make Spectral Learning Work in Practice

e Intuition to why this works for trees / latent PCFGs

e Discussion of Empirical Aspects

e Detailled derivation for latent PCFG
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Related References °

e Relevant works
e Hsu et al. 2009 — Spectral HMMs (also Bailly 2009)
o Siddiqgi et al. 2009 — Features in Spectral Learning

e Parikh et al. 2011/2012 —Tensors to Generalize to Trees/Low Treewidth
Graphs

e Cohen et al. 2012/ 2013 — Spectral Learning of latent PCFGs

o Will present it from “matrix factorization” view:

e Balle et al. 2012 — Connection between Spectral Learning / Hankel Matrix
Factorization

e Song et al. 2013 — Spectral Learning as Hierarchical Tensor Decomposition
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Focusing on Prediction

e |n many applications that use latent variable models, the end task is
not to recover the latent states, but rather to use the model for
prediction among observed variables.

e Dynamical Systems — Predict future given past

QOO0
- O O 00 O

— future
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La.tent Varlable PCFG [Matsuzaki et al., 2005,

Petrov et al. 2006]
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Focusing on Prediction

e We will only be concerned with quantities related to the observed
variables:

P[Xla X27 X?)a X47 X5]

e We do not care about the latent variables explicitly.

e Do we still need EM to learn the parameters?
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But if we don’t care about the
latent variables....

e Why don’t we just integrate them out?

e Because integrating them out results in a cliqgue ®

Ankur Parikh, Eric Xing @ CMU, 2012-2013 11




Marginal Does Not Factorize 4
5 5
P(X1. X, Xa. Xo. Xs5] = > PIHP[HL] | | P[Hi|Hi] | [ PG| H]
Hy,....Hs 1=2 i=1

Does not factorize due to the outer sum (Can somewhat distribute
the sum, but doesn’t solve problem)
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But isn’t an HMM different from a
clique? .

e It depends on the number of latent states.

e Consider the following model.

H

X1 X2 X3
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If H has only one state.....

e Then the observed variables are independent!

H X2
X1 X5 X3

X1 X3
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What if H has many states?

e Let us say the observed variables each have m states.

e Then if H has m3 states then the latent model can be exactly
equivalent to a clique (depending on how parameters are set).

H X
X1 X, X3 X4 X3

e But what about all the other cases?
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The Question

e Under existing methods, latent models all require EM to learn
regardless of the number of hidden states.

e However, is there a formulation of latent variable models
where the difficulty of learning is a function of the number of
latent states?

e This is the question that the will answer.
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Tutorial Outline

e The Spectral View of Graphical Models
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Sum Rule (Matrix Form) e

e Sum Rule

P[X] = ) P[X|Y]P[Y]
Y
e Equivalent view using Matrix Algebra

PlX] = PlX|Y] x PlY]

.
-l
e
il
=
Ce—

P[X =0]Y =0] P[X =0]Y =1 P[
T (P%leino% P%X:Uf:d) X (]P



Important Notation

e Calligraphic P to denotes that the probabillity is being treated
as a matrix/vector/tensor

e Probabilities
P[X,Y] = P[X|Y]|P[Y]

e Probability Vectors/Matrices/Tensors

PIX|=PIX[Y|P[Y]
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Chain Rule (Matrix Form)

. IP[X ;/] — P[X|V]P[Y] = P[Y|X]|P[V]

Means on diagonal

e Equivalent view using Matrix Algebra \
PIX,Y]= 7PIXIY] x PloY]
P[X =0.Y =0] P[X=0Y =1] _
( PIX =1.Y =0] P[X =1V =1] ) —
P|X =0]Y =0] P[X =0]Y =1] P[Y = 0] 0
(IP[X=1|Y=O] P[leYzl]) ( 0 P[Y_1])

e Note how diagonal is used to keep Y from being marginalized
Oult.
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Graphical Models: The Linear eecs
Algebra View oc

A and B have m
states each.

e In general, nothing we can say about the nature of this matrix.
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Independence: The Linear
Algebra View

e What if we know A and B are independent?

A B

e Joint probability matrix is rank one, since all rows are multiples of
one another!!
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Independence and Rank s:

A B
°_° ’P[A7 B] has rank m (at most)
A B

o o 'P[A, B] has rank 1

e \What about rank in between 1 and m?
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Low Rank Structure

e A and B are not marginally independent (They are only
conditionally independent given X).

