
Spectral Probabilistic Modeling and Applications to Natural
Language Processing

Doctoral Thesis Proposal

Ankur Parikh
Machine Learning Department

Carnegie Mellon University

Thesis Committee:

Eric Xing (chair)
Geoff Gordon
Noah Smith

Le Song (GeorgiaTech)
Ben Taskar (University of Washington)

Copyright cO 2013, Ankur Parikh

September 24, 2013

Abstract

Probabilistic modeling with latent variables is a powerful paradigm that has led to key advances in many applications
such natural language processing, text mining, and computational biology. Unfortunately, while introducing latent
variables substantially increases modeling power, the key algorithmic problems of learning and inference for these
models can become substantially more complicated. Most existing solutions formulate the task as a nonconvex
optimization problem, where convergence to the optimal solution is not guaranteed due to local minima.

In this thesis, we propose to tackle these problems through the lens of linear/multi-linear algebra. Viewing latent
variable models from this perspective allows us to approach key problems such as structure learning, parameter
learning, and inference using tools such as matrix/tensor decompositions, inversion, and ergodicity coefficients. These
new tools enable us to develop novel solutions to learning and inference in latent variable models with theoretical and
practical advantages. In addition, we focus on applications in Natural Language Processing, using our insights to not
only devise new algorithms, but also to propose new models for language modeling and unsupervised parsing.

1

Chapter 1

Introduction

Probabilistic graphical models have become an indispensable framework in artificial intelligence [Murphy, 2012,
Koller and Friedman, 2009]. Their ability to model and reason about complex uncertainty among large sets
of variables has been an important driving force behind advances in many applications such as natural
language processing[Manning and Schütze, 1999] and computational biology[Baldi et al., 2001] in the last
two decades.

Four central themes in graphical models are:

1. Structure Learning: How do we determine the structural dependencies among a set of random
variables?

2. Parameter Learning: Once the model structure has been determined, how can the parameters be
learned from the data?

3. Inference: How can we reason or make predictions about a set of variables conditioned on the values
of other variables?

4. Modeling: How to leverage these tools to construct effective models for real world phenomena?

For graphical models where all variables are observed in the data, many of the solutions to these
algorithmic challenges are well studied. Often for simple structures, many of these problems have tractable
solutions e.g. the Chow-Liu algorithm for structure learning of tree graphical models, maximum likelihood
estimation with fully observed data for parameter learning, max-product for inference on trees. For more
complex graphical models, structure learning, parameter learning, and inference are generally NP-hard but
approximate solutions have been developed [Koller and Friedman, 2009, Wainwright and Jordan, 2008].

However, limiting ourselves to only using observed variables can be quite restrictive from the perspective
of modeling. This is because, in many cases, the observed variables alone may not suffice to provide a concise
explanation of the data. Consider the machine translation example shown in Figure 1.1. Here the goal is
to translate the simple English sentence “spectral learning is awesome ” into Spanish, which is “aprendizaje
espectral es impresionante”. At first this task can seem daunting since the ith word in the English sentence
does not necessarily correspond to the ith word in the Spanish sentence. For example, here “spectral”, the
first word in the English sentence corresponds to “espectral”, the second word in the Spanish sentence. For
more complicated sentences, whole phrases may be moved/inserted when translating to another language.
Therefore, strictly modeling with only the observed variables, as informally shown in Figure 1.1(a), can
produce very complicated dependencies.

Intuitively, the problem would be much simpler if we knew which English word mapped to each
Spanish word i.e. the word alignment, as (informally) shown in Figure 1.1(b). Given the alignment function
a, translation becomes much easier, since to get the ith spanish word, we can simply look up the Spanish
translation of the a(i)th english word. However, the alignment is not provided in the training data (which
generally just consists of English/Spanish sentence pairs), and therefore is a latent (or hidden) variable.

Unfortunately, while latent variables provide advantages for model design, they pose substantial chal-
lenges for learning and inference. Structure learning, parameter learning, and some types of inference

2

spectral learning is awesome

aprendizaje espectral es impresionante

(a)

spectral learning is awesome

aprendizaje espectral es impresionante

ALIGNMENT

(b)

Figure 1.1: Translation example of how latent variables can provide simpler solutions to problems

that are easy for fully observed models are substantially more difficult for latent variable models. For
example, maximum likelihood estimation with latent variables for structure/parameter learning is gener-
ally NP-hard. In some cases, inference may remain tractable, but there exist problems such as marginal
MAP [Liu and Ihler, 2013, Jiang et al., 2011] that are NP-hard even when an efficient solution exists for the
analogous problem with only observed variables.

As a result, the vast majority of approaches addressing these challenges rely on local-search heuristics
based on either greedy search or non-convex optimization. While in many cases these methods work well
in practice, they often require careful initialization and problem-specific heuristics to yield good results. For
example, unsupervised parsing performance with random initializations can vary greatly, making carefully
crafted initializers essential to reliable results. In addition, the sequential nature of these existing methods
can often make parallelization challenging and thus scalability non-trivial in today’s distributed computing
paradigm.

From the theoretical perspective, these approaches often do not shed light into the nature and complexity
of latent models making it difficult to ascertain what makes the problem difficult, and whether certain
relaxations can lead to tractable solutions.

1.1 A Linear Algebra Approach To Graphical Models

In this thesis, we tackle these challenges from a different perspective revolving around linear algebra.
From the linear algebra point of view, latent variables induce low rank dependencies among the observed
variables. The rank of the latent space can then be theoretically used to quantify the complexity/hardness of
learning in the latent variable model. As we will see, when the rank becomes very large, the problem will
become intractable, and we will be forced to resort to heuristic search methods. However, in the low rank
scenario, which we will argue occurs more often in practice, we can leverage tools from linear algebra to
provide provably consistent solutions in many cases.

Our work is inspired by recent theoretical results from different communities such as dynamical sys-
tems [Katayama, 2005], theoretical computer science [Dasgupta, 1999], statistical machine learning [Hsu et al., 2009,
Bailly et al., 2009], and phylogenetics [Mossel and Roch, 2005]. Before this thesis however, the majority
of spectral learning methods were limited to Hidden Markov Models [Hsu et al., 2009, Bailly et al., 2009,
Siddiqi et al., 2010, Song et al., 2010].

In this dissertation, we take a more general view, proposing not just to leverage low rank matrix
factorization (although that is certainly a major component), but also higher order tensor operations,
ergodicity coefficients, and other tools to present theoretically principled and practical spectral solutions
to a broad class of problems. In particular, we seek to focus on parameter learning, structure learning,
inference, and modeling with latent variables from the linear algebra point of view.

1.2 Applications to Natural Language Processing

From the application standpoint, we seek to use these theoretical insights to develop new models and
algorithms for Natural Language Processing (NLP) tasks. We focus on language modeling and unsupervised

3

parsing, two probabilistic modeling problems which we believe can benefit substantially from the linear
algebra perspective.

1.2.1 Language Modeling

Language modeling - the task of assigning probabilities to sequences of words, is an important component
of many NLP and speech systems. It is a seemingly simple, yet actually very challenging problem that is
useful in a number of applications e.g. machine translation [Koehn, 2010] since it allows one to determine
which candidate sequences are more likely than others. The predominant approach to language modeling
is the n-gram language model, wherein the probability of a word sequence P(w1, . . . ,wm) is first factored
and then approximated (with the Markov assumption) as:

P(w1, . . . ,wm) =

m∏
i=1

P(wi|w1, . . . ,wi−1) ≈
m∏

i=1

P(wi|wi−1
i−n+1)

In other words, one only needs to take into account the previous n−1 words when computing the probability
of a word wi given its word history. This assumption reduces parameters significantly, but it is not enough.
Due to the large vocabulary space, maximum likelihood approaches will often assign zero probability to
word sequences that were unseen in the training data (but can be in the test data).

A rich literature in language model (LM) smoothing has thus arisen in response to this core issue, with the
basic idea behind most approaches being to interpolate with or back off to lower order n-gram models (which
are less sparse) as the need arises [Chen and Goodman, 1999]. While surprisingly simple, these techniques,
in particular Kneser-Ney smoothing [Kneser and Ney, 1995] and variants, have often been the state of the
art for more than a decade. However, these approaches fail to exploit the semantic/syntactic relatedness
among words that can intuitively be exploited to help alleviate the data sparsity problem in a more efficient
manner.

As part of this dissertation, we propose to examine how ensembles of specially constructed low rank
matrices/tensors can be leveraged to provide a novel solution to the language modeling problem. Our
proposed solution contains Absolute Discounting[Ney et al., 1994] and Kneser Ney [Kneser and Ney, 1995]
as special cases of our general framework. We hope that our approach can take incorporate semantic
relatedness among words to improve performance while at the same time be easily scalable to large datasets.

1.2.2 Unsupervised Parsing

Unsupervised parsing (also known as grammar induction) is the problem of discovering syntactic structure
in sentences without the help of annotated training examples marked with syntactic trees. Solutions to the
problem of grammar induction have been long sought after since the early days of computational linguistics
and are interesting both from cognitive and engineering perspectives. Cognitively, it is more plausible to
assume that children obtain only terminal strings of parse trees and not the actual parse trees, which means
the unsupervised setting may be a better model for studying language acquisition.

From the engineering perspective, training data for unsupervised parsing exists in abundance (i.e.
sentences and part-of-speech tags), and is much cheaper than data required for supervised training, which
requires manual syntactic annotation.

Most of the solutions suggested treat the problem of unsupervised parsing by assuming a paramet-
ric model, which is then estimated by identifying a local maximum of an objective function such as
the likelihood [Klein and Manning, 2004] or a variant of it [Cohen and Smith, 2009, Headden et al., 2009,
Spitkovsky et al., 2010, Gillenwater et al., 2010, Golland and DeNero, 2012]. Unfortunately, finding the global
maximum for these objective functions is usually intractable [Cohen and Smith, 2010]. As a result, many of
these methods suffer from severe local-optima and initializers are crafted to obtain good solutions.

In this thesis, we take a very different approach to unsupervised parsing. We propose to formulate
unsupervised parsing as a latent structure learning problem where the latent structure (parse tree) varies
for each example. Our goal is to then leverage linear algebra tools to derive a provably correct learning
algorithm that also works empirically well in practice.

4

1.3 Thesis Statement

The central theme of this thesis revolves around the following statement:

Viewing latent variable models through the lens of linear/multi-linear algebra allows us to approach key problems
such as structure learning, parameter learning, and inference using tools such as matrix/tensor decompositions, in-
version, and ergodicity coefficients. These new tools enable us to develop novel solutions for learning and inference in
latent variable models that have both theoretical and practical advantages. In addition, these new insights aid us in de-
signing new models and algorithms for language modeling and unsupervised parsing in Natural Language Processing.

Key Contributions

1. Chapter 3: Spectral Parameter Learning for Latent Graphical Models - We leverage tensor algebra
to derive provably correct learning methods for latent trees and low-treewidth graphical models via
junction trees (Key theme: parameter learning)

2. Chapter 4:Kernel Embeddings of Latent Tree Graphical Models - Using Hilbert Space Embed-
dings [Smola et al., 2007], we develop algorithms for latent variable parameter and structure learning
in latent tree graphical models with continuous, non-Gaussian variables (Key themes: parameter and
structure learning)

3. Chapter 5: Spectral Approximations for Inference - We plan to develop a theoretical framework
studying how the spectral properties of the parameters in a latent model determine the dependencies
among the observed variables. By leveraging this parameter-specific dependence we hope to design
more efficient solutions for inference problems such as parallel collapsed sampling and marginal MAP
(Key theme: inference)

4. Chapter 6: A Conditional Latent Tree Model for Unsupervised Parsing - We propose a novel model
for unsupervised parsing that revolves around structure learning of projective latent trees where the
latent structure changes for each example. We plan to theoretically quantify the sample complexity
of our approach as well as provide rigorous empirical evaluation (Key themes: structure learning and
modeling)

5. Chapter 7: Language Modeling via Power Low Rank Ensembles - We propose to develop a novel low
rank framework of n-gram language models where existing methods such as Absolute Discounting
and Kneser Ney are special cases. Our proposed approach would allow n-grams of non-integer n
i.e. 2.5-grams, 1.5-grams etc. that can take advantage of the semantic relatedness among words (Key
theme: modeling)

1.4 Related Work

As mentioned previously, the basis for this dissertation comes from the work in many different communi-
ties such as dynamical systems, [Katayama, 2005], theoretical computer science [Dasgupta, 1999], statistical
machine learning [Hsu et al., 2009, Bailly et al., 2009], and phylogenetics [Mossel and Roch, 2005]. Before
this thesis however, the majority of spectral learning methods were limited to Hidden Markov Mod-
els [Hsu et al., 2009, Bailly et al., 2009, Siddiqi et al., 2010, Song et al., 2010].

In this work we take a more general graphical models point of view, leveraging tensor algebra to
show that spectral approaches can lead to principled and practical solutions for a wide class of problems in
graphical models and Natural Language Processing. Our approach allows us to gain a deeper understanding
of spectral learning and its connections to tensor algebra. Furthermore, it allows us to use these insights to
develop novel models and solutions for new domains.

Concurrently with this thesis, other researchers have also approached spectral learning methods for other
problems such as predictive state representations [Boots et al., 2010], topic models [Anandkumar et al., 2012,

5

Anandkumar et al., 2013], latent probabilistic context free grammars [Cohen et al., 2012, Cohen and Collins, 2012]
and other models [Luque et al., 2012, Bailly et al., 2010, Balle et al., 2011, Dhillon et al., 2012].

In particular, the works of [Cohen et al., 2012, Cohen and Collins, 2012, Dhillon et al., 2012] leverage the
tensor formulation we developed in this thesis.

