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Latent Variable Models 
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Ho. et al. 2012 

Sequence models 

Parsing 

Mixed membership models 



Latent Variable PCFG [Matsuzaki et al., 2005, 

Petrov et al. 2006] 
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Learning Parameters (EM) 
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Since latent variables are not observed in the data, we have to 

use Expectation Maximization (EM) to learn parameters 

• Slow 

• Local Minima 
 

latent variables 

(unobserved in 

training data) 

Observed variable 



Spectral Learning 

 Different paradigm of learning in latent variable models based on 

linear algebra 

 

 Theoretically, 

 Provably consistent 

 Can offer deeper insight into the identifiability 

 

 Practically,  

 Local minima free 

 As if now, performs comparably to EM with 10-100x speed-up 

 Can also model non-Gaussian continuous data using kernels (usually 

performs much better than EM in this case) 
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Tutorial Outline 

 The Spectral View of Graphical Models 

 

 Small (HMM-like) example 

 

 How to make Spectral Learning Work in Practice 

 

 Intuition to why this works for trees / latent PCFGs 

 

 Discussion of Empirical Aspects 

 

 Detailed derivation for latent PCFG 
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Related References 

 Relevant works 

 Hsu et al. 2009 – Spectral HMMs (also Bailly 2009) 

 Siddiqi et al. 2009 – Features in Spectral Learning 

 Parikh et al. 2011/2012 –Tensors to Generalize to Trees/Low Treewidth 

Graphs 

 Cohen et al. 2012 / 2013 – Spectral Learning of latent PCFGs 

 

 Will present it from “matrix factorization” view: 

 Balle et al. 2012 – Connection between Spectral Learning / Hankel Matrix 

Factorization 

 Song et al. 2013 – Spectral Learning as Hierarchical Tensor Decomposition 
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Focusing on Prediction 

 In many applications that use latent variable models, the end task is 

not to recover the latent states, but rather to use the model for 

prediction among observed variables. 

 

 Dynamical Systems – Predict future given past 
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future 
past 



Latent Variable PCFG [Matsuzaki et al., 2005, 

Petrov et al. 2006] 
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 We will only be concerned with quantities related to the observed 

variables: 

 

 

 We do not care about the latent variables explicitly. 

 

 

 

 

 

 

 Do we still need EM to learn the parameters? 

 

 

 

 

Focusing on Prediction 
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But if we don’t care about the 

latent variables.... 

 Why don’t we just integrate them out? 

 

 Because integrating them out results in a clique   
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Marginal Does Not Factorize 
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Does not factorize due to the outer sum (Can somewhat distribute 

the sum, but doesn’t solve problem) 



But isn’t an HMM different from a 

clique? 

 It depends on the number of latent states. 

 

 Consider the following model. 
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If H has only one state..... 

 Then the observed variables are independent! 
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What if H has many states? 

 Let us say the observed variables each have m states. 

 

 Then if H has m3 states then the latent model can be exactly 

equivalent to a clique (depending on how parameters are set). 

 

 

 

 

 

 

 But what about all the other cases? 
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The Question 

 Under existing methods, latent models all require EM to learn 

regardless of the number of hidden states. 

 

 However, is there a formulation of latent variable models 

where the difficulty of learning is a function of the number of 

latent states? 

 

 This is the question that the spectral view will answer. 
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Tutorial Outline 

 The Spectral View of Graphical Models 
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 Sum Rule 

 

 

 Equivalent view using Matrix Algebra 

 

 

 

 

 

 

 

Sum Rule (Matrix Form) 
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Important Notation 

 Calligraphic P to denotes that the probability is being treated 

as a matrix/vector/tensor 

 

 Probabilities 

 

 

 Probability Vectors/Matrices/Tensors 
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 Chain Rule 

 

 

 Equivalent view using Matrix Algebra 

 

 

 

 

 

 Note how diagonal is used to keep Y from being marginalized 

out. 

 

 

 

 

Chain Rule (Matrix Form) 
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Means on diagonal 



Graphical Models: The Linear 

Algebra View 
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 In general, nothing we can say about the nature of this matrix. 

A and B have m 

states each. 



 What if we know A and B are independent? 

 

 

 

 

 

 

 

 

 

 

 Joint probability matrix is rank one, since all rows are multiples of 

one another!! 

 

Independence: The Linear 

Algebra View 
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Independence and Rank 

 What about rank in between 1 and m? 
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has rank m (at most) 

has rank 1 



Low Rank Structure 

 A and B are not marginally independent (They are only 

conditionally independent given X). 

 

 

 

 

 Assume X has k states (while A and B have m states). 

 

 Then,              

 

 Why? 
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Low Rank Structure 

  

 

 

 

Ankur Parikh, Eric Xing @ CMU, 2012-2013 

 

 

 

25 

= 

𝒓𝒂𝒏𝒌 ≤ 𝒌 𝒓𝒂𝒏𝒌 ≤ 𝒌 𝒓𝒂𝒏𝒌 ≤ 𝒌 𝒓𝒂𝒏𝒌 ≤ 𝒌 



The Spectral View 

 

 Latent variable models encode low rank dependencies among 

variables (both marginal and conditional) 

 

 Use tools from linear algebra to exploit this structure. 