A X B

OO0

e Assume X has k states (while A and B have m states).

o Then, Tank(P|A, B]) <k

o Why?
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Low Rank Structure 3T
A X B
P|A, B PlAIX] P(@X) 7?[B|X]T

rank < k rank < k rank < k rank < k



The Spectral View

e Latent variable models encode low rank dependencies among
variables (both marginal and conditional)

e Use tools from linear algebra to exploit this structure.

e Rank

e Eigenvalues
e SVD

e Tensors
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Tutorial Outline

e The Spectral View of Graphical Models

e Small (HMM-like) example
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A More Interesting Example 1T
X4
{X37X4}
P[X{l’Q}’ X{?’A}] has rank k

g
o]
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Low Rank Matrices “Factorize” | :°

M == RL If M has rank k

m by n m by k kbyn

We already know one factorization!!!

Pl X2y, Xisay] = P[Xq10 | Ho| P[OH2|P[ X343 Ho]

Factor of 4 variables Factor of 3 variables T Factor of 3 variables

Factor of 1 variable
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Alternate Factorizations °

e The key insight is that this factorization is not unique.

e Consider Matrix Factorization. Can add any invertible
transformation:

M = RL
M = RSS 'L

e The magic of spectral learning is that there exists an
alternative factorization that only depends on observed
variables!
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An Alternate Factorization

e Let us say we only want to factorize this matrix of 4 variables

Pl X121, Xza1]

such that it is product of matrices that contain at most three
variables e.qg.

’P[X{I,Q}v X3]
P[XQa X{3,4}]
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An Alternate Factorization

e Note that

POH2|P[X3]H,)"

Pl X2y, Xa] = P X{1 23| Ha
P

Xo|Hy [P

QH, P X 3.4 |Ho]"

e Product of green terms (in some order) is

Pl X2y, X301

e Product of red terms (in some order) is P[Xz XS]
Y,

Ankur Parikh, Eric Xing @ CMU, 2012-2013
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An Alternate Factorization °°

Pl X2 Xzl = PlX12). Xa|P[Xo, X3] 7 '"P[Xo, Xz

factor of 4 variables factor of 3 variables factor of 3 variables

Advantage: Factors are only functions of observed variables! Can
be directly computed from data without EM!!!!

Caveat: Factors are no longer probability tables (do not have to be
non-negative)

We will call this factorization the observable factorization.
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Graphical Relationship 11t

Pl X101, Xz ] = Pl X190y, X3]P[Xo, X3]'"P[ X, Xi3.4]
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Another Factorization

Pl X1y Xgay] = Pl X0 Xa|P[X1. Xu] ' PIX1 X5 4]

e Seems we would do better empirically if you could “combine”
both factorizations. Will come back to this later.
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Relationship to Original
Factorization

e What is the relationship between the original factorization and
the new factorization?

Pl X2, Xisay] = Pl X1 Ho| P[OH2| P X345 Ho]

M R L
M = RL
M = RSS 'L

Can | choose S to get the observable factorization?
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Relationship to Original
Factorization oo
o Let

S = P[Xg‘HQ]

Pl X195, Xy | = P X105, X3 P[Xo. X3]7"P[ X0, X34

= LS =S 'R
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Our Alternate Factorization ot

Pl X121, Xizay] = P X125, Xa|P[Xo, Xa] "P[Xo, Xizy]

factor of 4 variables factor of 3 variables factor of 3 variables

e It may not seem very amazing at the moment (we have only
reduced the size of the factor by 1)

e What is cool is that every latent tree of V variables has such a
factorization where:

e All factors are of size 3
e All factors are only functions of observed variables
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Where’s the Catch? °°

e Before we said that if the number of latent states was very
large then the model was equivalent to a clique.

e \Where does that scenario enter in our factorization?

Pl X190y, Xiaay] = Pl X121, X3]P[Xa, X3P X, Xi3.4]

o

When does this inverse exist?

Ankur Parikh, Eric Xing @ CMU, 2012-2013 39



When Does the Inverse Exist °°

PlX,. X3 = PlXo|Ho | Pl[@H [P X5]|Hs| '

e All the matrices on the right hand side must have full
rank. (This is in general a requirement of spectral
learning, although it can be somewhat relaxed)
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When m > k ot

e The inverse cannot exist, but this situation is easily fixable (project
onto lower dimensional space)

P[X{l,Q}: X{3,4}] —
—1
Pl Xj12. X3]V(U'"P[Xy, X5|V) U ' P[X5. Xi34y]

e Where U, V are the top left/right k singular vectors of P | X5, X3
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When k > m ot

e The inverse does exist. But it no longer satisfies the following
property, which we used to derive the factorization

PlXo, X3] 7 = (P[Xa|Ha] ") Pl@H,] " P[Xs|Ho] !

e This is much more difficult to fix, and intuitively corresponds to
how the problem becomes intractable if k >> m.
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What does k>m mean? .

e Intuitively, large k, small m means long range dependencies

e Consider following generative process:
(1) With probability 0.5, let S= X, and with probability 0.5 let S=Y.
(2) Print A n times.
(3) Print S
(4) Go back to step (2)

With n=1 we either generate:
AXAXAXA...... or AYAYAYA.....