1.5 Outline

Before describing the primary contributions of this thesis in more detail, we first present a linear algebra per-
spective on latent variable models in Chapter 2 which serves as a foundation for our work. Chapters 3, 4, 5,
6, and 7 then present the main proposed contributions of the thesis. Chapter 8 presents a tentative timeline.

6

Chapter 2

A Linear Algebra View of Latent Variable
Models

Before, delving into the rest of the thesis, we describe latent variable models from the point of view of linear
algebra, a formulation that is key to the rest of the thesis.

2.1 General Notation

First we provide some notation conventions.

Probability: We denote random variables by capital letters e.g. X,Y,Z, and their instantiations by lower case
letters x, y, z (scalars are also denoted with lower case letters). P(x) denotes the probability that X = x, and
p(X) represents the probability mass function / probability density function associated with X. In general,
empirical estimates will be denoted as P̂(x), p̂(X) etc. In general we will assume that all our random variables
are discrete unless specified otherwise.

Tensors: An Nth order tensor is a multiway array with N “modes”, i.e., N indices {i1, i2, . . . , iN} are needed
to access its entries. Subarrays of a tensor are formed when a subset of the indices is fixed, and we
use a colon to denote all elements of a mode. For instance, A(i1, . . . , in−1, :, in+1, . . . , iN) are all elements
in the nth mode of a tensor A with indices from the other N − 1 modes fixed to {i1, . . . , in−1, in+1, . . . , iN}
respectively. Furthermore, we also use the shorthand ip:q = {ip, ip+1, . . . , iq−1, iq} for consecutive indices, e.g.,
A(i1, . . . , in−1, :, in+1, . . . , iN) =A(i1:n−1, :, in+1:N).

Furthermore, let P(X) denote probability vectors/matrices/tensors. For example P(X) is the marginal
probability vector of X i.e. P(X)i = P(X = i). SimilarlyP(X,Y|Z) encodes the conditional probability tensor
of X, Y given Z i.e. P(X,Y|Z)i, j,k = P(X = i,Y = j|Z = k).

Mode-specific diagonal matrices/tensors. We use δ to denote an N-way relation: its entry δ(i1:N) at
position i1:N equals 1 when all indexes are the same (i1 = i2 = . . . = iN), and 0 otherwise. We will use �d
to denote repetition of an index d times. For instance, we use P(�dX) to denote a dth order tensor where
its entries at (i1:d)th position are specified by δ(i1:d)P(X = xi1). A diagonal matrix with its diagonal equal to
P(X) is then denoted as P(�2X). Similarly, we can define a (d + d′)th order tensor P(�dX| �d′ Y) where its
(i1:d j1:d′)th entry corresponds to δ(i1:d)δ(j1:d′)P(X = xi1 |Y = y j1). By default � is equivalent to �2.

Matrix Sum Rule: Note that P(Y) = P(Y|X)P(X) since the matrix multiplication marginalizes out X.
This is the matrix formulation of P(Y) =

∑
X P(Y|X)P(X).

Matrix Chain Rule: If we put X on the diagonal i.e. P(�2X) then X will not be marginalized out. This gives
us P(Y,X) = P(Y|X)P(�2X), which is the matrix formulation of P(Y,X) = P(Y|X)P(X).

7

Symbol De f inition
upper case letters (e.g. X, Y, Z) random variables
lower case letters (e.g. x, y, z) constants or instantiations of random variables

P(·) probability
p(·) probability mass/density function

P(X1, ...,Xn) probability vector/matrix/tensor
P({X1,X2,X4}, {X3,X5}) matricization of probability tensor

�i diagonal on i modes

Figure 2.1: Summary of general notation convention used throughout the thesis

X1 X2 X3 X4

HG

(a)

X1

X2

X3

X4

(b)

X1

X2

X3

X4

(c)

Figure 2.2: Different ways of modeling 4 observed variables X1,X2,X3,X4. G and H are latent variables.

Matricization: Sometimes we will find it more convenient to rearrange a tensor into a matrix by plac-
ing a set of modes on the rows and the rest on the columns. For example, consider the probability tensor
P(X1,X2,X3,X4) where each of the Xi take on n states. Then one matricization may be the n2

× n2 matrix
P({X1,X2}, {X3,X4}) where X1,X2 are on the rows and X3,X4 are on the columns. Other possible matriciza-
tions include P({X1,X3}, {X2,X4}) and P({X1}, {X2,X3,X4}).

Further notation/operations such as tensor multiplication and tensor inversion will be introduced as
needed. Figure 2.1 gives provides a quick reference for the notation conventions.

2.2 The Spectral View

Consider Figure 2.2(a) where there are four observed variables X1, X2, X3, and X4 (indicated in blue) and
two latent variables G and H (in yellow). Let SO be the number of observed states (i.e. the number of states
each of X1,X2,X3,X4 take on) and SH be the number of latent states (i.e. the number of states that each of
G,H can take on).

Consider the problem of structure learning: recovering the structural relationship among these vari-
ables given only samples of X1,X2,X3,X4. One strategy may be to greedily merge the observed vari-
ables [Harmeling and Williams, 2011]. While this may work sometimes, it will not lead to a consistent
solution in general. Similarly, once the structure is known, learning parameters (i.e. the conditional prob-
ability tables) is commonly done with the Expectation Maximization (EM) algorithm. EM is essentially
coordinate descent on a nonconvex objective and is therefore not guaranteed to return the optimal answer.

However, are these problems really intractable, or are they simply difficult from the likelihood optimiza-
tion from the point of view? For intuition, let us first examine parameter learning. Consider setting SH = 1.
In this case, X1, X2, X3, and X4 are independent as shown in Figure 2.2(b), since no information can travel
through the latent variables. The learning problem becomes trivial in this scenario.

On the other side of the spectrum, let SH = S4
O. In this case the problem becomes equivalent to learning

the clique model in Figure 2.2(c) which has O(S4
O) parameters. In general, if we had n observed variables all

connected to one latent variable, then setting SH = Sn
O would be equivalent to n-way clique. This leads to an

exponential increase in parameters and defeats the point of a graphical model since there are no conditional
independence statements.

8

However, what about 1 < SH < m3. From the optimization point of view these values of SH lead to
nonconvex objectives and therefore are difficult. However, how much harder is SH = m3

− 1 than SH = 2?
These are the types of questions that likelihood optimization cannot quantify.

Now, let us approach the problem from a linear algebra point of view. First, consider two variables
X1 and X2. In Figure 2.2(c) there is in general nothing we can say is special about the matrix P(X1,X2).
However, in the case of Figure 2.2(b), P(X1,X2) = P(X1)P(X2)>. Therefore P(X1,X2) is rank one.

More generally, for Figure 2.2(a), P(X1,X2) = P(X1|G)P(�2G)P(X2|G)>. Assuming all the matrices on
the right hand side are full rank, this implies that P(X1,X2) has rank SH, implying that our factorization is
a low rank factorization.

Lets now extend this logic to all 4 variables in Figure 2.2(a). LetP({X1,X2}, {X3,X4}) be the S2
O × S2

O joint
probability matrix of X1,X2,X3,X4 where the values of X1,X2 are on the rows and X3,X4 is on the columns.
This matrix has the following low rank factorization:

P({X1,X2}, {X3,X4}) = P({X1,X2}|G)P(G,H)P({X3,X4}|H)>

Moreover, different matricizations lead to different factorizations i.e.

P({X1}, {X2,X3,X4}) = P(X1|G)P(�2G)P({X2,X3,X4}|G)>

P({X1,X2,X3}, {X4}) = P({X1,X2,X3|H)P(�2H)P(X4|H)>

However, note all these low rank factorizations still have rank SH. Thus, while connections among
observed variables in a graphical model specify “hard” conditional independences/dependencies, latent
variables induce low rank dependencies among observed variables. Small SH translates into small rank,
implying simple dependencies among observed variables. As SH gets larger, the rank of the model increases
and the dependencies become more complicated. As we will see later, the cardinality of SH plays a key role
in determining the difficulty of learning with latent variables.

While this linear algebra point of view may seem to be just a simple reformulation, it leads to an
interesting perspective that inspires solutions to a variety of problems that we will explore in later chapters:

• Parameter Learning: The particular low rank factorization we showed above is special in that it is
composed of conditional probability matrices. However, low rank factorizations are in general not
unique. For any matrix factorization M = LR, M = LS−1SR is also a low rank factorization where S
can be any invertible matrix. Thus, a natural question to ask is do there exist other factorizations that
only depend on observed variables and therefore do not require EM to learn?

• Structure Learning: The fact thatP({X1,X2}, {X3,X4}) is low rank butP({X1,X3}, {X2,X4}) is not reveals
aspects about the latent structure of the model. How can this intuition be used to learn the latent
structure underlying a set of continuous, non-Gaussian variables? In particular, we will leverage the
notion of additive tree metrics [Saitou and Nei, 1987, Lake, 1994, Choi et al., 2011].

• Inference: Intuitively we see that X1 and X2 are closer together (separated by only one latent variable)
than X1 and X3, which are separated by two latent variables. Does this mean that X1 and X2 are
more dependent than X1 and X3? In the worst case, no, since G could be a deterministic function of
H. However, if the relationship between G and H is non-deterministic, than we can prove that X1
and X3 are less dependent than X1 and X2 using the concept of the coefficient of ergodicity. Can this
parameter-specific dependence be used to design more efficient inference algorithms that not only use
the structure of the graphical model but also leverage the low rank structure?

• Modeling: Can this connection between linear algebra and probabilistic modeling motivate new
models and solutions for language modeling and unsupervised parsing? For example, in language
modeling can we create n-grams for non-integer values of n i.e. 1.5-grams, 2.5-grams etc.?

9

Chapter 3

Spectral Parameter Learning for Latent
Graphical Models

Using the insights from the previous chapter, we first tackle parameter learning in latent tree graphical
models. In particular, we don’t focus on learning the original parameters explicitly, but rather an alternate
parameterization that can still be used for inference among the observed variables. This is useful in many
applications such as NLP and structured prediction where the goal is not to recover the latent variables
explicitly but rather to use the model for prediction.

First, we show that for latent trees, the original conditional probability table (CPT) parameterization
can be viewed as a tensor factorization of the joint distribution of the observed variables. By noting that
this factorization is not unique, we then derive another factorization that is only a function of the observed
variables (called the observable factorization). This enables a provably consistent and local-optima-free
learning algorithm with sample complexity analysis.

Furthermore, by leveraging higher order tensor operations such as multi-mode multiplication and tensor
inversion we develop a spectral algorithm for latent junction trees to handle low treewidth loopy models,
such as higher order HMMs, and coupled HMMs.

Our work generalizes the spectral algorithms of [Hsu et al., 2009, Bailly et al., 2009] for HMMs to more
complex graphical models. Later works such as [Cohen et al., 2012] and [Dhillon et al., 2012] have leveraged
our tensor formulation for supervised parsing with latent variables.

3.1 Intuition

Recall that in Chapter 2 we had established that latent variables introduce low rank factorizations, i.e.
M = LR, over the marginal probability of the observed variables. For the example in Figure 2, we can set,

M := P({X1,X2}, {X3,X4}) (3.1)
L := P({X1,X2}|H)P(�2H) = P({X1,X2},H) (3.2)

R := P({X3,X4}|H) (3.3)

However, low rank factorizations are in general not unique. For any matrix factorization, M = LR, we
also have that

M = LS︸︷︷︸
L̃

S−1R︸︷︷︸
R̃

(3.4)

and thus an alternate factorization M = L̃R̃. However, note that while L and R may be probability tables,
while L̃ and R̃ can may have negative values (since even if S is non-negative, S−1 may have negative entries).

10

The natural question to ask is that does there exist a low rank factorization that is only a function of the
observed variables X1,X2,X3,X4? Interestingly, the answer is yes!

To see why, consider the following expansions:

P({X1,X2},X3) = P({X1,X2}|H)P(�2H)P(X3|H)> (3.5)

P(X2, {X3,X4}) = P(X2|H)P(�2H)P({X3,X4}|H)> (3.6)

The product of the green terms (underlined), in some order, isP({X1,X2}, {X3,X4}) (what we want!). The
product of the red terms (not underlined), in some order, is P(X2,X3) (what we need to eliminate). This
leads us the following alternate factorization that only depends on observed variables:

P({X1,X2}, {X3,X4}) = P({X1,X2},X3)P(X2,X3)−1
P(X2, {X3,X4}) (3.7)

Note that while the original (CPT) factorization was a product of conditional probability matrices, the
alternate factorization is a product of marginal probability matrices and their inverses.

How does this relate to our original factorization? Consider setting S = P(X3|H). Then we can prove
that

LS = P({X1,X2},X3) (3.8)
S−1R = P(X2,X3)−1

P(X2, {X3,X4}) (3.9)

3.2 A Spectral Algorithm for Latent Tree Graphical Models

G H

C

I J

D

E F

B

A

Figure 3.1: Example of a latent tree model with six observed nodes

We now generalize this intuition to latent tree graphical models. A latent tree model defines a joint
probability distribution over a set of O observed variables O = {X1, . . . ,XO} and a set of H hidden variables
H = {XO+1, . . . ,XO+H}. The complete set of variables is denoted by X = O ∪H . For simplicity, we assume
that all observed variables have SO states and all hidden variables have SH states. For now assume SH = SO
and all conditional probability tables have full rank (we address the more general case later).