 Rank 

 Eigenvalues 

 SVD 

 Tensors 
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Tutorial Outline 

 The Spectral View of Graphical Models 

 

 Small (HMM-like) example 
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A More Interesting Example 
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𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 

k states 

m states 

has rank k 



Low Rank Matrices “Factorize” 
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m by n 

We already know one factorization!!! 

m by k k by n 

If M has rank k 

Factor of 4 variables Factor of 3 variables 

Factor of 1 variable 

Factor of 3 variables 



Alternate Factorizations 

 The key insight is that this factorization is not unique. 

 

 Consider Matrix Factorization. Can add any invertible 

transformation: 

 

 

 

 The magic of spectral learning is that there exists an 

alternative factorization that only depends on observed 

variables! 
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An  Alternate Factorization 

 Let us say we only want to factorize this matrix of 4 variables  

 

 

 

 

such that it is product of matrices that contain at most three 

observed variables e.g.  
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An  Alternate Factorization 

 Note that 

 

 

 

 

 

 Product of green terms (in some order) is 

 

 

 Product of red terms (in some order) is  
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An Alternate Factorization 
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factor of 4 variables factor of 3 variables factor of 3 variables 

Caveat: Factors are no longer probability tables (do not have to be 

non-negative) 

Advantage: Factors are only functions of observed variables! Can 

be directly computed from data without EM!!!! 

We will call this factorization the observable factorization. 



Graphical Relationship 
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𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 



Another Factorization 

 

 

 

 

 

 

 

 

 

 Seems we would do better empirically if you could “combine” 

both factorizations. Will come back to this later. 
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Relationship to Original 

Factorization 

 What is the relationship between the original factorization and 

the new factorization? 
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Can I choose S to get the observable factorization? 



Relationship to Original 

Factorization 

 Let  
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 It may not seem very amazing at the moment (we have only  

reduced the size of the factor by 1) 

 

 What is cool is that every latent tree of V variables has such a 

factorization where: 

 All factors are of size 3 

 All factors are only functions of observed variables 

 

 

 

 This is much more difficult to fix, and intuitively corresponds to 

how the problem becomes intractable if k >> m (See Siddiqi et 

al. 2009 for discussion) 

 

 

 

 

 

 

Our Alternate Factorization 
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factor of 4 variables factor of 3 variables factor of 3 variables 



Where’s the Catch? 

 Before we said that if the number of latent states was very 

large then the model was equivalent to a clique. 

 

 Where does that scenario enter in our factorization? 
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When does this inverse exist? 



When Does the Inverse Exist 
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 All the matrices on the right hand side must have full 

rank. (This is in general a requirement of spectral 

learning, although it can be somewhat relaxed) 

 

 

 



When m > k 

 The inverse cannot exist, but this situation is easily fixable (project 

onto lower dimensional space) 

 

 

 

 

 

 Where U, V are the top left/right k singular vectors of  
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When k > m 

 The inverse does exist. But it no longer satisfies the following 

property, which we used to derive the factorization 

 

 

 

 This is much more difficult to fix, and intuitively corresponds to 

how the problem becomes intractable if k >> m. 
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What does k>m mean? 

 Intuitively, large k, small m means long range dependencies 

 

 Consider following generative process: 

(1) With probability 0.5, let S= X, and with probability 0.5 let S=Y. 

(2) Print A n times. 

(3) Print S 

(4) Go back to step (2) 

 

With n=1 we either generate: 

AXAXAXA…… or AYAYAYA….. 

 

With n=2 we either generate: 

AAXAAXAA….. or AAYAAYAA……. 
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How many hidden states does 

HMM need? 

 HMM needs 2n states. 

 

 Needs to remember count as well as whether we picked S=X 

or S=Y 

 

 However, number of observed states m does not change, so 

our previous spectral algorithm will break for n > 2. 

 

 How to deal with this in spectral framework? 
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Tutorial Outline 

 The Spectral View of Graphical Models 

 

 Small (HMM-like) example 

 

 How to make Spectral Learning Work in Practice 
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Making Spectral Learning Work 

In Practice 

 We are only using marginals of pairs/triples of variables to 

construct the full marginal among the observed variables. 

 

 Only works when k < m.  

 

 

 

 

 

 

 However, in real problems we need to capture longer range 

dependencies. 
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Recall our factorization 
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𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 



Key Idea: Use Long-Range 

Features 
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Construct feature 

vector of left side 

Construct feature 

vector of right side 



Observable Factorization Works 

With Features Too 
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Use more complex feature instead: 



Interesting Engineering Trick 

 SVD may be very sensitive to very common features. 

 

 Normalize features based on how many times they appear in 

the dataset.  
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Other (Simple) Engineering 

Tricks 

 Sometimes, spectral learning will produce negative 

probabilities. There are two options to deal with this. 

 Set to zero (or very small probability) 

 Flip the sign (i.e. take absolute value) 

 

 

 Flipping the sign works much, much better! 