With n=2 we either generate:
AAXAAXAA..... or AAYAAYAA.......
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How many hidden states does cece

HMM need? 3

e HMM needs 2n states.

e Needs to remember count as well as whether we picked S=X
or S=Y

e However, number of observed states m does not change, so
our previous spectral algorithm will break for n > 2.

e How to deal with this in spectral framework?
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Tutorial Outline

e The Spectral View of Graphical Models

e Small (HMM-like) example

e How to make Spectral Learning Work in Practice
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Making Spectral Learning Work
In Practice oo

e \We are only using marginals of pairs/triples of variables to
construct the full marginal among the observed variables.

e Only works when k < m.

e However, in real problems we need to capture longer range
dependencies.
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Recall our factorization -

Pl X101, Xz ] = Pl X190y, X3]P[Xo, X3]'"P[ X, Xi3.4]
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Key ldea: Use Long-Range
Features

Construct feature Construct feature
vector of left side vector of right side

P PR
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Observable Factorization Works i
With Features Too oo

PlXs, X5] = E[d, ® 63] := E[626, ]

1

Use more complex feature instead:

L ® Pr|

Pl X191, Xz | = E[d162. 0304]
= E[61500. $]V (U 'E[¢ ® ¢]V) U Plp. X




Interesting Engineering Trick

e SVD may be very sensitive to very common features.

e Normalize features based on how many times they appear in
the dataset.

1

count(i) + K

o) = o) x
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Other (Simple) Engineering i

Tricks :

e Sometimes, spectral learning will produce negative
probabilities. There are two options to deal with this.

e Setto zero (or very small probability)
e Flip the sign (i.e. take absolute value)

e Flipping the sign works much, much better!

e Sometimes the matrices/cubes are sparse. Can interpolate
with lower order models to make them more dense.
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Tutorial Outline

e The Spectral View of Graphical Models

e Small (HMM-like) example

e How to make Spectral Learning Work in Practice

e Intuition to why this works for trees / latent PCFGs

e Discussion of Empirical Aspects
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Same General Ideas work with
Latent Variable PCFGs 11

e General Idea is to use same strategy as before partitioning
Inside/outside trees.

S (H1)
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Features

e Use Features of Inside/Outside Trees Instead

S (H

Outside tree

Left inside Right inside

tree tre€  ankur Parikh, Eric Xing @ CMU, 2012-2013 54



Empirical Results for Latent i
PCFGs e
section 22 section 23

EM  spectral EM  spectral

m =8

m = 16
m = 24
m = 32

36.87  85.60 — —
88.32  &7.77 — —
88.35  88.53 — —
88.56  88.82  &87.76  88.05

Results from Cohen et al. 2013
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Spectral Learning is Much Faster

single EM spectral algorithm
EM iter. | best model | total feature transfer + scaling SVD a—be a—=x
m =38 6m 3h 3h32m ‘ ‘ 36m  1h34m  10m
m = 16 52m 26h6m Sh19m 3d4m 3h13m 19m
‘ o 22m 49m o ,
m = 24 3h7m 93h36m | 7h15m ‘ ‘ 36m  4h54m  28m
m =32 | 9h2Im 187h12m | 9h52m 35m  7hlém  41m

Results from Cohen et al. 2013
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Spectral Learning Scales Better i
with Training Sample Size o

e Synthetic 3" order HMM Example (Spectral/EM/Online EM):

10000f

Runtime(s)
=
S

100}

Runtime vs. Sample Size

0.10205 1

Online EM #

.
*
\ =
.
- *
PAEY "
.