The joint distribution of X in a latent tree model is fully characterized by a set of conditional probability
tables (CPTs). More specifically, we can select an arbitrary (observed or latent) node in the tree as the root, and
sort the nodes in the tree in topological order. Then the set of CPTs between nodes and their parentsP[Xi|Xπi]
are sufficient to characterize the joint distribution (the root node Xr has no parent, i.e., P[Xr|Xπr] = P[Xr]),

P[x1, . . . , xO+H] =
∏O+H

i=1
P[xi|xπi]. (3.10)

Compared to tree models which are defined solely on observed variables (e.g., models obtained from the
[Chow and Liu, 1968] algorithm), latent tree models encompass a much larger classes of models, allowing
more flexibility in modeling observed variables. This is evident if we compute the marginal distribution of

11

the observed variables by summing out the latent ones,which gives us a clique over the observed nodes:

P[x1, . . . , xO] =
∑
xO+1

. . .
∑
xO+H

∏O+H

i=1
P[xi|xπi]. (3.11)

For simplicity, assume that all leaves are observed variables and all internal nodes are latent. For further
notation, define T(Xi) be the set of all observed leaves in the subtree rooted at Xi and let Xi∗ be some leaf in
T(Xi). Let c j(i) denote the jth child of node Xi.

Our spectral derivation has three main components:

1. Showing how the marginal probability tensorP(X1, . . . ,XO) can be factorized into a collection of third
order tensors.

2. Inserting the invertible transformations F and F−1 to define an alternate low rank factorization

3. Setting F such that the factors in this alternate factorization only depend on observed variables.

For simplicity of exposition, we assume all internal nodes have exactly three neighbors. However, we
have developed an alternative tensor representation that demonstrates that only third order tensors are
required regardless of the number of neighbors[Parikh et al., 2011].

3.2.1 Further Tensor Notation

We first introduce a bit more notation.

Labeling tensor modes with variables. In contrast to the conventional tensor notation such as the one
described in [Kolda and Bader, 2009], the ordering of the modes of a tensor will not be essential. We will
use random variables to label the modes of a tensor: each mode will correspond to a random variable and
what is important is to keep track of this correspondence. Therefore, we think two tensors are equivalent if
they have the same set of labels and they can be obtained from each other by a permutation of the modes
for which the labels are aligned.

In the matrix case this translates to A and A> being equivalent in the sense that A> carries the same
information as A, as long as we remember that the rows of A> are the columns of A and vice versa. We will
use the following notation to denote this equivalence

A � A> (3.12)

Under this notation, the dimension (or the size) of a mode labeled by variable X will be the same as the
number of possible values for variable X. Furthermore, when we multiply two tensors together, we will
always carry out the operation along (a set of) modes with matching labels.

Tensor multiplication with mode labels. LetA ∈ RI1×I2×···×IN be an Nth order tensor and B ∈ RJ1×J2×···×JM

be an Mth order tensor. If X is a common mode label for bothA and B (w.l.o.g. we assume that this is the
first mode, implying also that I1 = J1), multiplying along this mode will give

C =A ×X B ∈ RI2×···×IN×J2×···×JM , (3.13)

where the entries of C is defined as

C(i2:N, j2:M) =
∑I1

i=1
A(i, i2:N)B(i, j2:M)

3.2.2 Factorizing the Marginal Probability Tensor

Consider Figure 3.1. First let us exploit the low rank structure implied by the root A. We can get the
following factorizations:

12

P(A,B,C,D,E,F,G,H, I, J) = P(B,E,F|A)P(�2A)P(C,D,G,H, I, J|A)>

P(A,B,C,D,E,F,G,H, I, J) = P(B,C,E,F,G,H|A)P(�2A)P(D, I, J|A)>

P(A,B,C,D,E,F,G,H, I, J) = P(B,D,E,F, I, J|A)P(�2A)P(C,G,H|A)>

But how to combine all of these into one factorization? With tensors! Let the root probability p(A) be
embedded in a third order tensor: P(�3A). One can see that by using tensor-matrix multiplication,

P(A,B,C,D,E,F,G,H, I, J) = P(�3A) ×A P(B,E,F|A) ×A P(C,G,H|A) ×A P(D, I, J|A) (3.14)

We then proceed to factorize recursively e.g. P(B,E,F|A) = P(�2B|A) ×B P(E|B) ×B P(F|B).
In general, the joint probability of all the observed leaves in subtree rooted at Xi can be expressed as:

• If Xi is the root: P(T(Xi)) = P(�3Xi) ×Xi P(T(Xc1(i))|Xi) ×Xi P(T(Xc2(i))|Xi) ×Xi P(T(Xc3(i))|Xi)

• If Xi is an internal node: P(T(Xi)|Xπ(i)) = P(�2Xi|Xπ(i)) ×Xi P(T(Xc1(i))|Xi) ×Xi P(T(Xc2(i))|Xi)

• If Xi is a leaf : P(T(Xi)|Xπ(i)) = P(Xi|Xπ(i))

As one can see the tensor factorization we have derived is essentially the original CPTs embedded into
higher-order tensors.

3.2.3 Transformed Representation

To derive our alternate factorization, we now insert invertible transformations F. Continuing the running
example in Figure 3.1,

P(A,B,C,D,E,F,G,H, I, J) = P(�3A) ×A P(B,E,F|A) ×A P(C,G,H|A) ×A P(C, I, J|A)
= P(�3A) ×A I ×A P(B,E,F|A) ×A I ×A P(C,G,H|A) ×A I ×A P(C, I, J|A)

where I is the SH × SH identity matrix with mode labels {A,A}.
Next, expand I as a matrix inversion pair F and F−1 and regroup the terms:

P(A,B,C,D,E,F,G,H, I, J) = (P(�3A) ×A Fc1(A) ×A Fc2(A) ×A Fc3(A))

×ωc1(A) (P(B,E,F|A) ×A F−1
c1(A))

×ωc2(A) (P(C,G,H|A) ×A F−1
c2(A))

×ωc3(A) (P(D, I, J|A) ×A F−1
c3(A))

where ωc1(A), ωc2(A), ωc3(A) are mode labels to be defined in the next section.
This proceeds recursively e.g.

P(D, I, J|A) = (P(�2D|A) ×D Fc1(D) ×D Fc2(D)) ×ωc1(D) (P(I|D) ×D F−1
c1(D)) ×ωc2(D) (P(J|D) ×D F−1

c2(D))

In general, we can define the following transformed tensor representation:

• root: R̃ = P(�3Xi) ×Xi Fc1(i) ×Xi Fc2(i) ×Xi Fc3(i)

• internal: T̃ i = P(�2Xi|Xπ(i)) ×Xπ(i) F−1
i ×Xi Fc1(i) ×Xi Fc2(i)

• leaf: L̃i = P̃(Xi|Xπ(i)) ×Xπ(i) F−1
i

13

3.2.4 Observable Representation

All that remains is to set the Fi so that the alternate factorization is only a function of observed variables.
Generalizing our intuition from Section 3.1, we set Fi = P(Xi∗ |Xπ(i)) (recall that Xi∗ is an observed leaf in the
subtree rooted at Xi). Below is the derivation for internal nodes (the root and leaf are just special cases).
First note that,

T̃ i = P(�2Xi|Xπ(i)) ×Xπ(i) F−1
i ×Xi Fc1(i) ×Xi Fc2(i)

= P(�2Xi|Xπ(i)) ×Xπ(i) P(Xi∗ |Xπ(i))−1
×Xi P(Xc1(i)∗ |Xi) ×Xi P(Xc2(i)∗ |Xi)

= P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×Xπ(i) P(Xi∗ |Xπ(i))−1 (3.15)

We now prove the following relation:

T̃ i ×Xi∗ P(Xi∗ ,X−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) (3.16)

where X−i∗ is an observed leaf that is not a descendant of Xi. Note thatP(Xi∗ ,X−i∗) = P(Xi∗ |Xπ(i))P(�Xπ(i))P(X−i∗ |Xπ(i))>.
Thus,

T̃ i ×Xi∗ P(Xi∗ ,X−i∗) = P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×Xπ(i) P(Xi∗ |Xπ(i))−1
×Xi∗ (P(Xi∗ |Xπ(i))P(�Xπ(i))P(X−i∗ |Xπ(i))>)

= P(Xc1(i)∗ ,Xc2(i)∗ |Xπ(i)) ×Xπ(i) P(�Xπ(i)) ×Xπ(i) P(X−i∗ |Xπ(i))>

= P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗)

From here, one can conclude that

T̃ i = P(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×X−i∗ P(X−i∗ ,Xi∗)−1 (3.17)

Note that based on the above we can set the mode labels ωi = Xi∗ .

3.2.5 What is SH , SO?

Based on our intuition in Chapter 2, rank (equivalent to the number of latent states if we assume full rank
CPTs) is a measure of the amount of long range dependency in a latent model. Thus, SH < SO actually
means shorter range dependencies and should be easier to solve than the SH = SO case. However, the
algorithm described in the previous section does not directly apply sinceP(X∗i ,X−i∗) is no longer invertible.
The solution is to simply project all the matrices/tensors to the SH dimensional space where the inverse
exists. As a result, instead of choosing F = P(Xi∗ |Xπ(i)) we choose Fi = U>i P(Xi∗ |Xπ(i)) where Ui is the top SH
right singular vectors of P(X∗i ,X−i∗). This gives Algorithm 1.

On the other hand, when SH > SO, P(X∗i ,X−i∗) is full rank but the relation
P(Xi∗ ,X−i∗)−1 = (P(X−i∗ |Xπ(i))−1)>P(�Xπ(i))−1P(Xi∗ |Xπ(i))−1 no longer holds. This scenario indicates longer
range dependencies and therefore a more challenging learning scenario. [Siddiqi et al., 2010, Cohen et al., 2012]

Algorithm 1 Spectral algorithm for latent tree graphical model

In: Junction tree topology and N i.i.d. samples
{
xs

1, . . . , x
s
|O|

}N

s=1

Out: Estimated observable root, internal, and leaf parameters, R̂, T̂ i, L̂i,
1:

R̂ = P̂(Xc1(r)∗ ,Xc2(r)∗ ,Xc3(r)∗) ×Xc1(r)∗ Ûc1(r) ×Xc2(r)∗ Ûc2(r) ×Xc3(r)∗ Ûc3(r)

T̂ i = P̂(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×X−i∗ (P̂(X−i∗ ,Xi∗) ×Xi∗ Ûi)
†

×Xc1(i)∗ Ûc1(i) ×Xc2(i)∗ Ûc2(i)

L̂i = P̂(Xi,X−i∗) ×X−i∗ (P̂(X−i∗ ,Xi∗) ×Xi∗ Ûi)
†

where Ûi is the top SH right singular vectors of P̂(X−i∗ ,Xi∗) and † indicates pseudoinverse.

14

proposed solutions to this problem by constructing features out of groups of observations to handle this sce-
nario. In our case, this would mean constructing features out of T(Xi) instead of using just one descendant
X∗i .

3.2.6 Inference in the Observable Representation

So far we have shown that P(X1,,XO) can be factorized into smaller tensors. But what about if we given
a set of evidence (x̄1, ..., x̄O) and want to recover the probability P(x̄1, ..., x̄O)?

Algebraically, this can be written as P(x̄1, ..., x̄O) = P(X1, ...XO) ×X1 δx̄1 ... ×XO ×δx̄O where δ(x̄i) is an
SO-dimensional delta vector i.e. δ(x̄i) j = I[j = x̄i].

Given the fact that tensor multiplication is associative, we don’t need to compute the whole tensor
P(X1,,XO) before selecting the appropriate element. Rather it possible to proceed from the leaves up, and
multiply by the delta vectors as we go. Note that this is effectively a message passing algorithm in tensor
form where the tensor-matrix multiplication implements “sum-product”.

3.2.7 Sample Complexity Analysis

We analyze the sample complexity of Algorithm 1 and show that it depends on the tree topology and the
spectral properties of the true model. Let di be the degree of node i in the tree .

Theorem 1. Let dmax = maxi di. Then, for any ε > 0, 0 < δ < 1, if

N ≥ O

(4S2
H

3β2

)dmax SO ln |O+H|
δ |O + H|2

ε2α4


where στ(∗) returns the τth largest singular value and

α = mini σSH (P(Xi∗ ,X−i∗)), β = mini σSH (Fi)

Then with probability 1 − δ,∑
x1,...,xO

∣∣∣∣P̂spectral(x1, . . . , xO) − P(x1, . . . , xO)
∣∣∣∣ ≤ ε, where P̂spectral indicates the probability returned by the spectral

algorithm.

Note the dependence on the singular values of certain probability tensors. In fully observed models,
the accuracy of the learned parameters depends only on how close the empirical estimates of the fac-
tors are to the true factors. However, our spectral algorithm also depends on how close the inverses of
these empirical estimates are to the true inverses, which depends on the spectral properties of the matri-
ces [Stewart and Sun, 1990].

3.3 Spectral Learning of Non-Tree Models via Junction Trees

A natural question to ask is does this approach extend to non-tree models? The challenges for general-
izing spectral algorithms to general latent structured models include the larger factors, more complicated
conditional independence structures, and the need to sum out multiple variables simultaneously.

In this thesis, we take one step toward this goal by developing a spectral algorithm for junction trees.
The basis of our approach is to embed the clique potentials of the junction tree into higher order tensors
such that the computation of the marginal probability of observed variables can be carried out via tensor
operations. While this novel representation leads only to a moderate increase in the number parameters for
junction trees of low treewidth, it allows us to design an algorithm that can recover a transformed version
of the tensor parameterization and ensure that the joint probability of observed variables are computed
correctly and consistently.