 

 

 Sometimes the matrices/cubes are sparse. Can interpolate 

with lower order models to make them more dense. 

Ankur Parikh, Eric Xing @ CMU, 2012-2013 51 



Tutorial Outline 

 The Spectral View of Graphical Models 

 

 Small (HMM-like) example 

 

 How to make Spectral Learning Work in Practice 

 

 Intuition to why this works for trees / latent PCFGs 

 

 Discussion of Empirical Aspects 
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Same General Ideas work with 

Latent Variable PCFGs 
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S (H1) 

NP (H2) VP (H3)

NP (H4)

X2 X3 X4 X5

DT (H5) NN (H6) VBD (H7) 

DT (H8) NN (H9) 

The        bear        ate     the        fish

X1

 General Idea is to use same strategy as before partitioning 

inside/outside trees. 



Features 
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S (H1) 

NP (H2) VP (H3)

NP (H4)

X2 X3 X4 X5

DT (H5) NN (H6) VBD (H7) 

DT (H8) NN (H9) 

The        bear        ate     the        fish

X1

 Use Features of Inside/Outside Trees Instead 

Left inside 

tree 
Right inside 

tree 

Outside tree 



Empirical Results for Latent 

PCFGs 
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Results from Cohen et al. 2013 



Spectral Learning is Much Faster 
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Results from Cohen et al. 2013 



Spectral Learning Scales Better 

with Training Sample Size 

 Synthetic 3rd order HMM Example (Spectral/EM/Online EM): 
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Results from Parikh et al. 2012 

Training Samples 

Runtime vs. Sample Size 

R
u

n
ti

m
e

(s
) Online EM 

EM 

Spectral 

Training Samples 

         Error vs. Sample Size 

  
  
  
  
 E

rr
o
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Spectral 
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EM vs Spectral (Part I) 
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EM 
Spectral 

• Aims to Find MLE so more 

“statistically” efficient 

 

• Can get stuck in local-optima 

 

• Lack of theoretical guarantees 

 

• Slow 

 

• Easy to derive for new models 
 

 

• Does not aim to find MLE so less 

statistically efficient. 

 

• Local-optima-free 

 

• Provably consistent 

 

• Very fast 

 

• Challenging to derive for new 

models (Unknown whether it can 

generalize to arbitrary loopy 

models) 



EM vs Spectral (Part II) 
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EM Spectral 

• No issues with negative numbers 

 

 

 

• Allows for easy modelling with 

conditional distributions 

 

• Difficult to incorporate long-range 

features (since it increases 

treewidth). 

 

• Generalizes poorly to non-

Gaussian continuous variables. 
 

 

• Problems with negative numbers. 

Requires explicit normalization to 

compute likelihood. 

 

• Allows for easy modelling with 

marginal distributions 

 

• Easy to incorporate long-range 

features. 

 

• Easy to generalize to non-

Gaussian continuous variables 

via Hilbert Space Embeddings 



Other “Spectral” Directions in 

NLP 

 Recovering the original parameters using tensor 

decomposition. 

 Anandkumar et al. 2012 (HMMs, Mixture of Gaussians) 

 Anandkumar et al. 2012 (Latent Dirichlet Allocation) 

 

 “Spectral Inspired” Methods 

 Dhillon et al. 2011/2012 – Word Embeddings using CCA 

  Parikh et al. 2013 (Hopefully) – Local-Optima-Free Unsupervised Parsing 

© Ankur Parikh, Eric Xing @ CMU, 2012-2013 60 



Latent PCFGs (Simplification) 
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Latent PCFGs (Simplification) 
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S (H1) 
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Rules 



Latent PCFGs (Simplification) 

 For now ignore the observed, non-leaf variables (i.e. the 

rules). They can easily be added later. 

Ankur Parikh, Eric Xing @ CMU, 2012-2013 63 



Now Our Graphical Model Looks 

Like This 
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X1 X2 X3

X4 X5

H2

H1

H3

H4



X1 X2 X3

X4 X5

H2

H1

H3

H4

Constructing The Observable 

Factorization 

  

 

 

 

© Ankur Parikh, Eric Xing @ CMU, 2005-2012 

 

 

 

65 

Like we did before 

Decompose this recursively 



Constructing The Observable 

Factorization 
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X1 X2 X3

X4 X5

H2

H1

H3

H4

But first reshape: 



This is Redundant But…. 

 

 

 

 

 

 

 

 

 Having the additional factor makes some other comparisons 

easier 
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X1 X2 X3

X4 X5
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H4



Our Observable Factorization 
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Intuitively, 
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X1 X2 X3

X4 X5

H2

H1

H3

H4

Corresponds to parameter for 

root 



X1 X2 X3

X4 X5

H2

H1

H3

H4

Intuitively, 
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How To Add Back In The Rules 
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Instead of thinking of this as a factor of 5 variables, think of it as 

several factors of 3 variables, one for each combination of a,b 



How To Add Back In The Rules 

 As a result instead of just one 

 

 

 

 We will have one for every choice of a,b i.e. 
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