R . ‘o\'\

[ ] +*
o ‘t ." EM

Spectral

Training Samples
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Error vs. Sample Size

0.3} .-
010205 1 2 5 10 20 50 75 100

Training Samples

Results from Parikh et al. 2012
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(Y X
o000
o000
eo0o
o0
EM vs Spectral (Part |) -
Spectral
EM
« Aims to Find MLE so more  Does not aim to find MLE so less
“statistically” efficient statistically efficient.
« Can get stuck in local-optima  Local-optima-free
« Lack of theoretical guarantees  Provably consistent
« Slow * Very fast
« Easy to derive for new models « Challenging to derive for new

models (Unknown whether it can
generalize to arbitrary loopy
models)
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EM vs Spectral (Part Il) o°

EM

No issues with negative numbers

Allows for easy modelling with
conditional distributions

Difficult to incorporate long-range
features (since it increases
treewidth).

Generalizes poorly to non-
Gaussian continuous variables.

Spectral

Problems with negative numbers.
Requires explicit normalization to
compute likelihood.

Allows for easy modelling with
marginal distributions

Easy to incorporate long-range
features.

Easy to generalize to non-
Gaussian continuous variables
via Hilbert Space Embeddings
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Other “Spectral” Directions in
NLP

e Recovering the original parameters using tensor
decomposition.
e Anandkumar et al. 2012 (HMMs, Mixture of Gaussians)
e Anandkumar et al. 2012 (Latent Dirichlet Allocation)

e “Spectral Inspired” Methods
e Dhillon et al. 2011/2012 — Word Embeddings using CCA
e Parikh et al. 2013 (Hopefully) — Local-Optima-Free Unsupervised Parsing
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Latent PCFGs (Simplification)

X1
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Latent PCFGs (Simplification) 2

S (H1)
/\ Rules
NP (H2) VP (H3) S s NP, VP
é/\>2 %j/\\NPmM NP)_Q'X17X2
/\ VP — X3, NP
X X NP — X4, Xs

The bear ate the fish

P[Xl, cees X5, Sl, NPQ’ VPB’ NP4, Hl, cees H5] —
P X5, Xo|NPy, Ho| x P| Xy, X5|NPy, Hy| x P| X3, NPy, Hy|VP3, Hs)|
XP[N:PQaHQ';VP?nHS‘SlaHl] X P[SlaHl]
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Latent PCFGs (Simplification) e

e For now ignore the observed, non-leaf variables (i.e. the
rules). They can easily be added later.

Xy X9 DCHEIE Hy. ... H) =

P[X,, Xg%élg « P[ Xy, Xs % x P X3 H@@,Hg]

4,
1j...qu Hl Hr' —
]P)[leXQ HQ] X IED[X4?X5
XIED[HQng‘Hl] X P[Hl]
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Now Our Graphical Model Looks
Like This

P[le ...:,X5; Hla ce e H5] —

]P)[leXQ‘HQ] X IED[X4,X5‘H4] X IED[X;),?H,;;‘H‘L),]

XIED[HQ,, Hg‘Hl] X P[Hl]

Ankur Parikh, Eric Xing @ CMU, 2012-2013
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Constructing The Observable eecs
Factorization oo

Like we did before
Pl X120, Xzasy] = PlX (19, Xa|P[ X2, X3] P X2, Xizas]

Decompose this recursively
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Constructing The Observable
Factorization oo

But first reshape:

PlXo, Xany| = 'P[X{Q,:3};X{4,5}]

Pl Xaa, Xasy] = Pl X2y, Xu]P[Xs, Xa] P X3, X))
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This Is Redundant But.... ot

P Xo, Xiz3.41] = P[Xo, X3]P[Xo, X3]'"P[ Xz, X(3.41]

e Having the additional factor makes some other comparisons
easier
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Our Observable Factorization

P X9y, Xzasy ] = PlXay, Xa|P[Xo, Xa]  P[Xo, X(3.45]
Pl X2y, Xsy] = Pl X2y, Xu|P[XG, X4]_1P[X3’ Xia5]

P X2, Xi3.41] = P[Xo, X3]P[Xo, Xa] '"P[Xs, Xiz.41]
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Intuitively,

Corresponds to parameter for
root
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Intuitively,




How To Add Back In The Rules S

a—Db,c
P(Xs5,b = NP, Hy|a = VP, H;)

Instead of thinking of this as a factor of 5 variables, think of it as
several factors of 3 variables, one for each combination of a,b

P[Xg,b = NP, H4‘0, = VP, Hg] P[Xg, b = NP, H4‘GJ = NP, Hg]
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How To Add Back In The Rules

e As aresult instead of just one

C =

[y @¢r]”

LY ® L @ P

e We will have one for every choice of a,b i.e.

Ca,,b _

a, —1 . a a, a,
{‘*[770&’6 & CbL’b] Ly '® CbL’b & CbRb]
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