15

F G

E
H

A

I

C

B

D

(a)

BCDE

ACE

BC
F

BD
G

AC
 H AC

(b)

Figure 3.2: Example of a low-treewidth graph and corresponding junction tree

The key difference over the latent tree case is that the separator sets in the junction tree can contain more
than one variable, thus requiring higher order tensor operations such as multi-mode multiplication and
tensor inversion. Consider multi-mode multiplication:

Multi-mode multiplication: Let σ = {X1, . . . ,Xk} be an arbitrary set of k modes (k variables) shared by
A and B (w.l.o.g. we assume these labels correspond to the first k modes, and I1 = J1, . . . , Ik = Jk holds for
the corresponding dimensions). Then multiplyingA andB along σ results in

D =A ×σ B ∈ RIk+1×...×IN×Jk+1×...×JM , (3.18)

where the entries ofD are defined as

D(ik+1:N, jk+1:M) =
∑
i1:k

A(i1:k, ik+1:N)B(i1:k, jk+1:M).

Multi-mode multiplication can also be interpreted as reshaping the σmodes ofA andB into a single mode
and doing single-mode tensor multiplication.

We give a brief intuition of how our method works. A full derivation will be included in the thesis. Consider
the example in Figure 3.2. The tensor factorization for the conditional probability tensor P(F,G|C,E) is:

P(F,G|C,E) = P(�2B,�2C,D,E) ×BC P(F|B,C) ×BD P(G|B,D) (3.19)

Here the conditional probability table for the clique BCDE is embedded into the higher order tensor
P(�2B,�2C,D,E) because B exists in both the child cliques while C exists in one child clique and one
parent clique.

Instead of invertible transform matrices F, we now require invertible transformation tensorsF to derive
the transformed representation e.g.:

P(F,G|C,E) = P(�2B,�2C,D,E) ×BC F 1 ×BD F 2)
×ω1 (P(F|B,C) ×BC F

−1
1)

×ω2 (P(G|B,D) ×BD F
−1
2) (3.20)

where the inverse is a “mode-specific tensor inversion” that we propose. Deriving the observable rep-
resentation can be done using a similar technique as before and the details will be included in the final
thesis.

16

...

Length = 40

...

Length = 40

...

...

Length = 15

0.1 0.2 0.5 1 2 5 10 20 50 75 100

0.1

0.2

0.3
0.4
0.5

1

2nd Order NonHomogeneous HMM

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100

0.2

0.3

0.4
0.5

1

3rd Order NonHomogeneous HMM

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100
0.2

0.3

0.4
0.5

1

2 Level Factorial HMM

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100

0.1

0.2

0.3
0.4
0.5

1

Synthetic Junction Tree

Training Sample Size (x103)

E
rr

or Spectral

online−EM

EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100

10

100

1000

2nd Order NonHomogeneous HMM

Training Sample Size (x103)

R
un

tim
e

(s
)

online−EM

EM

Spectral

0.1 0.2 0.5 1 2 5 10 20 50 75 100

100

1000

10000

3rd Order NonHomogeneous HMM

Training Sample Size (x103)

R
un

tim
e

(s
) online−EM

EM

Spectral

0.1 0.2 0.5 1 2 5 10 20 50 75 100

10

100

1000

10000
2 Level Factorial HMM

Training Sample Size (x103)
R

un
tim

e
(s

)

Spectral

EM

online−EM

0.1 0.2 0.5 1 2 5 10 20 50 75 100
1

10

100

1000

10000

Synthetic Junction Tree

Training Sample Size (x103)

R
un

tim
e

(s
)

EM

online−EM

Spectral

(a) 2nd Order HMM (b) 3rd Order HMM (c) 2 Level Factorial HMM (d) Synthetic Junction Tree
Figure 3.3: Comparison of our spectral algorithm (blue) to EM (red) and online EM (green) for various latent
structures. Both errors and runtimes in log scale.

0.1 0.2 0.5 1 2 2.675

0.1

0.2

0.3

0.4

Splice

Training Sample Size (x103)

E
rr

or

Spectral

online−EM

EM

0.1 0.2 0.5 1 2 2.675

100

1000

Splice

Training Sample Size (x103)

R
un

tim
e

(s
)

online−EM

EM

Spectral

Figure 3.4: Results on Splice dataset

3.3.1 Empirical Results

For conciseness we give a summary of our results for junction trees. Results for the latent tree are similar and
will be included in the final thesis. We evaluate our method on synthetic and real data and compare it with
both standard EM [Dempster et al., 1977] and stepwise online EM [Liang and Klein, 2009]. All methods
were implemented in C++, and the matrix library Eigen [Guennebaud et al., 2010] was used for computing
SVDs and solving linear systems.

For large sample sizes our method is almost two orders of magnitude faster than both EM and online
EM. This is because EM is iterative and every iteration requires inference over all the training examples
which can become expensive. On the other hand, the computational cost of our method is dominated by the
SVD/linear system. Thus, it is primarily dependent only on the number of observed states and maximum
tensor order, and can easily scale to larger sample sizes.

We first perform a synthetic evaluation. 4 different latent structures are used (see Figure 3.3): a second
order nonhomogenous (NH) HMM, a third order NH HMM, a 2 level NH factorial HMM, and a complicated
synthetic junction tree. The second/third order HMMs have SH = 2 and SO = 4, while the factorial HMM
and synthetic junction tree have SH = 2, and SO = 16. For each latent structure, we generate 10 sets of model
parameters, and then sample N training points and 1000 test points from each set, where N is varied from

100 to 100, 000. For evaluation, we measure the accuracy of joint estimation using error =
|P̂(x1,...,xO)−P(x1,...,xO)|

P(x1,...,xO) .
We also measure the training time of both methods.

Figure 3.3 shows the results. In terms of accuracy, we generally observe 3 distinct regions, low-sample

17

size, mid-sample size, and large sample size. In the low sample size region, EM/online EM tend to overfit
to the training data and our spectral algorithm usually performs better. In the mid-sample size region
EM/online EM tend to perform better since they benefit from a smaller number of parameters. However,
once a certain sample size is reached (the large sample size region), our spectral algorithm consistently
outperforms EM/online EM which suffer from local minima and convergence issues. In terms of speed, our
algorithm is between one and two orders of magnitude faster than both EM and online EM for all the latent
structures. EM is actually slower for very small sample sizes than for mid-range sample sizes because of
overfitting.

Next consider the task of determining splicing sites in DNA sequences [Asuncion and Newman, 2007].
Each example consists of a DNA sequence of length 60, where each position in the sequence is either an A,
T, C, or G. The goal is to classify whether the sequence is an Intron/Exon site, Exon/Intron site, or neither.
During training, for each class a different second order nonhomogeneous HMM with SH = 2 and SO = 4
is trained. At test, the probability of the test sequence is computed for each model, and the one with the
highest probability is selected.

Figure 3.4, shows our results, which are consistent with our synthetic evaluation. Spectral performs the
best in low sample sizes, while EM/online EM perform a little better in the mid-sample size range. The
dataset is not large enough to explore the large sample size regime. Moreover, we note that the spectral
algorithm is much faster for all the sample sizes.

3.4 Summary of Contributions

This work for this chapter is largely complete. The main contributions are:

• Spectral algorithm for latent trees - new algorithm, sample complexity analysis, and synthetic/real
data results.

• Spectral algorithm for latent junction trees - new algorithm, sample complexity analysis and syn-
thetic/real data results.

18

Chapter 4

Nonparametric Latent Trees with Kernel
Embeddings

In the previous chapter we proposed solutions to parameter learning in latent tree graphical models where
the variables are discrete. However, in many real world scenarios, variables take on continuous distribu-
tions. Moreover, these distributions may not easily be approximated by Gaussians due to skewness and
multimodality. One example is demographics where variables like income, crime rate, and age rarely follow
bell curves.

In many ways, this problem is much more challenging than the discrete case. Often, it is no longer
possible to efficiently run non-convex optimization like EM, since the distributions no longer easily fit into
a parametric family.

However, we will see that approaching the problem from a linear algebra point of view enables an
elegant solution via Hilbert Space Embeddings [Smola et al., 2007, Song et al., 2009, Song et al., 2010]. In
particular, we are able to generalize our method from Chapter 3 to the continuous variable case.

Below we give a very brief introduction to Hilbert Space Embeddings and then describe the intuition
behind our algorithm.In addition to parameter learning, we also propose a structure learning algorithm for
latent trees with continuous variables.

4.1 Hilbert Space Embeddings

The central motivation behind Hilbert Space Embeddings is to create a sufficient statistic µX for an arbitrary
continuous distribution p(X). Let us consider the following motivation.

One simple statistic would be just to use the mean i.e. µX = E[X]. The problem is that many different
distributions map to the same mean. Therefore this statistic is not sufficient. A more complex statistic would
be µX = (E[X],E[X2]) i.e. the first two moments. This is a sufficient statistic for Gaussians, since the mean
and variance completely characterize a Gaussian distribution. However, for non-Gaussian distributions it
is entirely possible that two different distributions may have the same mean and variance. Similarly, we
could use third order moments µX = (E[X],E[X2],E[X3]) but the same problem exists.

The intuition behind Hilbert Space Embeddings is to create an infinite dimensional sufficient statistic.
Moreover, the statistic has a special form: it is a function in a Reproducing Kernel Hilbert Space (RKHS).
Therefore, although it is infinite dimensional, it can be computed using the “kernel trick”. More formally,
let us define an RKHS [Schölkopf and Smola, 2002]:

Definition 1. A reproducing kernel Hilbert Space (RKHS) F on X with kernel k is a Hilbert Space of functions f :
X → R. Its dot product 〈·, ·〉F satisfies the reproducing property:

〈 f (·), k(x, ·)〉F = f (x), and thus
〈k(x, ·), k(x′, ·)〉F = k(x, x′) (4.1)

19

We can view k(x, ·) as a function of one variable which we denote as the feature map φx.

An RKHS is special in that the feature map φx is the evaluation functional i.e. it serves to evaluate any
function f ∈ F at point x. Then each element of the kernel matrix k(x, x′) can be thought of as the evaluation
of the feature map φx at x′ which is equal to φx′ at x. The intuition behind the kernel trick is that although
the functions are continuous, they only need to be evaluated on the points in the dataset. Thus, the kernel
matrix is all that is needed.

The Hilbert Space Embedding (mean map) of p(X) is defined to be [Smola et al., 2007]:

µX := EX[φX] (4.2)

It can be proven that if the kernel function k is characteristic, then the mean map is injective i.e. two different
distributions do not have the same embedding. The Gaussian RBF and Laplace kernels are examples of
characteristic kernels.

4.1.1 Covariance and Conditional Embedding Operators

In addition to simply embedding distributions of one variable, Hilbert Space Embeddings also allow you
to embed distributions of multiple variables. Let ⊗ denote outer-product. We can define the following
operators:

• C(X,Y) = E[φX ⊗ φY] is the embedding of P(X,Y). In general C(X1,,Xn) = E[φX1 ⊗φXn] is the
embedding of P(X1, ...,Xn).

• C(�2X) = E[φX ⊗ φX] is the analog of P(�2X) for discrete variables.

• C(Y|X) = C(Y,X)C(�2X)−1 is the embedding of the conditional distribution P(Y|X)

Interestingly, the sum/chain rule apply with RKHS operators too! [Song et al., 2009].

• Sum Rule: µY = C(Y|X)µX. This is the RKHS analog of the matrix sum rule: P(Y) = P(Y|X)P(X).

• Chain Rule: C(Y,X) = C(Y|X)C(�2X). This is the RKHS analog of the matrix chain rule: P(Y,X) =
P(Y|X)P(�2X).

4.2 A Kernel Spectral Algorithm for Latent Tree Graphical Models

The similarity of the sum/chain rule above to matrix multiplication enable us to generalize our spectral
algorithm from Chapter 3. We note that although the results look very similar, the derivation is more
complicated due to the presence of infinite dimensional operators. Below we just give some intuition and
state the final result (the notation has been chosen so that the analogy to the discrete case is clear). More
details will be included in the full thesis.

Consider Figure 3.1 again. Recall that with discrete variables we had the following factorization at the
root.

P(A,B,C,D,E,F,G,H, I, J) = P(�3A) ×A P(B,E,F|A) ×A P(C,G,H|A) ×A P(D, I, J|A) (4.3)

the analog in the continuous case via Hilbert Space Embeddings will be:

C(A,B,C,D,E,F,G,H, I, J) = C(�3A) ×A C(B,E,F|A) ×A C(C,G,H|A) ×A C(D, I, J|A) (4.4)

Here we have informally used ×A which is a bit odd for an infinite dimensional operator (but it is possible
to give a rigorous definition). Going through the derivation gives us the following observable parameteri-
zation:

20

R̂ = Ĉ(Xc1(r)∗ ,Xc2(r)∗ ,Xc3(r)∗) ×Xc1(r)∗ Ûc1(r) ×Xc2(r)∗ Ûc2(r) ×Xc3(r)∗ Ûc3(r)

T̂ i = Ĉ(Xc1(i)∗ ,Xc2(i)∗ ,X−i∗) ×X−i∗ (Ĉ(X−i∗ ,Xi∗) ×Xi∗ Ûi)
†

×Xc1(i) Ûc1(i) ×Xc2(i) Ûc2(i)

L̂i = Ĉ(Xi∗ ,X−i∗) ×X−i∗ (Ĉ(X−i∗ ,Xi∗) ×Xi∗ Ûi)
†

where Ûi is the top SH right singular vectors of Ĉ(X−i∗ ,Xi∗) and † indicates pseudoinverse.
Empirically estimating these quantities is a bit tricky since they are infinite dimensional. However, it is

possible using the “kernel trick” for SVMs (i.e. some of the operators can be grouped together so these new
grouped terms are finite).

4.3 Structure Learning of Nonparametric Latent Trees

While many methods have developed for learning the structure of a latent tree where the variables are dis-
crete or Gaussian [Saitou and Nei, 1987, Lake, 1994, Choi et al., 2011, Anandkumar et al., 2011, Ishteva et al., 2012],
it is unclear how to learn the structure of a nonparametric latent tree from data. We propose a method for
constructing nonparametric latent trees based on additive tree metrics that has provably guarantees on
structure recovery.

The key concept behind many previous approaches for discrete/Gaussian variables is an additive tree
metric: a distance function that maps pairs of nodes in the graphical model to a real-valued distance.

Definition 2. A function dT : X ×X → R is an additive tree metric if ∀Xi,X j ∈X the following relation holds:

dT (i, j) =
∑

(a,b)∈pathT (i, j)

d(a, b) (4.5)

where pathT (i, j) is the set of all the edges in the path from Xi to X j in the tree T .

For example, for discrete latent trees where SH = SO the following is an additive tree metric [Lake, 1994]:

ddiscrete
T

(i, j) = − 1
2 log det(P(Xi,X j)) + 1

4 log det(P(�2Xi)) + 1
4 log det(P(�2X j)) (4.6)

Many meta-algorithms, such as neighbor joining [Saitou and Nei, 1987] or the recursive grouping algo-
rithm [Choi et al., 2011] take as input a distance matrix among all the observed variables and output a latent
tree structure. Interestingly, although many of these approaches are greedy, they are provably consistent if
the distance matrix satisfies the additive metric assumption.

However this metric for discrete latent trees doesn’t directly generalize to the infinite dimensional case,
since the eigenvalues of the covariance operator decay to zero and thus det(C(X,Y)) = 0. Instead we use the
notion of pseudo-determinant to propose the following additive tree metric for non-Gaussian, continuous
variables:

Nonparametric tree metric The pseudo-determinant is defined as the product of non-zero singular
values of an operator |C|? =

∏SH
i=1 σi(C). In our case, since we assume that the dimension of the hidden

variables is SH, the pseudo-determinant is simply the product of top SH singular values. Then we define
the distance metric between two continuous non-Gaussian variables Xi and X j as

dkernel
T

(i, j) = − 1
2 log

∣∣∣C(Xi,X j)C(Xi,X j)>
∣∣∣
?

+ 1
4 log |C(�2Xi)C(�2Xi)>|? + 1

4 log |C(�2X j)C(�2X j)>|?. (4.7)

4.4 Experiments
We give some results on the performance of our method on a communities and crime dataset from the UCI
repository [Asuncion and Newman, 2007, Redmond and Baveja, 2002]. More experiments are contained
in [Song et al., 2011] and will be provided for the final thesis. In this dataset, several real valued attributes
are collected for several communities, such as ethnicity proportions, income, poverty rate, divorce rate etc.,

21

elderly

Urban/rural

Education/job

Divorce/crime/poverty

race

(a)

5 10 20 30 40

0.15

0.2

query size

E
rr

or

Kernel

NPN

Gaussian

(b)

Figure 4.1: Qualitative and quantitative results on crime and communities dataset

and the goal is to predict the number of violent crimes (proportional to the size of the community) that occur
based on these attributes. In general these attributes are highly skewed and therefore not well characterized
by a Gaussian model.

We divide the data into 1400 samples for training, 300 samples for model selection (held-out likelihood),
and 300 samples for testing. We pick the first 50 of these attributes, plus the violent crime variable and
construct a latent tree using our tree metric and the neighbor joining algorithm [Saitou and Nei, 1987]. We
depict the tree in Figure 4.1(a) and highlight a few coherent groupings. For example, the “elderly” group
attributes are those related to retirement and social security (and thus correlated). The large clustering in
the center is where the class variable (violent crimes) is located next to the poverty rate and the divorce rate
among other relevant variables. Other groupings include type of occupation and education level as well as
ethnic proportions. Thus, overall our method captures sensible relationships.

For a more quantitative evaluation, we condition on a set E of evidence variables and predict the violent
crimes class label. We experiment with a varying number of sizes of evidence sets from 5 to 40 and repeat
for 40 randomly chosen evidence sets of a fixed size. Since the crime variable is a number between 0 and 1,
our error measure is simply err(ĉ) = |ĉ − c∗| (where ĉ is the predicted value and c∗ is the true value. As one
can see in Figure 4.1(b) our method outperforms both the Gaussian and the nonparanormal [Liu et al., 2009]
for the range of query sizes. Thus, in this case our method is better able to capture the skewed distributions
of the variables than the other methods.

4.5 Summary of Contributions

This work is mostly complete. The contributions are:

1. Structure Learning for Nonparametric Latent Trees - new algorithm, evaluation on synthetic and real
data.

2. Parameter Learning for Nonparametric Latent Trees - new algorithm, evaluation on real data.

22

Chapter 5

Spectral Approximations for Inference

X1 X2 X3 X4

H3H1 H2 H4 H5

X5

...

(a)

X1

X8

X5

X4

X2

X3HX7

X6

(b)

Figure 5.1: (a) Example of an HMM (b) Example of 8 observed nodes connected by a latent variable. In both
cases marginalizing out the latent variables creates a clique.

In this chapter, we examine inference in graphical models from the spectral perspective. Commonly,
methods for inference in graphical models rely on the structure of the model to design and analyze infer-
ence algorithms [Koller and Friedman, 2009, Wainwright and Jordan, 2008]. For example, the difficulty of
inference is primarily characterized by the treewidth of the model.

However, this paradigm can be quite limiting, especially in parallel settings. For example, collapsed
samplers do not structurally have conditional independence statements. However, many recent works have
shown that simply letting the sampler run “hogwild” (i.e. asynchronously) can often produce good results
in some cases [Smyth et al., 2008].

In this thesis we explore how the spectral view of latent variable models can lead to a different theoretical
perspective and new solutions for inference in graphical models. We give two examples below.

Marginal MAP:
A common task in graphical models is to compute the MPE (most probable explanation), assignment:

given a set of evidence variables, to compute the most likely assignment of all the other variables (This is
also commonly referred to as the MAP assignment). This problem has proved useful in a number of real
world problems such as protein side chain prediction, and many methods have been developed to tackle
it [Wainwright and Jordan, 2008, Sontag et al., 2012].

However, in many applications, we do not want the most likely assignment of all the other variables,
but rather only a particular subset of them (called marginal MAP). This is especially the case in latent
variable structured prediction models where the goal is to predict a structured output while marginalizing
out the latent variables. One example is parsing in NLP, where latent variable models are used, but
the end goal is to only to find the most likely parse for a given word (while integrating out the latent

23

variables) [Petrov et al., 2006, Matsuzaki et al., 2005, Smith, 2011].
Interestingly, Marginal MAP is substantially more difficult than MPE / inference problems and is difficult

even for trees because the sum and max operators do not commute [Park, 2002, Koller and Friedman, 2009].
For example, consider the structure shown in Figure 5.1(a). Summing out the X variables and then finding
the most likely assignment to the H variables is tractable (i.e. Viterbi algorithm). However, summing out
the H variables while finding the most likely assignment of the X variables is generally intractable, since
after summing out the H variables, the X nodes become connected in a clique.

Until recently, most methods for tackling marginal MAP were either simply running sum product, max
product, or Expectation Maximization where the max/sum steps were alternatively performed. Recently
Jiang et al. [Jiang et al., 2011] and Liu and Ihler [Liu and Ihler, 2013] proposed hybrid message passing
schemes based on the general variational formalism [Wainwright and Jordan, 2008].

Collapsed Sampling: In many graphical models that require approximate inference such as topic/admixture
models [Blei et al., 2003, Hoff et al., 2002], collapsed sampling [Griffiths and Steyvers, 2004, Porteous et al., 2008]
has emerged as a popular sampling method in which some of the latent variables are marginalized out. For
example in Figure 5.1(b), a traditional gibbs sampler would iteratively sample the values of H,X1, ...,X8.
However, a collapsed sampler would marginalize out H and only sample the X1, ...,X8.

While collapsed sampling presents many advantages for mixing and Markov chain convergence, it
presents challenges for parallelization. The uncollapsed sampler can be easily parallelized since conditioned
on a value of H, the Xi are all conditionally independent and can easily be sampled in parallel. However, once
H has been marginalized out, as in the collapsed sampler, the X1, ..,X8 have no conditional independencies
and thus parallelization becomes nontrivial.

5.1 Goals

Recall in Chapter 2 that our notion of a complexity of a model was not simply the structure but also the rank
of the latent variables. For example, none of the X variables in Figure 5.1(b) are conditionally independent
of one another once H is summed out. However, they only share a low rank dependence providing H does
not take on too many states. In other words, the cardinality of the latent space and the rank of the related
conditional probability tables determine the complexity of the model.

Our goal is to use this insight to derive new methods for inference that can leverage low rank structure.
To help reach this goal, in this proposal we simply describe the following two key intuitions. For the first
we provide a formal proof.

1. Distance Intuition: Variables farther apart in the graphical model are more approximately indepen-
dent than those nearby.

2. Clique Intuition: Consider a set of observed variables X that are connected by one low rank variable
e.g. Figure 2 5.1(b). Then p(Xi|Z) ≈ p(Xi|{X \ Xi}) whereZ is a “large enough” subset of {X \ Xi}.

In some sense, our work is inspired by recent work in optimization such as parallel coordinate descent
for the LASSO [Bradley et al., 2011] where approximate independence among covariates can be leveraged
for parallelism even if the coordinate descent is technically a sequential algorithm.

5.2 Distance Intuition

To help formalize our distance intuition, consider the model in Figure 5.1(a). Recall from Chapter 2 that
P(Hn|H1) is rank one if and only if Xn ⊥ X1. We seek to show that as n increases (i.e. the nodes become
farther apart), P(Hn|H1) becomes closer and closer to being rank one.

Note that

P(Hn|H1) =

n−1∏
t=1

P(Ht+1|Ht) (5.1)

24

First assume the HMM is homogeneous i.e. P(Xt+1|Xt) equals a fixed stochastic matrix T ∀t. Let λ2(T)
denote the second eigenvalue of T. Note that since T is stochastic the largest eigenvalue is equal to 1 and
therefore λ2(T) ≤ 1.

Then, P(Hn|H1) = Tn−1 and thus λ2(P(Hn|H1)) = λ2(T)n−1. Assuming that λ2(T) < 1 (i.e. basically that T
is not deterministic) this implies that λ2(P(Hn|H1))→ 0 as n→∞.

However, when the HMM is not homogeneous then we cannot apply the argument above because
λ2(P(Hn|H1)) , λ2(T)n−1. Thus, we need another measure of the rank-deficiency of a matrix that is multi-
plicative (or atleast submultiplicative) in the non-homogeneous case.

Seneta [Seneta, 1979] developed such a measure called the coefficient of ergodicity.1

Definition 3. A coefficient of ergodicity is a scalar function τ(·) continuous on the set of (n× n) column stochastic
matrices and satisfying 0 ≤ τ(A) ≤ 1. It is then said to be proper coefficient of ergodicity if

τ(A) = 0 ⇐⇒ A = v1> (5.2)

where v is any probability vector.

In particular the coefficient of ergodicity we will consider is [Seneta, 1979, Ipsen and Selee, 2011]

τ1(A) = max
‖z‖1=1,z>1=0

‖Az‖1 (5.3)

In particular, τ1(·) is submultiplicative i.e. τ1(A1A2) ≤ τ1(A1)τ2(A2).
Using this fact (and a few other basic properties) it is simple to prove the following lemma:

Lemma 1. Assume that τ1(P(H j+1|H j)) < γ ∀ j. Then,

‖P(Hn|H1) −MHn‖1 ≤ 2S2
Hγ

n−1 (5.4)

where Hn and H1 both take on SH states, MHn is the SH × SH matrix where every column contains the marginal
probability vector of Hn, and ‖ · ‖1 is the elementwise one-norm.

5.3 Clique Intuition

Formalizing this intuition is still a work in progress. Ideally, we would like to show that p(Xi|Z) ≈
p(Xi|{X \ Xi}) whereZ is a “large enough” subset of {X \ Xi}. The challenge lies in the fact that we are now
trying to prove bounds on the posterior distribution which is more challenging than the conditional.

5.4 Summary of Contributions

This project is mostly future work and much remains left to be done. The goal is to use the intuition explained
above to design new inference techniques for problems such as marginal MAP and approximately parallel
collapsed sampling.

1We present it using the formulation of [Ipsen and Selee, 2011]

25

Chapter 6

A Conditional Latent Tree Model for
Unsupervised Parsing

In this chapter we tackle unsupervised syntactic parsing, an important problem in NLP where existing
methods are very sensitive to local optima and therefore require careful initialization.

Instead of attempting to directly propose a spectral algorithm for learning an existing model, we propose
a new approach to unsupervised parsing that revolves around structure learning (as opposed to existing
approaches which center around parameter learning). Our goal is to develop a method has comes with
strong theoretical guarantees on latent structure recovery and also works well empirically.

In essence, our approach reduces to learning the structure of a ”conditional” latent tree graphical
model, where the structure of the latent tree varies across each sentence. We propose to generalize exist-
ing spectral approaches for learning a fixed latent tree [Saitou and Nei, 1987, Lake, 1994, Choi et al., 2011,
Anandkumar et al., 2011, Ishteva et al., 2012] that we briefly discussed in Chapter 4 to this varying structure
scenario. In particular, we leverage kernel smoothing techniques from the statistics community [Zhou et al., 2010,
Kolar et al., 2010b, Kolar et al., 2010a] to deal with the ensuing data sparsity problem.

6.1 Motivation

Solutions to the problem of grammar induction have been long sought after since the early days of compu-
tational linguistics and are interesting both from cognitive and engineering perspectives. Cognitively, it is
more plausible to assume that children obtain only terminal strings of parse trees and not the actual parse
trees. This means the unsupervised setting is a better model for studying language acquisition.

From the engineering perspective, training data for unsupervised parsing exists in abundance (i.e.
sentences and part-of-speech tags), and is much cheaper than data required for supervised training, which

0

5

10

15

20

25

30

35

20-30 31-40 41-50 51-60 61-70 71-80

Fr
e

q
u

e
n

cy

Bracketing F1

CCM Random Restarts (Length <= 10)

Figure 6.1: Histogram of performance over 100 random restarts of CCM[Klein and Manning, 2004], a com-
mon unsupervised constituent parsing algorithm, on WSJ10 [Marcus et al., 1993]. As one can see perfor-
mance varies widely.

26

VBD DT NN VBD DT NN

Figure 6.2: Candidate constituent parses for x = (VBD,DT,NN) (left-correct, right -incorrect)

requires manual syntactic annotation.
Most of the solutions suggested treat the problem of unsupervised parsing by assuming a parametric

model. Learning the model then corresponds to optimizing a set of parameters θ that achieve a lo-
cal maximum of an objective function such as the likelihood [Klein and Manning, 2004] or a variant of it
[Cohen and Smith, 2009, Headden et al., 2009, Spitkovsky et al., 2010, Gillenwater et al., 2010, Golland and DeNero, 2012].
Unfortunately, finding the global maximum for these objective functions is usually intractable [Cohen and Smith, 2010].
As a result, many of these methods suffer from severe local-optima, and initializers are crafted to obtain
good solutions (For example, see Figure 6.1).

Recently, spectral techniques have provided insight into unsupervised learning of probabilistic context
free grammars [Hsu et al., 2012] showing that they are in general non-identifiable, requiring substantial
restrictions to become identifiable. Even when identifiable, deriving an actual learning algorithm is chal-
lenging and unlikely to perform well on real world data.

In this thesis, we propose a model that allows for a learning algorithm with theoretical guarantees on
latent structure recovery. Notably, we do not explicitly learn a grammar. Instead, we treat unsupervised
parsing as a structure learning problem, where we recover a latent structure (an undirected latent tree) for
each sentence. We then apply a bias mapping to direct this latent tree to generate the final syntactic structure
(either a dependency or a constituent parse).

Our approach is inspired by methods for recovering latent tree structure in the machine learning and phy-
logeneitics community [Saitou and Nei, 1987, Lake, 1994, Choi et al., 2011, Anandkumar et al., 2011, Ishteva et al., 2012].
These approaches leverage the spectral properties of the relevant covariance matrices to consistently learn
latent trees.

One key challenge in this approach is being able to robustly compute these covariance matrices since
different sentences may be associated with different intermediate structures. To handle this issue, we
present an “anchoring” strategy that is inspired by ideas from kernel smoothing in the Statistics commu-
nity [Zhou et al., 2010, Kolar et al., 2010b, Kolar et al., 2010a]. This allows principled sharing of samples
from different but similar underlying distributions.

In the following sections, we motivate the rationale behind our approach and then present the core
proposed algorithm.

6.2 Unsupervised Parsing as a Structure Learning Problem

Let W = (W1, ...,W`) be a vector of words, where in general, each Wi is a real valued vector representing
some embedding/feature vector of word i in the sentence. Let X = (X1, ...,X`) be the corresponding vector
of part-of-speech (POS) tags (i.e. Xi is the POS tag of Wi)1.

For intuition, consider the tag sequence x = (VBD,DT,NN).
Some candidate constituent parse structures are shown in Figure 6.2 and the correct one is circled in

green (the other is boxed in red).
Of course without supervision, it would be impossible to determine the correct dependency structure

without extra information. In our scenario, we are also given word phrases W = (W1,W2,W3) that have this
tag sequence e.g. (hit the ball, ate an apple, baked the cake).

One can see that based on these examples, the determiner is rather independent of the verb i.e. the value
of W2 is largely independent of W1. However, W2 is largely correlated with W3 i.e. if W2 = “a” then we
know W3 must be singular and start with a consonant.

1Wi and Xi are capitalized since they are random variables. Their instantiations will be lower-case.

27

The bear ate the fish

𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5 , 𝑧1, 𝑧2, 𝑧3 ∼ 𝑝𝑥

𝑥 = (𝐷𝑇,𝑁𝑁, 𝑉𝐵𝐷, 𝐷𝑇,𝑁𝑁)

𝑢𝑥

w1 w2 w3

z3z1

w3 w3

z2

(a)
The bear ate the fish

𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5 , 𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5 ∼ 𝑝𝑥

𝑥 = (𝐷𝑇,𝑁𝑁, 𝑉𝐵𝐷, 𝐷𝑇,𝑁𝑁)

𝑢𝑥

w1

w2

w3

z5

z1

z2

w3

w3z4

z3

(b)

DT NN VBD DT NN

(c)

DT(1)

NN(2)
VBD(3)

DT(4)

NN(5)

(d)

Figure 6.3: Example of undirected latent trees for (a) constituent and (b) dependency parsing. And (c) the
actual constituent parse (d) the actual dependency parse. See text for details

Thus, we can deduce that W2 is more associated with W3 than W1, giving us the correct structure.
Our contention is that the relationship among the lexical forms (conditioned on the tag sequences)

exposes the underlying parse structure. Formalizing this intuition, we assume the conditional model:

W |x ∼ Pux,θx (6.1)

Here, ux ∈ U is the undirected graph structure that characterizes the conditional independencies among
the Wi (conditioned on a tag sequence x). θx is the corresponding set of parameters.

Note thatU is not a set of parse trees, but rather a family of intermediate structures (described later). To
obtain the final parse structure, we propose a bias mapping h :U → T that deterministically maps undirected
graph structures to parse trees (h is assumed to be known since it represents domain knowledge). As a
result, our parsing problem reduces to recovering the latent structure ux for each x.

The exact choice ofU depends on whether we desire a dependency or a constituent parse. However, in
all cases, we use a subset of the family of latent tree graphical models as described in Chapter 3. Briefly, latent
trees are a tree structure over the observed variables (W in our case), as well as an additional set of latent
variables that we denote as Z. The addition of the latent variables allows for longer range dependencies
compared to a fully observed tree over just the W. In particular for any choice of the root, the joint
distribution then factorizes as

P(w, z|x) =

`(x)∏
i=1

P(zi|zπ(zi), x)
`(x)∏
i=1

P(wi|zπ(wi), x) (6.2)

where π(·) returns the parent node of the argument (We have assumed all the observed nodes Wi are leaves)
and `(x) is the length of tag sequence x. Recall that each Wi is a real valued vector that represents an
embedding/feature for word i.

For constituent and dependency parsing we make restrictions on the trees that we detail below:

• Constituent parsing: We choose the sub-family of latent trees where all the observed variables (words)
are leaves and each internal node is a latent node with exactly three neighbors. An example is shown
in Figure 6.3(a).

• Dependency parsing: We choose the sub-family of latent trees where each observed node (word) is a
leaf and each hidden node has exactly one observed child (but it can have arbitrary latent children).
An example is shown in Figure 6.3(b). Note that another option would be simply a tree consisting of
only the words. However, this model is more expressive since it allows longer range dependencies
via the latent variables.

6.2.1 Bias Mappings

After obtaining the undirected latent tree u ∈ U, we need to convert it to a constituent/dependency tree via
the bias mapping h:

28

• Dependency parsing: We choose the first non-participle verb in the sentence and pick the latent
node associated with that verb to be the root. The dependency tree is simply the latent tree with the
observed nodes removed (see Figure 6.3(d)).

• Constituent parsing: For undirected constituent trees, note that all the internal nodes have 3 neighbors.
However, in a (binary) constituent parse, the root has only two neighbors. Our bias mapping selects
one edge in the tree and inserts a new node there that will be the root (the tree is then directed
accordingly). For example in Figure 6.3(a), the new root node should be placed between z1 and z2
(see Figure 6.3(c)). In general, we pick the edge that separates the noun phrase from the verb phrase,
which can be heuristically determined.

6.2.2 Projectivity

In general latent tree graphical models, the order of nodes is irrelevant. However, this is not the case in
parsing, where the parse tree must respect the order of the words of the sentence. This requirement is
called projectivity2. We give a rigorous definition of projectivity for constituent parse trees below (a similar
definition exists for dependency trees).

Definition 4. For any pair of sentence positions i, j (where i < j) let ai j be the closest common ancestor and let
desc(ai j) be the set of descendants of ai j. A constituent parse tree is projective if and only if for all position pairs i, j
s.t. i < j, k ∈ desc(ai j) if and only if i ≤ k ≤ j.

6.3 Learning the Projective Latent Tree Structure

Assume N examples of the form D = [(w(i), x(i))]N
i=1 are observed and we would like to recover ux for tag

sequence x. To get an intuition about the algorithm, consider a partition of the set of examples D into
D(x) = {(w(i), x(i)) ∈ D|x(i) = x}, i.e. each section in the partition has an identical sequence of part of speech
tags. Consider constituent parsing for simplicity (e.g. Figure 6.3(a)).

Assume first that that |D(x)| is large (we address the data sparsity problem in the next section). In
this case, we can leverage additive tree metrics and associated algorithms [Saitou and Nei, 1987, Lake, 1994,
Choi et al., 2011, Anandkumar et al., 2011] discussed in Chapter 4. The only difference is that our tree metric
is now conditioned on x, since we would like to recover a different latent tree for each tag sequence. In
particular, since each Wi is a vector, rather than a scalar, we propose the following additive tree metric based
on [Anandkumar et al., 2011]:

dx(i, j) = − 1
2 log Λk(Σx(i, j)) + 1

4 log Λk(Σx(i, i)) + 1
4 log Λk(Σx(j, j)) (6.3)

where Λk(A) denotes the product of the top k singular values of A and Σx(i, j) := E[WiW>

j |x].
As mentioned in Chapter 4, we can then use the meta-algorithms of [Saitou and Nei, 1987, Choi et al., 2011,

Anandkumar et al., 2011] to recover ux. It is possible to restrict many of these meta-algorithms to return
only projective trees.

6.3.1 A More Optimal Tree via Minimum Balanced Evolution

The above technique is provably consistent: if the modeling assumptions hold, then as the sample size
increases, the empirical distance matrix will exactly satisfy the additive tree metric property, and the correct
latent tree will be recovered. However, in practice it is unlikely that the empirical distance matrix exactly
satisfies an additive tree metric (due to both estimation error and modeling error). In this case, we would
like an algorithm that returns the best tree according to some criterion. The most natural criterion would
be the likelihood, but this will most likely be intractable.

Instead we suspect it is possible to find the optimal latent tree according to the balanced minimum
evolution (BME) criterion [Desper and Gascuel, 2005], which is commonly used in phylogenetics. As the

2There is also interest in non-projective parsing, but we do not focus on it here

29

name suggests, the goal is to find the latent tree that has the smallest sum of edge weights (where the edge
weights are set according to a certain formula that leverages the additive tree metric assumption).

For general trees, finding the BME-optimal latent tree is NP-hard. However, we suspect that it can
actually be solved efficiently for projective latent trees using a variant of the CKY dynamic programming
algorithm [Manning and Schütze, 1999].

6.3.2 Anchoring for Dealing With Data Sparsity

We now address the data sparsify problem, in particular thatD(x) can be very small. For example, the Penn
treebank [Marcus et al., 1993] has a total number of 43,498 sentences, with 42,246 unique part-of-speech tag
sequences, averaging |D(x)| to be 1.04.

Our approach to solve this data sparsity issue withD(x) is to use a method we call anchoring. Consider
estimating the covariance matrix Σx(1, 2) for the tag sequence x = (DT1, NN2, VBD3, DT4, NN5) shown in Fig-
ure 6.3. D(x) may be insufficient for an accurate empirical estimate. However, consider another sequence
x′ = (RB1, DT2, NN3, VBD4, DT5, ADV6, NN7). Although x and x′ are not identical, it is likely that Σx′ (2, 3) is similar
to Σx(1, 2) because the determiner and the noun appear in similar syntactic context. Σx′ (5, 7) also may be
somewhat similar, but Σx′ (2, 7) should not be very similar to Σx(1, 2) because the noun and the determiner
appear in a different syntactic context.

The observation that the covariance matrices depend on local syntactic context is the main driving force
behind anchoring. The local syntactic context acts as an “anchor,” which enhances or replaces a word index
in a sentence with local syntactic context.

More formally, an anchor is a function G that maps a word index j and a sequence of part-of-speech
tags x to a local context G(j, x). The anchor we use is G(j, x) = (j, x j). Then, the covariance matrices Σx
are estimated using kernel smoothing [Hastie et al., 2009], where the smoother tests similarity between the
different anchors G(j, x).

More formally, let C j′,k′ |i′ = w(i′)
j′ (w(i′)

k′)>. Then,

Σ̂x(i) (j, k) =

∑N
i′=1

∑`(x(i′))
j′=1

∑`(x(i′))
k′=1 K(j, k, j′, k′|x(i), x(i′))C j′,k′ |i′∑N

i′=1
∑`(x(i′))

j′=1

∑`(x(i′))
k′=1 Kγ(j, k, j′, k′|x(i), x(i′))

(6.4)

where Kγ(j, k, j′, k′|x(i), x(i′)) is the kernel smoothing function. γ is the bandwidth parameter that trades off
the bias and variance of the estimate.

6.4 Summary of Contributions

This project is a work in progress. Currently we are exploring the anchoring strategy but with Chow Liu
(fully) observed trees. After getting this to perform well in practice I will work on the latent tree case.

1. Make sure anchoring strategy works with chow liu tree. Examine if dependencies among lexical forms
are sufficient, or if some prior over tree structures is required.

2. Extend to latent tree case and determine if possible to achieve optimal tree according to balanced
minimum evolution criterion.

3. Prove a sample complexity bound.

4. Evaluate in comparison to DMV and CCM (Klein and Manning 2004) on English and non-English
languages.

30

Chapter 7

Language Modeling via Power Low Rank
Ensembles

Finally, we propose to use the linear algebra point of view of latent variables to develop a novel approach
for n-gram language modeling, where we believe low rank approaches have the potential to present an
attractive solution to the data sparsity problem. We present a preliminary model called power low rank
ensembles, a low rank framework that includes existing language models, such as absolute discounting
and Kneser Ney, as special cases.

7.1 Motivation

Language modeling is the task of evaluating the probability of a sequence of words in a language, based
on the patterns previously observed in corpora of that language. It is an important component in, among
other applications, modern speech recognition [Rabiner and Juang, 1993] and machine translation decoders
[Koehn, 2010], by scoring various hypotheses produced by such systems. The language model plays a
key role in discarding unlikely word sequences by assigning low probabilities to them, and promoting
hypotheses that contain more likely word sequences.

The predominant approach to language modeling is the n-gram language model, wherein the probability
of a word sequence P(w1, . . . ,w`) is first factored and then approximated (with the Markov assumption) as:

P(w1, . . . ,w`) =

m∏
i=1

P(wi|w1, . . . ,wi−1)

≈

∏̀
i=1

P(wi|wi−1
i−n+1)

In other words, one only needs to take into account the previous n − 1 words when computing the
probability of a word wi given its word history. This assumption reduces parameters significantly, but
it is not enough: the vocabulary can often be huge, and thus the large number of parameters can often
be inaccurately estimated from the data. For example, due to the power-law nature of language, naive
maximum likelihood approaches will be able to estimate some common subsequences very accurately
while impractically assigning zero probability to rare, but legitimate word sequences that are not observed
in the training data.

A rich literature in language model (LM) smoothing has thus arisen in response to this core issue, with
the basic idea behind most approaches being to reassign probability mass, especially at the lower end of
the frequency curve, to take into account such unseen word sequences, and to interpolate with or back off to
lower order n-gram models as the need arises [Chen and Goodman, 1999]. Techniques such as Kneser-Ney
smoothing [Kneser and Ney, 1995] and variants have often been the state of the art for more than a decade,
by making intelligent choices on how back-off weights are computed and what distribution to back off to.

31

However, in some cases the semantic relatedness among words has the potential to alleviate the data
sparsity problem. For example, the word jubiliant appears much less than the word happy. However, since
both are synonyms, they tend to precede/follow similar words. How can the knowledge of the distribution
of words that precedes/follows happy be used to make more robust estimate of the distribution of words
that precedes/follows jubiliant?

This has led many to speculate that there exists an underlying (lower dimensional) latent space that
can help alleviate the data sparsity problem in language modeling. A simple latent model for bigrams
could be just the two observed nodes wi and wi−1 separated by a latent variable [Saul and Pereira, 1997]. As
described in Chapter 2, this would simply correspond to a low rank matrix where the rank corresponds to
the number of states that the latent variable takes. Computing this low rank approximation can be done
either by SVD, EM or Nonnegative Matrix Factorization depending on what characteristics are desired in
the low rank matrix. This idea an be extended to higher order n-grams via tensor factorizations.

While the intuition is quite compelling, very few low rank-based approaches exist for language modeling.
There are a few works (e.g. [Saul and Pereira, 1997, Hutchinson et al., 2011]) which mostly look at taking
low rank approximations of the bigram or trigram maximum likelihood estimate (MLE) to leverage an
underlying latent space. However, these approaches tend to only be effective in very restricted settings and
in general are non-competitive with Kneser Ney.

In this proposal, we contend that low-rank approaches do have potential, and that what is missing is
a general framework that can give theoretical guidance on how to develop and integrate these low rank
models into existing n-gram approaches. To address this problem, we propose a method called power low
rank ensembles. We hope that our method, by including Absolute Discounting and Kneser Ney as special
cases, can provide a natural way to incorporate low rank structure in language models.

7.2 Absolute Discounting and Kneser Ney Smoothing

To motivate our approach, we first briefly give an overview of two common n-gram smoothing methods,
Absolute Discounting[Ney et al., 1994] and Kneser Ney[Kneser and Ney, 1995] . Absolute Discounting is
a particularly simple method while Kneser Ney is widely considered to be the state-of-the-art n-gram
approach (and is based on Absolute Discounting). We focus on bigram models for simplicity, but these
methods can easily be extended to higher order models.

Consider first the following definitions. Let P̂(wi) refers to the maximum likelihood estimate (MLE)
of the probability of wi (and similarly for P̂(wi|wi−1)) c(w) is count of word w (similarly for c(w,wi−1)).
N+(wi−1) := |{w : c(w,wi−1) > 0}| (the number of distinct words that appear after wi−1). N−(wi) := |{w :
c(wi,w) > 0}| (the number of distinct words that appear before wi)

7.2.1 Absolute Discounting

The general intuition behind absolute discounting is to interpolate the higher order n-gram models (which
are very sparse) which lower-order n-gram models (that are more dense). However, in order to do this,
some probability must be “subtracted” from the higher order n-grams, so that the leftover probability can
be allocated to the lower order n-grams.

More specifically, absolute discounting uses the following equation1:

Pabsdisc(wi|wi−1) =
max(c(wi,wi−1) −D, 0)

c(w − 1)
+ γ(wi−1)

c(wi)∑
w c(w)

(7.1)

where D is the discount that creates the “leftover probability” and γ(wi−1) is chosen so that the probability
sums to one:

γ(wi−1) =
D ×N+(wi−1)∑

w c(w,wi−1)
(if D is less than 1) (7.2)

1We only present the interpolated version for simplicity.

32

7.2.2 Kneser Ney Smoothing

The weakness of absolute discounting is that it uses the original unigram probability as the lower order
distribution. This is intuitively suboptimal, since the lower order distribution is only given weight if we
are unsure about the higher order distribution (i.e. when γ(wi−1) is large). Thus, intuitively, the lower order
distribution should be altered to condition on this fact.

This is the inspiration behind Kneser Ney, an elegant algorithm that is widely considered the state-of-
the-art in n-gram language modeling. It proposes the following adjusted lower order estimate:

P̂kn−uni(wi) =
N−(wi)∑
wi

N−(wi)
(7.3)

Intuitively Pkney(wi) is proportional to the number of unique words that precede wi. Thus, words that
appear in many different contexts will be given higher weight than words that consistently appear after
only a few contexts.

Thus, the overall bigram Kneser Ney model looks like

P̂kney(wi|wi−1) =
max(c(wi,wi−1) −D, 0)

c(w − 1)
+ γ(wi−1)P̂kn−uni(wi) (7.4)

where γ(wi−1) is the leftover weight that we obtained from the discounting of the MLE bigram as shown
in Eq. 7.2.

7.3 Power Low Rank Ensembles

We now introduce our low rank framework. Our intuition is that just like the Kneser Ney lower order
models, our low rank models should also not be low rank approximations of the original bigrams/trigrams,
but rather alternate quantities. For simplicity, we only consider second-order models, but plan to generalize
the approach to higher order n-grams.

Definition 5. Define a power low rank ensemble to be a tuple (B, η,ρ, κ,D,Z) where

1. B is the bigram count matrix: B(wi,wi−1) = c(wi,wi−1).

2. η is the number of matrices in the ensemble.

3. ρ = (ρ1, ..., ρη) is a vector that specifies the power of each matrix in the ensemble.

4. κ = (κ1, κ2, ..., κη) is a vector that specifies the rank of each matrix in the ensemble.

5. D(·, ·, ·) is a tensor such that D(i, j,m) is the discount for position (i, j) in the mth matrix in the ensemble.

6. Z is the divergence/norm that determines what divergence/norm the low rank approximation is respect to.

Let B◦ρ refer to B taken to the elementwise-power ρ. Furthermore define B(ρm,κm)
Z to be the best non-negative rank

κm approximation of B◦ρ under the Z divergence.

B(ρm,κm)
Z := minM≥0:rank(M)=κm‖B

◦ρ
−M‖Z (7.5)

We then define the output probability as

P̂plre(wi|wi−1) =

η∑
m=1

m−1∏
m′=0

λm′ (wi−1)

 B(ρm,κm)
Z (wi,wi−1) −D(wi,wi−1,m)∑

w B(ρm,κm)
Z (w,wi−1)

(7.6)

where λm′ (wi−1) is the leftover probability from discounting the m′th matrix (let λ0(wi−1) = 1).

33

To shed some light onto our model, we first show how the Absolute Discounting/Kneser Ney components
are subcases of our framework. First we set Z to be the generalized KL divergence (KL), which is defined to

be KL(A||B) =
∑

i j

(
Ai j log(Ai j

Bi j
) − Ai j + Bi j)

)
. Now consider the following lemma.

Lemma 2. Let V be the size of the vocabulary i.e. number of possible values of wi. Then,

1. P̂(wi|wi−1) =
B(1,V)

KL (wi,wi−1)∑
w B(1,V)

KL (w,wi−1)

2. P̂(wi) =
B(1,1)

KL (wi,wi−1)∑
w B(1,1)

KL (w,wi−1)

3. P̂kn−uni(wi) =
B(0,1)

KL (wi,wi−1)∑
w B(0,1)

KL (w,wi−1)

From this we can make two observations:

• The rank κ is what differentiates bigrams from unigrams. Large κ implies more complex dependence
between wi and wi−1 and is thus closer to a bigram. By varying κwe can get something that is between
a unigram and a bigram.

• The power ρ is what allows our low rank ensemble to differentiate between Absolute Discounting (ρ =
1) and Kneser Ney (ρ = 0). Intuitively, the Kneser Ney unigram essentially ignores the frequency of the
count (providing its non-zero) and thus downweights very high frequency pairs. The MLE unigram
on the other hand is simply the marginal probability and therefore does not do any downweighting.

The power ρ quantifies this difference. Element-wise powering a matrix with small ρ (close to 0) will
relatively downweight high frequency entries. Setting ρ = 0 will give a binary matrix (assuming the
convention that 00 = 0).

If we setD(wi,wi−1,m) = min(D,B(ρm,κm)(wi,wi−1))I[m < η] where D is a parameter, we can show Absolute
Discounting and Kneser Ney are special cases of our framework. Absolute Discounting can be written as:

P̂absdisc(wi|wi−1) =
B(1,V)

KL (wi,wi−1) −D(wi,wi−1, 1)∑
w B(1,V)

KL (w,wi−1)
+ λ1(wi−1)

B(1,1)
KL (wi,wi−1) −D(wi,wi−1, 2)∑

w B(1,1)
KL (w,wi−1)

(7.7)

And Kneser Ney can be written as:

P̂kney(wi|wi−1) =
B(1,V)

KL (wi,wi−1) −D(wi,wi−1, 1)

B(1,V)
KL (w,wi−1)

+ λ1(wi−1)
B(0,1)

KL (wi,wi−1) −D(wi,wi−1, 2)∑
w B(0,1)

KL (w,wi−1)
(7.8)

This formulation asks the natural question, how can other pairs (ρ, κ) be incorporated into language
models? How to set the discountsD in the more general case? Since the vocabulary is so large, the discounts
must have some simple structure so all of them do not have to be computed/stored jointly. This is a work
in the progress and the main obstacle to implementing the method currently.

7.4 Summary of Contributions

1. Finish developing the method e.g. how to set the discounts, and how to vary ρ and κ.

2. Evaluate and compare to Kneser Ney on perplexity as well as a downstream machine translation task.

3. Develop more scalable approximations to be able to scale to higher order n-grams and vocabulary.

34

Chapter 8

Proposed Timeline

We provide a tentative timeline for the thesis, showing what has been accomplished and what remains.

Contribution Status and Schedule
Spectral Learning of Latent Trees [ICML 2011, ICML 2013], journal version* (Summer 2014)

Spectral Learning of Latent Junction Trees [UAI 2012], journal version* (Summer 2014)
Kernel Embeddings of Latent Trees [NIPS 2011]
Power Low Rank Language Models Fall 2013

Unsupervised Parsing Fall 2013/Early Spring 2014
Spectral Approximations of Inference Spring/Summer 2014
Scalable Low Rank Language Models Fall 2014

Writing Thesis Fall 2014

Figure 8.1: Timeline for thesis (* = this is one journal paper)

Relevant publications:

• A.P. Parikh, L. Song, and E.P. Xing, A Spectral Algorithm for Latent Tree Graphical Models, The 28th
International Conference on Machine Learning (ICML 2011)

• L. Song, A.P. Parikh, and E.P. Xing, Kernel Embeddings of Latent Tree Graphical Models, Neural
Information Processing Systems (NIPS 2011)

• A.P. Parikh, L. Song, M. Ishteva, G. Teodoru and E.P. Xing, A Spectral Algorithm for Latent Junction
Trees, The 28th Conference on Uncertainty in Artificial Intelligence (UAI 2012)

• L. Song, M. Ishteva, A.P. Parikh, H. Park, and E.P. Xing. Hierarchical Tensor Decomposition for
Latent Tree Graphical Models. In the 30th International Conference on Machine Learning (ICML
2013)

35

Bibliography

[Anandkumar et al., 2011] Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S. M., Song, L., and Zhang,
T. (2011). Spectral methods for learning multivariate latent tree structure. arXiv preprint arXiv:1107.1283.

[Anandkumar et al., 2012] Anandkumar, A., Foster, D. P., Hsu, D., Kakade, S. M., and Liu, Y.-K. (2012).
Two svds suffice: Spectral decompositions for probabilistic topic modeling and latent dirichlet allocation.
arXiv preprint arXiv:1204.6703.

[Anandkumar et al., 2013] Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. M. (2013). A tensor spectral
approach to learning mixed membership community models. arXiv preprint arXiv:1302.2684.

[Asuncion and Newman, 2007] Asuncion, A. and Newman, D. (2007). UCI machine learning repository.

[Bailly et al., 2009] Bailly, R., Denis, F., and Ralaivola, L. (2009). Grammatical inference as a principal
component analysis problem. In Proceedings of the 26th Annual International Conference on Machine Learning,
pages 33–40. ACM.

[Bailly et al., 2010] Bailly, R., Habrard, A., and Denis, F. (2010). A spectral approach for probabilistic
grammatical inference on trees. In Algorithmic Learning Theory, pages 74–88. Springer.

[Baldi et al., 2001] Baldi, P. et al. (2001). Bioinformatics: the machine learning approach. The MIT Press.

[Balle et al., 2011] Balle, B., Quattoni, A., and Carreras, X. (2011). A spectral learning algorithm for finite
state transducers. In Machine Learning and Knowledge Discovery in Databases, pages 156–171. Springer.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. the Journal of
machine Learning research, 3:993–1022.

[Boots et al., 2010] Boots, B., Siddiqi, S. M., and Gordon, G. J. (2010). Closing the learning-planning loop
with predictive state representations. In Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems: volume 1-Volume 1, pages 1369–1370. International Foundation for Autonomous
Agents and Multiagent Systems.

[Bradley et al., 2011] Bradley, J. K., Kyrola, A., Bickson, D., and Guestrin, C. (2011). Parallel coordinate
descent for l1-regularized loss minimization. arXiv preprint arXiv:1105.5379.

[Chen and Goodman, 1999] Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques
for language modeling. Computer Speech & Language, 13(4):359–393.

[Choi et al., 2011] Choi, M. J., Tan, V. Y., Anandkumar, A., and Willsky, A. S. (2011). Learning latent tree
graphical models.

[Chow and Liu, 1968] Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–467.

[Cohen and Collins, 2012] Cohen, S. and Collins, M. (2012). Tensor decomposition for fast parsing with
latent-variable pcfgs. In Advances in Neural Information Processing Systems 25, pages 2528–2536.

[Cohen et al., 2012] Cohen, S., Stratos, K., Collins, M., Foster, D., and Ungar, L. (2012). Spectral learning of
latent-variable pcfgs. In Association of Computational Linguistics (ACL), volume 50.

36

[Cohen and Smith, 2009] Cohen, S. B. and Smith, N. A. (2009). Shared logistic normal distributions for soft
parameter tying in unsupervised grammar induction. In Proceedings of HLT-NAACL.

[Cohen and Smith, 2010] Cohen, S. B. and Smith, N. A. (2010). Viterbi training for PCFGs: Hardness results
and competitiveness of uniform initialization. In Proceedings of ACL.

[Dasgupta, 1999] Dasgupta, S. (1999). Learning mixtures of gaussians. In Foundations of Computer Science,
1999. 40th Annual Symposium on, pages 634–644. IEEE.

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society B, 39(1):1–22.

[Desper and Gascuel, 2005] Desper, R. and Gascuel, O. (2005). The minimum evolution distance-based
approach to phylogenetic inference. Mathematics of evolution and phylogeny, pages 1–32.

[Dhillon et al., 2012] Dhillon, P. S., Rodu, J., Collins, M., Foster, D. P., and Ungar, L. H. (2012). Spectral
dependency parsing with latent variables. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning, pages 205–213. Association
for Computational Linguistics.

[Gillenwater et al., 2010] Gillenwater, J., Ganchev, K., Graça, J., Pereira, F., and Taskar, B. (2010). Sparsity in
dependency grammar induction. In Proceedings of ACL.

[Golland and DeNero, 2012] Golland, D. and DeNero, J. (2012). A feature-rich constituent context model
for grammar induction. In Proceedings of ACL.

[Griffiths and Steyvers, 2004] Griffiths, T. L. and Steyvers, M. (2004). Finding scientific topics. Proceedings
of the National academy of Sciences of the United States of America, 101(Suppl 1):5228–5235.

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

[Harmeling and Williams, 2011] Harmeling, S. and Williams, C. K. (2011). Greedy learning of binary latent
trees. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(6):1087–1097.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics. Springer Verlag.

[Headden et al., 2009] Headden, W. P., Johnson, M., and McClosky, D. (2009). Improving unsupervised
dependency parsing with richer contexts and smoothing. In Proc. of NAACL-HLT.

[Hoff et al., 2002] Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002). Latent space approaches to social
network analysis. Journal of the american Statistical association, 97(460):1090–1098.

[Hsu et al., 2009] Hsu, D., Kakade, S., and Zhang, T. (2009). A spectral algorithm for learning hidden
Markov models. In Proc. Annual Conf. Computational Learning Theory.

[Hsu et al., 2012] Hsu, D., Kakade, S. M., and Liang, P. (2012). Identifiability and unmixing of latent parse
trees. In Advances in NIPS.

[Hutchinson et al., 2011] Hutchinson, B., Ostendorf, M., and Fazel, M. (2011). Low rank language models
for small training sets. Signal Processing Letters, IEEE, 18(9):489–492.

[Ipsen and Selee, 2011] Ipsen, I. C. and Selee, T. M. (2011). Ergodicity coefficients defined by vector norms.
SIAM Journal on Matrix Analysis and Applications, 32(1):153–200.

[Ishteva et al., 2012] Ishteva, M., Park, H., and Song, L. (2012). Unfolding latent tree structures using 4th
order tensors. arXiv preprint arXiv:1210.1258.

[Jiang et al., 2011] Jiang, J., Rai, P., and Iii, H. D. (2011). Message-passing for approximate map inference
with latent variables. In Advances in Neural Information Processing Systems, pages 1197–1205.

37

[Katayama, 2005] Katayama, T. (2005). Subspace methods for system identification. Springer.

[Klein and Manning, 2004] Klein, D. and Manning, C. D. (2004). Corpus-based induction of syntactic
structure: Models of dependency and constituency. In Proceedings of ACL.

[Kneser and Ney, 1995] Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language model-
ing. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International Conference on, volume 1,
pages 181–184. IEEE.

[Koehn, 2010] Koehn, P. (2010). Statistical Machine Translation. Cambridge University Press, New York, NY,
USA, 1st edition.

[Kolar et al., 2010a] Kolar, M., Parikh, A. P., and Xing, E. P. (2010a). On sparse nonparametric conditional
covariance selection. In Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pages 559–566.

[Kolar et al., 2010b] Kolar, M., Song, L., Ahmed, A., and Xing, E. P. (2010b). Estimating time-varying
networks. The Annals of Applied Statistics, 4(1):94–123.

[Kolda and Bader, 2009] Kolda, T. and Bader, B. (2009). Tensor decompositions and applications. SIAM
Review, 51(3):455–500.

[Koller and Friedman, 2009] Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. The MIT Press.

[Lake, 1994] Lake, J. A. (1994). Reconstructing evolutionary trees from dna and protein sequences: paralin-
ear distances. Proceedings of the National Academy of Sciences, 91(4):1455–1459.

[Liang and Klein, 2009] Liang, P. and Klein, D. (2009). Online em for unsupervised models. In Proceedings
of human language technologies: The 2009 annual conference of the North American chapter of the association for
computational linguistics, pages 611–619. Association for Computational Linguistics.

[Liu et al., 2009] Liu, H., Lafferty, J., and Wasserman, L. (2009). The nonparanormal: Semiparametric
estimation of high dimensional undirected graphs. The Journal of Machine Learning Research, 10:2295–
2328.

[Liu and Ihler, 2013] Liu, Q. and Ihler, A. (2013). Variational algorithms for marginal map. arXiv preprint
arXiv:1302.6584.

[Luque et al., 2012] Luque, F. M., Quattoni, A., Balle, B., and Carreras, X. (2012). Spectral learning for
non-deterministic dependency parsing. In Proceedings of the 13th Conference of the European Chapter of the
Association for Computational Linguistics, pages 409–419. Association for Computational Linguistics.

[Manning and Schütze, 1999] Manning, C. D. and Schütze, H. (1999). Foundations of statistical natural lan-
guage processing, volume 999. MIT Press.

[Marcus et al., 1993] Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large anno-
tated corpus of english: The penn treebank. Computational linguistics, 19(2):313–330.

[Matsuzaki et al., 2005] Matsuzaki, T., Miyao, Y., and Tsujii, J. (2005). Probabilistic cfg with latent annota-
tions. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pages 75–82.
Association for Computational Linguistics.

[Mossel and Roch, 2005] Mossel, E. and Roch, S. (2005). Learning nonsingular phylogenies and hidden
markov models. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
366–375. ACM.

[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. The MIT Press.

[Ney et al., 1994] Ney, H., Essen, U., and Kneser, R. (1994). On Structuring Probabilistic Dependencies in
Stochastic Language Modelling. Computer Speech and Language, 8:1–38.

38

[Parikh et al., 2011] Parikh, A., Song, L., and Xing, E. (2011). A spectral algorithm for latent tree graphical
models. In Proceedings of the 28th International Conference on Machine Learning, pages 1065–1072. ACM.

[Park, 2002] Park, J. D. (2002). Map complexity results and approximation methods. In Proceedings of the
Eighteenth conference on Uncertainty in artificial intelligence, pages 388–396. Morgan Kaufmann Publishers
Inc.

[Petrov et al., 2006] Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learning accurate, compact, and
interpretable tree annotation. In Proceedings of the 21st International Conference on Computational Linguistics
and the 44th annual meeting of the Association for Computational Linguistics, pages 433–440. Association for
Computational Linguistics.

[Porteous et al., 2008] Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., and Welling, M. (2008).
Fast collapsed gibbs sampling for latent dirichlet allocation. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 569–577. ACM.

[Rabiner and Juang, 1993] Rabiner, L. and Juang, B.-H. (1993). Fundamentals of speech recognition.

[Redmond and Baveja, 2002] Redmond, M. and Baveja, A. (2002). A data-driven software tool for enabling
cooperative information sharing among police departments. European Journal of Operational Research,
141(3):660–678.

[Saitou and Nei, 1987] Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–425.

[Saul and Pereira, 1997] Saul, L. and Pereira, F. (1997). Aggregate and mixed-order markov models for
statistical language processing. In Proceedings of the second conference on empirical methods in natural
language processing, pages 81–89. Somerset, New Jersey: Association for Computational Linguistics.

[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002). Learning with kernels. The MIT Press.

[Seneta, 1979] Seneta, E. (1979). Coefficients of ergodicity: structure and applications. Advances in applied
probability, pages 576–590.

[Siddiqi et al., 2010] Siddiqi, S., Boots, B., and Gordon, G. J. (2010). Reduced-rank hidden Markov models.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS-2010).

[Smith, 2011] Smith, N. A. (2011). Linguistic structure prediction. Synthesis Lectures on Human Language
Technologies, 4(2):1–274.

[Smola et al., 2007] Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007). A hilbert space embedding
for distributions. In Algorithmic Learning Theory, pages 13–31. Springer.

[Smyth et al., 2008] Smyth, P., Welling, M., and Asuncion, A. U. (2008). Asynchronous distributed learning
of topic models. In Advances in Neural Information Processing Systems, pages 81–88.

[Song et al., 2010] Song, L., Boots, B., Siddiqi, S., Gordon, G., and Smola, A. (2010). Hilbert space embed-
dings of hidden Markov models. In Proceedings of the 27th International Conference on Machine Learning,
pages 991–998. ACM.

[Song et al., 2009] Song, L., Huang, J., Smola, A., and Fukumizu, K. (2009). Hilbert space embeddings
of conditional distributions with applications to dynamical systems. In Proceedings of the 26th Annual
International Conference on Machine Learning, pages 961–968. ACM.

[Song et al., 2011] Song, L., Parikh, A., and Xing, E. (2011). Kernel embeddings of latent tree graphical
models. In Advances in Neural Information Processing Systems (NIPS), volume 24, pages 2708–2716.

[Sontag et al., 2012] Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T. S., and Weiss, Y. (2012). Tightening
lp relaxations for map using message passing. arXiv preprint arXiv:1206.3288.

39

[Spitkovsky et al., 2010] Spitkovsky, V. I., Alshawi, H., Jurafsky, D., and Manning, C. D. (2010). Viterbi
training improves unsupervised dependency parsing. In Proceedings of CoNLL.

[Stewart and Sun, 1990] Stewart, G. and Sun, J. (1990). Matrix perturbation theory, volume 175. Academic
press New York.

[Wainwright and Jordan, 2008] Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential
families, and variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305.

[Zhou et al., 2010] Zhou, S., Lafferty, J., and Wasserman, L. (2010). Time varying undirected graphs. Machine
Learning, 80(2-3):295–319.

40

	Introduction
	A Linear Algebra Approach To Graphical Models
	Applications to Natural Language Processing
	Thesis Statement
	Related Work
	Outline

	A Linear Algebra View of Latent Variable Models
	General Notation
	The Spectral View

	Spectral Parameter Learning for Latent Graphical Models
	Intuition
	A Spectral Algorithm for Latent Tree Graphical Models
	Spectral Learning of Non-Tree Models via Junction Trees
	Summary of Contributions

	Nonparametric Latent Trees with Kernel Embeddings
	Hilbert Space Embeddings
	A Kernel Spectral Algorithm for Latent Tree Graphical Models
	Structure Learning of Nonparametric Latent Trees
	Experiments
	Summary of Contributions

	Spectral Approximations for Inference
	Goals
	Distance Intuition
	Clique Intuition
	Summary of Contributions

	A Conditional Latent Tree Model for Unsupervised Parsing
	Motivation
	Unsupervised Parsing as a Structure Learning Problem
	Learning the Projective Latent Tree Structure
	Summary of Contributions

	Language Modeling via Power Low Rank Ensembles
	Motivation
	Absolute Discounting and Kneser Ney Smoothing
	Power Low Rank Ensembles
	Summary of Contributions

	Proposed Timeline

